
Systems Reference Library

Autocoder (on Tape) Language

Specifications and Operating Procedures

IBM 1401 and 1460

Program 1401-AU-037

This reference publication contains the language specifications and
operating procedures for the Autocoder (on Tape) programming
system. The IBM 1401 Autocoder processor program produces
machine-language object programs for IBM 1401 and IBM 1460 from
source programs written in the symbolic language of Autocoder.

File No. 1401/1460-22

Form C24-3319-0

The language specifications are divided into two sections. The first
section contains the specifications of the symbolic language
(mnemonics, labels, address types, and control operations) and the
rules for writing the source program. The second section describes
macro operations and macro instructions.

The operating instructions supplement the language specifications
section of this publication. Described are the procedures to be
performed by the operator when assembling an Autocoder program
on an IBM 1401 or 1460 tape system. The phases of the Autocoder
processor are explained and system halts and restarts are given.

For a list of associated publications and abstracts, see the IBM

1401 and 1460 Bibliography, Form A24-1495.

Maior Revision, November 1964

This publication, C24-3319-0, is a major revision of, and ob­
soletes, C24-1434-0, C24-3104-0, and Technical Newsletters
N24-0212 and N24-0233. The main change is the consolidation
of C24-1434-0 and C24-3104-0. Other changes include modifi­
cations to the address constants section and to the label descrip­
tion section of the Specifications.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the content of this publication to IBM Product Publications, Endicott, New York 13764.

© 1961, 1963 by International Business Machines Corporation

I

Contents

Autocoder (on Tape) Specifications .. 5

Machine Requirements 5

Programming with Autocoder ... 6

Symbolic Language 6
Coding Sheet .. 8
Address ~rypes .. 10
Indexing 13

Declarative Operations .. ,...................................... 14
Imperative Operations 20
Processor Control Operations .. 21

The Macro System ,.. 27

Macro Operations .. 27
Macro Instructions .. 31
The System Tape .. 37'
Additional Language Specifications .. 39

Autocoder (on Tape) Operating Procedures 41

Writing the System Tape .. 42

Pre-System Run .. 42
System Card Deck Format 42
Autocoder Listing Format .. 43
System Run .. 43
System Tape Format .. 43
Librarian Run 44

Program Assembly .. "..................................... 47

Autocoder Phases .. 47
Autocoder Output 49
Reassembly Run 56
Patching the Object Program "..................................... 57
Running the Object Program 58

Index , .. 59

I

This Autocoder programming system for the IBM 1401
and IBM 1460 is called Autocoder (on Tape) because
the 1401 processor program operates from magnetic­
tape units.

The Autocoder processor program produces ma­
chine-language object programs from source programs
written in the symbolic language of Autocoder. The
Autocoder language includes the following significant
features:
• Mnemonic Operation Codes-more easily remem­

bered than the actual machine-language operation
codes.

• Symbolic and Literal Operands-free the program­
mer of the burden of core-storage address assignment
and reference-actual constants can be used without
prior d.efinition.

• Area-Definition Statements·-allocate core storage for
input! output areas (including multiple-record areas)
and work areas and equate these to symbolic labels.

• Macro System--a basic set of frequently used sub­
routines supplied by IBM is easily added to by the
user. These library routines can be tailored to fit a
particular application and included in a program by
the use of a single macro instruction.

Machine Requirements
The IBM 1401 Autocoder processor can assemble pro­
grams for all 1401 and 1460 systems. The processor
does not include mnemonics for IBM 1311 and 1301
disk storage operations. Program that use the 1311 or
1301 can be written more easily for the Autocoders that
operate from those disk units. Where necessary, how-

Autocoder (on Tape) Specifications

ever, instructions for those units can be assembled by
this tape Autocoder. (See Disk Input/Output Instruc­
tions.)

The minimum machine configurations required to
operate the 1401 Autocoder processor for program as­
semblyare:

IBM 1401 Data Processing System

• 4,000 positions of core storage
• Four IBM 7330 or 729 Magnetic Tape Units. (A fifth

magnetic tape unit can be used for delayed multipb
program output.)

• IBM 1403 Printer, Model 2, or IBM 1404 Printer
• IBM 1402 Card Read-Punch
• The following special features:

Advanced Programming
High-Low-Equal Compare
Sense Switches (Not necessary for original assem­

bly from a source program card deck, but nec­
essary for all other Autocoder operations.)

IBM 1460 Data Processing System

• 8,000 positions of core storage
• Four IBM 7330 or 729 Magnetic Tape Units. (A fifth

magnetic tape unit can be used for delayed multiple
program output.)

• IBM 1403 Printer, Model 2 or 3

• IBM 1402 Card Read-Punch
• The following special features:

Indexing and Store-Address Register
Sense Switches (Not necessary for original assem­

bly from a source program card deck, but nec­
essary for all other Autocoder operations.)

5

Programming with Autocoder

A programmer's job is divided into two phases:
1. Defining the problem to be solved.
2. Coding the source program for assembly by the

Autocoder processor.
Start defining the program by outlining its require­

ments. Draw a block diagram of the procedural steps
that are necessary to achieve the desired result. From
this decide what data, constants, work areas, and in­
structions are needed to execute the program.

Constants are fixed data (such as a 10% discount or
a serial number).

Work areas are locations within core storage where
data can be manipulated (such as input and output
areas, and accumulator fields).

After the program requirements are outlined, sym­
bols, instead of actual machine addresses, can be used
to refer to areas, data, and instructions.

The 1401 and the 1460 tape Autocoder is divided
into two major categories: the symbolic language used
by the programmer to write the source program, and
the processor program that translates this symbolic
language and assembles an actual machine-language
object program.

Symbolic Language
The symbolic language of the Autocoder includes a
standard set of mnemonic operation codes. They are
easier to remember than the machine-language codes
because they are usually abbreviations for actual in­
struction descriptions. For example:

Description
Multiply
Clear Word Mark

Mnemonic
M

CW

Machine-Language
Code

@
o

Figure 1 shows a list of mnemonic operation codes
for the IBM 1401 and the IBM 1460 tape Autocoder. Also
included in the language are standard mnemonics for
statements that define and allocate areas, enter con­
stants, control the area in core storage where the ob­
ject program will be aSSigned, etc. These mnemonics
have no machine-language equivalent.

The names (symbols) given to data, instructions, and
constants are also part of the symbolic program and are
usually abbreviations for card fields, record names, and
similar items that require frequent reference in the
source program.

The Source Program

The source program consists of statements written in
symbolic language. These statements contain the in­
formation that the processor must have to assemble the
object program. This information is divided into four
major categories:
• Area Definitions (Declarative Operations)
• Instructions (Imperative Operations)
• Processor Controls (Processor Control Operations)
• Macro Instructions (Macro Operations)

The declarative, imperative, and processor-control
operations are described in this section. Macro opera­
tions are described in the section, The Macro System.

Area-Definition Statements

Area-definition statements reserve areas in clOre storage
to store constants, or to work with data before it is
punched, printed, or written on magnetic tape. Area­
definition statements, in most cases, do not produce in­
structions to be executed as part of the object program.
For these statements the processor program produces
cards containing constants and their assigned machine
addresses. These constant cards are loaded with the
object program each time the program is used.

For example, a constant card containing the date to
be printed on the heading line of each invoice is loaded
into core storage. A word mark is placed over the high­
order position of the date. The date can then be moved,
during object-program execution, to a place in the print
area in preparation for printing a heading line. To
change the date, duplicate all columns in the constant
card except the columns that contain the date itself.
Then punch the new date in the card and insert it in the
program deck in place of the outdated constant card.

Instruction Statements

Most of the statements in the source program are in­
structions that are used to read in data, process it, and
write it out. The processor program translates them to
machine-language instructions and causes the object
program to be punched in cards or written on mag­
netic tape. The processor generates an additional se­
quence of instructions (called a loader) that loads the
object program into the correct core-storage positions
at program-load time.

Processor-Control Statements

The 1401/1460 tape Autocoder permits a limited
amount of programmer control over the assembly proc­
ess. For example, to locate a program in a particular

6 Autocoder (on Tape) Specs. and Op. Proc. IBM 1401 and 1460

I

DECLARATIVE OPERATIONS

Mnemonic Op Code Description

DA Define Area

DC Define Constant (No Word Mark)

DCW Define Constolnt With Word Mark

OS Define Symbol

DSA Define Symbol Address

EQU Equate

IMPERATIVE OPERATIONS

Mnemonic Machine Language
Type Op Code Description OpCode d-char.

Arithmetic A Add A

0 Divide %

M Multiply @
S Subtract S

ZA Zero and Adcl ?
ZS Zero and Subtract I

Data MBC Move and Binary Code M B
Control MBD Move and Binary Decode M A

MCE Move Characters and Edit E

MCS Move Characters and Z
Suppress Zeros

MIZ Move and Insltrt Zeros X

MLC 1 Move Characters to Word M
Mcwf Mark

MLCWA 1 Move Characters and Word L
LCA f Marks to Worcl Mark in A-Field

MLNSI Move Numerical Portion 0
MN f of Single Character

MLZsl
MZ f

Move Single lone Y

MRCMl Move Characters to Record P
MCM f Mark or Group Mark-Word

Mark

Logic B Branch Unconditional B
BAV Branch on Arithmetic Overflow B Z

tBBE Branch if Bit Equal W d
BC9 Branch on Carriage Channel9 B 9
BCV Branch on Carriage Over- B @

flow (12)

BE Branch on Equal Compare B S
(B=A)

BEF Branch on End of File or B K
End of Reel

BER Branch on Tape Transmission B L
Error

BH Branch on High Compare B U
(B>A)

tBIN Branch on Indicator B d
Bt. Branch on Low Compare B T

(B<A)
BlC Branch on last Card (Sense B A

Switch A)

BM Branch on Minus (ll-zone) V K
BPCB Branch Printer Carriage Busy B R
BPB Branch Printer Busy B P
BU Branch on Unoqual Compare B /

(B ¥= A)
BW Branch on Word Mark V 1

tBWZ Branch on Word Mark or Zone V d
tBCE Branch if Character Equal B d
tBSS Branch if Sen.e Switch On B A-G

C Compare C

t d-charader must be placed in operand when coding in Autocoder.

*AII disk 1/0 mnemonics are for IBM 1405 Disk Storage only.

Mnemonic Machine Language
Type Op Code Description OpCode d-char.

1/0 BSP Backspace Tape U B
Commands tCU Control Unit U d

OCR Disengage Character Reader U 0
ECR Engage Character Reader U E

tLU load Unit L d
tMU Move Unit M d

P Punch 4
PCB Punch Column Binary 4 C
R Read 1
RCB Read Column Binary 1 C

*RD Read Disk Single Record M R
*RDT Read Disk Full Track M R
*RDW Read Disk Single Record L R

With Word Marks
*RDTW Read Disk Full Track L R

With Word Marks
RF Read Punch Feed 4 R
RP Read and Punch 5
RT Read Tape M R
RTB Read Tape Binary M R
RTW Read Tape With Word Marks L R
RWD Rewind Tape U R
RWU Rewind and Unload Tape U U

*SD Seek Disk M R
SKP Skip and Blank Tape U E
SPF Start Punch Feed 9
SRF Start Read Feed 8
W Write 2

*WD Wrae Disk Single Record M W
*WDC Write Disk Check M W
*WDCW Write Disk Check With L W

Word Marks
*WDT Write Disk Full Track M W
*WDTW Write Disk Full Track With L W

Word Marks
* WOW Write Disk Single Record l W

With Word Marks
WM Write Word Marks 2 Cl
WP Write and Punch 6
WR Write and Read 3
WRF Write and Read Punch Feed 6 R
WRP Write, Read and Punch 7
WT Write Tape M W
WTB Write Tape Binary M W
WTM Write Tape Mark U M
WTW Write Tape With Word Marks l W

Miscel- tCC Carriage Control F d
laneous tCCB Carriage Control and Branch F d

CS Clear Storage /
CW Clear Word Mark Cl
H Halt .
MA Modify Addre .. #
NOP No Operation N
SAR Store A-Addre .. Register Q

SBR Store B-Address Register H
tSS Select Stacker K 1,2,4,8
tSSB Select Stacker and Branch K 1,2,4,8

SW Set Word Mark ,
CONTROL, OPERATIONS

Mnemonic Description Mnemonic Description

CTL Control XFR Transfer
END End SFX Suffix
ENT Enter New JOB Job

Coding Mode INSER Insert
EX Execute ALTER Alter
lTORG Literal Origin DELET Delete
ORG Origin

Figure 1.. mM 140111460 Tape Autocoder Mnemonic Operation Codes

7

area of core storage, direct the processor program to
start assigning core storage at a specific address by
writing an ORG (see ORC-Origin) processor-control
statement. These statements are used by the prooessor
during assembly.

All Autocoder statements must be presented to the
processor program according to a specific format. There
are also rules and restrictions for writing the informa­
tion in these statements. These requirements are neces­
sary because the processor needs and can handle only
certain kinds of information from each type of Auto­
coder statement, and it must know where in the state­
ment that information can be found.

The Processor Program

The 1401 processor program analyzes the information
it receives when the source-program statements are fed
into the machine. After all the statements have been

analyzed, the processor program automatically assem­
bles the machine-language object program, punches it
into cards, or writes it on magnetic tape. The punched
output cards or program tape also contains th.e loader.
Thus, the object program is called self-loading.

Coding Sheet
The Autocoder coding sheet (Figure 2) is free-form
(the operand portion of each line is not subdivided into
fields), thus allowing the programmer greater coding
flexibility. The SPS coding sheet is fixed-form (the oper­
and portion of each line is divided into specific fields).

All Autocoder entries are entered on the Autocoder
coding sheet. Column numbers on the coding sheet
indicate the punching format for all input cards in the
source deck. Each line of the coding sheet is punched
into a separate card. (If the source program is entered
by magnetic tape, the contents of the cards prepared

Form X24·1350
Prinl.d In U.S.A.

INTERNATIONAL BUSINESS MACHINES CORPORATION Identification ~~

Figure 2. Autocoder Coding Sheet

AUTOCODER CODING SHEET
IBM 1401-141 0-1440-1460

OPERAND
35 40 45 50

I

I

8 Autocoder (on Tape) Specs. and Op. Froc. IBM 1401 and 1460

76 80

Page No. W of ---

55 110 115 70

! I I

I

from the coding sheet must be written in one-card-per­
tape-record format.) The function of each portion of the
coding sheet is explained in the following paragraphs.

Page Number (Columns 1 and 2)

This two-character entry provides sequencing for cod­
ing sheets. Any alphameric characters may be used.
Standard IBM 1400 series collating sequence should be
followed when sequencing pages.

Line Number (Columns 3-5)

A three··character line number sequences entries on
each coding sheet. The first 25 lines are prenumbered
01-25. The third position can be left blank (blank is the
lowest character in the collating sequence). The five
unnumbered lines at the bottom of each sheet can be
used to continue line numbering or to make insertions
between entries elsewhere on the sheet. The units posi­
tion of the line number is used to indicate the sequence
of inserts. Any alphameric character can be used, but
standard collating sequence should be used. For ex­
ample, if an insert is to be made between lines 02 and
03, it could be numbered 025. Line numbers do not
necessarily have to be consecutive, but the deck should
be in collating sequence, for sorting purposes.

The programmer should note that insertions can af­
fect address adjustment. An insertion might make it
necessary to change the adjustment factor in the op­
erand of one or more entries.

Label (Columns 6·,15)

A symbolic label can have as many as six alphameric
characters, but the first character must be a letter (A
through Z; it cannot be a blank). Special characters
and blanks must not be used within a label. The label
starts in column 6. Columns 12-15 are always blank.

Operation (Columns 16-20)

Mnemonic operation codes are written in the operation
field starting in column 16. Figure 1 is a chart shOWing
1401 and 1460 tape Autocoder mnemonics.

Operand (Columns 21·72)

The operand field in an imperative instruction contains
the actual or symbolic addresses of the data to be acted
upon by the command in the operation' field, literals, or
address constants. Address adjustment and indexing
can be used in conjunction with actual or symbolic
addresses.

Unlike the SPS coding sheet, which specifies particu­
lar fields for the A··operand, B-operand, address adjust­
ment, indexing and the d-character, the Autocoder
coding sheet has a free-form operand field. The A­
operand, the B-operand, and the d-character must be

separated by commas. If address adjustment or index­
ing or both are to be performed~ these notations must
immediately follow the address being modified. Fig­
ures 3 and 4 show typical Autocoder entries.

Figure 3 shows an imperative instruction that causes
the contents of the field whose low-order core-storage
location is 3101 to be added algebraically to the con­
tents of the field whose low-order location is 140. This
entry will be assembled as a machine language in­
struction:

AAOl140

Label

Figure 3. Autocoder Instruction with Actual Address

Figure 4 is an imperative instruction with two sym­
bolic operands and a d-character. Although many of
the augmented operation codes available for use with
Autocoder eliminate the need to write the d-character
in a symbolic instruction, sometimes the d-character
must be specified by the programmer. If an instruction
requires such a specified d-character, it is written fol­
lowing the A- and B-operands, and is separated from
the remainder of the instruction by a comma. The as:"
sembled machine-language instruction is: 1! 392 498 2.
It tests a location labeled SWITCH (498) and branches
to ENTRYA (392) for the next instruction if SWITCH
contains a 2.

Label OPERAND

~o
, !

Figure 4. Autocoder Instruction with ad-character

Note: Several types of addresses may be placed in the oper­
and. They are discussed in the Address Types section.

Comments

A remark can be included anywhere in the operand
field of an Autocoder statement, if at least two non­
Significant spaces separate it from the operands.

Entire lines of information can be included any­
where in the program except within a complete DA

entry, or between CTL and DIOCS cards during reassem­
bly and regeneration of IOCS, by writing a comments
line. This becomes a comments card when it is punched
before assembly. This card can contain comments only
and must have an identifying asterisk in column 6. Use
columns 7-72 for the comment. The information in a

9

comments card appears in the symbolic-program listing
produced by the processor during assembly, but it does
not affect the object program in any way.

CALL or INCLD in columns 16-19 and 16-20, respec­
tively, of a comments card will cause errors in assembly
if these comments cards are macro model statements.
Columns 16 through 18 of a comments card must not
contain END.

Blank (Columns 73-75)

In the 1401 and the 1460 tape Autocoder, columns 73
through 75 are always blank.

Identification (Columns 76-80)

To identify a program or program overlay, assign it an
identification number or description. Punch this num­
ber into each card in the source deck. The processor
does not use this field.

Other Coding Sheet Areas

The areas labeled Program, Programmed by, and Date
are for the user's convenience only. Their contents are
never punched in the source deck cards.

Address Types
Six kinds of address types are valid in the operand field
of an Autocoder statement: blank, actual, symbolic,
asterisk, literals, and address constants.

Blank

A blank operand field is valid:
1. In an instruction that does not require an operand.
2. In instructions where useful A- or B-addresses are

supplied by the chaining method.

Note: If an instruction is to have addresses stored by other
instructions, the operand or operands affected must not be left
blank.

Actual

The numeric equivalent of the three-character actual
core-storage address is valid in the operand field. High­
order zeros in actual addresses can be omitted as shown
in Figure 3. Thus, an actual address can consist of from
one to five digits.

Symbolic

A symbolic address can consist of as few as one or as
many as six alphameric characters. Special characters
are not permitted. Blanks may not be written within
a symbolic address. Figure 4 shows how symbolic ad­
dresses are used.

Asterisk (*)

If an * appears as an operand in the source program,
the processor will replace it in the object program with
the actual core-storage address of the last character of
the instruction in which it appears. For exa.mple, the
instruction shown in Figure 5 is assigned core-storage
locations 340-343. The assembled instruction is ~3 4 O.

Asterisk operands can have address adjustment and
indexing.

Label

Figure 5. Asterisk Operand in an Autocoder Instruction

Literals

The IBM 1401/1460 tape Autocoder permits the user to
put in the operand field of a source program statement
the actual data to be operated on by an instruction.
This data is called a literal. The processor allocates
storage for literals and inserts their addresses in the
operand or operands of the instructions in which they
appear. The processor produces a DCW card that puts a
word mark in the high-order position of a literal when
it is stored at program load time. (In SPS, literals were
not permitted. The actual data to be operated on had
to be stored by DCW or DC statements.) Literals are per­
mitted only in the operand field of an Autocoder state­
ment and can be numeric or alphameric. A literal can
be any length, provided the operand of the statement
that contains the literal does not exceed 52 columns
(a statement must be contained in one line of the cod­
ing sheet and must not extend beyond column 72). Lit­
erals cannot have address adjustment or indexing.

Figure 6 shows literal operands and the constants
produced for them.

Type of Literal Litera I Operand Stored Constant

Numeric + 10 1 ?

Alphameric @JANUARY 28, 1962@ .:!.ANUARY 28, 1962

Area - Defi n i n9 WORKAR#6 bbbbbb

Figure 6. Literals

Numeric Literals

Numeric literals are written according to the following
specifications:
1. A plus or minus sign must precede a numeric literal.

The processor puts the sign over the units position
of the number when it is assigned a storage location.
To store an unsigned number, use an alphameric
literal.

10 Autocoder (on Tape) Specs. and Op. Pro. IBM 1401 and 1460

I

2. A numeric literal of from one to five digits (no
blanks) and a sign is assigned a storage location only
once per program or program section no matter how
many times it appears in the source program. Note:
A program section is defined as the source program
entries that precede a Literal Origin, End, or Exe­
cute statement. In some programs several program
sections are needed because the entire object pro­
gram exceeds the total available storage capacity of
the object machine. In these cases, individual pro­
gram sections are loaded into storage from cards,
tapes, or random access storage and are executed as
they are needed. Program sections are sometimes
called overlays.

3. A numeric literal that exceeds five characters and a
sign is aSSigned a storage location each time it is en­
countered in the source program. To save storage
space, use a DCW statement if a long numeric literal
is used more than once in the source program.

Figure 7 shows how a numeric literal can be used in
an imperative instruction. Assume the literal (+10) is
aSSigned storage locations of 584 and 585, and INDEX is
aSSigned 682. The symbolic instruction will cause the
processor to produce a machine-language instruction
(A 585 682) that causes + 10 to be added to the contents
of INDEX.

Figure 7. Numeric Literal

Alphameric Literals

Alphameric literals are written according to the follow­
ing specifications:

1. An alphameric literal must be preceded and fol­
lowed by the @ symbol. The literal, itself, can con­
tain blanks, alphabetic, numeric, and special char­
acters (including the @ symbol). However, a com­
ment: on the same line as an alphameric literal must
not contain the @ symbol.

2. An alphameric literal of from one to four characters
with preceding and follOWing @ symbols is assigned
a storage location only once per program or program
section no matter how many times it is used in the
source program.

3. Longer alphameric literals are aSSigned a storage
location each time they are encountered in the
source program. To save storage space in these
cases, use a new statement.

4. Group-mark symbols and tape-mark symbols will
not be correctly assembled, as literals, in the same

overlay or program section. Group-mark symbols
should be declared as DCW'S.

Note: Only one alphameric literal may be written on one line
of the coding sheet.

Figure 8 shows how an alphameric literal can be used
in an imperative instruction. Assume that the literal
JANUARY 28, 1961 is assigned a storage location of 906
and DATE is aSSigned 230. The machine language in­
struction (M 906 230) causes the literal JANUARY 28,
1961 to be moved to DATE.

Label

Figure 8. Alphameric Literal

Area-Defining Literals

OPERAND

~ BJ' l.~: (, ;La ,:!!A T F :'.

With Autocoder, the programmer can instruct the proc­
essor to assign storage for a work area by using an area­
defining literal. This literal defines the work area by
specifying the name to be assigned to the work area
and the number of core-storage positions needed. The
programmer writes the area-defining literal in the oper­
and field of anyone source program instruction that
uses the work area. All other instructions that use the
work area require only the name of the area in the
operand field.

A particular area-defining literal, or the name of the
work area it defines, cannot be used in more than one
program overlay.

To reserve storage for a working area by using an
area-defining literal:
1. An area of 52 positions or less may be defined in any

instruction that has, as an operand, the symbol
which references it. The symbol can consist of as
many as six alphameric characters, but the first char­
acter must be alphabetic. No special characters or
blanks are allowed.

2. A # symbol (8-3 punch) must precede the number
that specifies how many core-storage positions are
needed for the work area. (Note the # symbol is
represented in the Fortran character set as an =
symbol.)
Figure 9 shows an imperative instruction with an

area-defining literal. This entry causes the processor to
allocate 6 storage locations for WKAREA. Six blanks will
be loaded in storage at object-program load time by a
DCW automatically produced by the processor. Assum­
ing that AMOUNT is in storage location 796, and WKAREA

Label OPERAND

:'. .
Figure 9. Area-defining Literal

11

SOURCE PROGRAM STATEMENTS TYPE
Object program In core storage after it has been loaded
Into the object machine.

label Operation
30 38 I 6 1516 20121 25 @ ® : N ENTRY · ~, , , ,

S ~17 J9
1

7 41°1 4 ~I ° 1° ° 1611 12 : · T I
I · I I I I , , , R T T T
: ML.C + CAS H • EN T R.Y, 1 +,;3, A U 394 401 404

1£,t,J,T,R,V,I: M.l C o .WO,R.K . . . , , B C ,

: · T © @ , , . , , , ,
I : · , , , , , I I 0 M aIO\0\4 0\4 ! 141 ° 11 I -

I
I · I I I , , , N T 5~a : M,L,e + C.H E,e.K.S, • ,£.,N.T,R,V, 1.+,31 , C S SOl
I

B. E" ,N.T ,R,Y.1 0 , I , , , , ,
I A ® ® @ WORK I · . CASH CHECKS
I R
I · , I , , I I , E !?Ib bib I bib !?Iblb blblb !?Iblblb bib : I I , , I , , A
I

S 6~0 6~ 6~2 I · I I I I , I I

C,A 5H
I

D,C.W. W,6 E I I I I I , , ,
IkH E: e,K.S ' DeW. 1#,6 , I , , , I , F

+CASH +CHECKS
W.O,R.K I D,CW 1#,6 G ADD I

~IOl ° ~lol6 CONS.

SYMBOLS
EQUIVALENT 7~7 aJo ADDRESSES

ENTRY 401 NOTE: Assume that before step A is executed, data will be moved
CASH 600 into the CASH, CHECKS and WORK fields.
CHECKS 606
WORK 612
+CASH 797
+CHECKS aoo

PROGRAM
STEP OPERATION CORE STORAGE BEFORE OPERATION CORE STORAGE AFTER OPERATION

EXECUTED

The address of CASH is moved ® ENTRY 1 ® ENTRY 1
A to the A -address of B (ENTRY ~\ ° 1 ° \ ° 16 1 [2 ~16 ° 1 ° 1

6
1

1 2
1 + 3). B is thus modified.

4~1 4~4 ~1 4~4

® CASH @ WORK © CASH @ WORK
The contents of CASH are moved

B to WORK. .?\6\9\aI7\5 ~\0\4\0\0 ° .?1
6

1
9 a\7\5 .?161 91a 7[5]

6~0 6 ~2 6lo 6~2

The address of CHECKS is moved ® ENTRY 1 ® ENTRY 1

C to the A - address of B (E NTR Y ~\61 ° \ ° 16 1 \2 ~\6 0\61 6 1 1 2
1+3). B is again modified.

4~1 4~4 4~1 4~4

0 Program branches back to execute NO CHANGE NO CHANGE
B.

® CHECKS @ WORK ® CHECKS @ WORK
B1 The contents of CHECKS are

~IO\7\a\9\2 .?\6\9\a\7 5 ~\0\7 a19\2 ~\017\a 9\2 moved to WORK.

6~ 6~2 6~ 612

Figure 10. Address Constants

12 Autocoder (on Tape) Specs. and Op. Proc. IBM 1401 and 1460

is in 596, the assembled machine-language instruction
that moves AMOUNT to WKAREA is M 796 596. When
using the loadable tape option, area-defining literals
(#XX) of greater than 32 positions may not be correctly
assembled. To insure correct results, use a DCW alpha­
meric literal containing the desired number of blanks.

Address Constants
The 3-character machine address that is aSSigned to a
label by the processor can be defined as an address
constant. In SPS, a DSA statement is needed to define an
address constant. However, Autocoder permits address
constants to be coded symbolically in the instructions
that require them:
1. The symbol for an address constant can contain as

many as six characters. The symbol must appear
elsewhere in the program as a label.

2. A plus or minus sign must precede the symbol. If a
plus sign is used, the address constant is the actual
address that was aSSigned to the label by the proc­
essor. If a minus sign is used, the address constant is
the 16,000's complement of the actual address.

When the processor encounters an address con­
stant, it:
1. Assigns (in the object machine) a 3-position area

that will contain the equivalent address of the sym­
bol at object-program execution time.

2. Makes the address of the 3-position area equiva­
lent to the symbol preceded by a plus or minus sign.
For example, if CASH is the symbol whose address is
needed as the address-constant, +CASH is the symbol
that refers to the address of the equivalent address
of CASH. If a minus sign precedes the symbol, for
example, -CASH, the address constant is the 16,000's
complement of the equivalent address of the symbol
(CASH).

3. Generates a DCW card.

Note: Each time an address constant is encountered in a
program or program section, it is assigned a core-storage address,
and a Dew card is generated. If the address constant is used
more than once in a source program, use a Dew statement to
save core storage.

Figure 10 shows two address constants (+CASH and
+CHECKS) used in a source program. It also shows the
entries the processor makes in the object program, and
the results when the instructions are executed in the
object program. The programmer did not know which
addresses would be assigned to CASH and CHECKS when
he wrote the source-program statements. He did, how­
ever, write two instructions (A and C) that move these
addresses into instruction B (ENTRY1). The address con­
stants (+CASH and +CHECKS) caused the processor to
store the addresses of CASH and CHECKS in the object
machine:. and to substitute the equivalent addresses of
these constants in instructions A and C.

Character-adjusted andlor indexed address con­
stants can be written symbolically. The address con­
stant, not its equivalent address, is modified. Figure 11
shows an adjusted address constant. Assume that the
equivalent addresses of ENTRy1 and +CASH are 401
and 797 respectively and that the address constant is
600. When the instruction (M 797 404) is executed, 12
will be added to the address constant, 600, and the re­
sulting adjusted address constant, 612, will be moved
to location 404.

OPERAND
30 35 40 45

~'----'-L---'---L..L..-~~-'----'~-"" I&.J:£.~} ENr,1? t 1..+,3-'---'---'--'-'----'--'-L-L_U-'­

Figure 11. Address Constant with Address Adjustment

Indexing
If an object machine has the advanced-programming
special feature (1401) or the indexing-and-store-address­
register feature (1460), the source programmer can use
the three 3-position index locations (registers) provided
by the feature. The assigned core-storage addresses
and index-register numbers are shown in Figure 12.

Core- 3 - character
Tag bits in tens

Index
Storage Machine

Zone position of
Location Punch 3 - character

Locations Address machine address

1 087 -089 089 ZERO A-bit, No B-bit

2 092 -094 094 ELEVEN B - bit, No A - bit

3 097-099 099 TWELVE A - bit, B - bit

Figure 12. Index Locations and Associated Tag Bits

The primary use of index locations is to modify ad­
dresses automatically by adding the contents of an
index location to an address. The core-storage address
of the A- and/or B-operand can be modified by the
contents of any index location:
1. Set a word mark in the hi.gh-order position of the

index-register location before inserting or changing
the index factor.

2. Use an add or move operation to insert or change
the index factor. The programmer can use a label or
the actual machine address (89, 94, or 99) as the
B-operand. If he uses a label he must first write an
EQU statement to assign a label to the index location.
(See EQU-Equate.)

Note: If an index factor is to be used for address modifica­
tion, the user should be sure that no zone bits appear in the
units position if the system has only 4000 positions of core
storage.

3. Write + Xl, + X2, or + X3 after the operand that is
to be indexed. Xl, X2, and X3 represent index regis­
ters 1,2, and 3, respectively.

13

When the processor encounters an indexed operand,
it puts tag bits over the tens position of the 3-character
machine address assigned to the operand to specify
which index register is to be used. The bit combina­
tions and the registers they specify are shown in Fig­
ure 12.

The modification of the A- and/or B-address occurs
in their respective address registers. For instance, if the
A-address is indexed, the indexing occurs in the A­
address register. This means that the original instruc­
tion in storage is in no way changed or modified.

The three index registers can be used as normal stor­
age positions when not being used as index-register
locations.

Figure 13 shows an indexed imperative instruction
that causes the contents of the location labeled TOTAL
to be placed in an area labeled ACCUM as modified by
the contents of index location 2. TOTAL is the label for
location 3 1 Oland ACCUM is the label for location 14 O.
The assembled machine-language instruction for this
entry is: M AOI IMO. The M in the tens position of the
B-address is a 4-punch with an II-overpunch. The
II-overpunch is the B-bit tag for index location 2.

Label

Figure 13. Autocoder Instruction with Symbolic Address and
Indexing

Figure 14 shows an imperative instruction with ad­
dress adjustment and indexing on a symbolic address.
The processor will subtract 12 from the address which
was assigned the label TOTAL. The effective address of
the A-operand is the sum of TOTAL-12 plus the contents
of index location 1 at program execution time. The
assembled instruction (M ?Y9 140) will cause the con­
tents of the effective address of TOTAL-12 + Xl to be
placed in the location labeled ACCUM (assuming again
that TOTAL is the label for location 3 1 Oland ACCUM
is the label for location 140). The Y in the tens position
of the A-address is an 8-punch with a zero overpunch.
The zero punch is a tag for index location 1.

Label OPERAND

:0. !

Figure 14. Autocoder Instruction with Address Adjustment and
Indexing

Note: The address-adjustment factor cannot exceed ±999.
A void using a negative address-adjustment factor that would
result in an address less than zero. Because there is no wrap­
around effect in address adjustment, the Autocoder processor
will not assign the, correct address.

Negative character adjustment in the A-operand is
not correctly assembled, if the B-operand is a group­
mark alphameric literal.

Declarative Operations
The IBM 1401 and IBM 1460 tape Autocoder provides
six different declarative operations for reserving work
areas and storing constants:

Op Code

DCW
DC
DS
DSA
DA
EQU

Purpose

Define Constant with Word Mark
Define Constant (no Word ~1ark)
Define Symbol
Define Symbol Address
Denne Area
Equate

DCW-Define Constant with Word Mark

General Description: A DCW statement is used to enter
a numeric, alphameric, or address constant with a
word mark into a core-storage area.

The programmer:
1. Writes the operation code (DCW) in the operation
field.

2. May write an actual address or a symbolic label
in the label field. The programmer may refer to the
constant later by writing this label in the operand
portion of subsequent instructions.

3. Writes the constant in the operand field.

The processor:
1. Allocates a field in core storage that wiB be used
to store the actual constant. If the DCW statement has
a symbolic address in the label field, the processor
assigns an address equal to the low-o'rder position of
this field.

2. Inserts the assigned address wherever the symbol
in the label field appears in the operand of another
symbolic program entry.

Result: A constant with a high-order word mark is
loaded with the object program each time the job is
run.

Numeric Constants

1. A numeric constant can be preceded by a plus or
minus sign. A plus sign causes AB-bits to be placed
over the units position of the constant; a minus sign
causes a B-bit to be put there. If a numeric constant
is unsigned in the Dew statement, it will be stored as
an unsigned field.

14 Autocoder (on Tape) Specs. and Gp. Froc. IBM 1401 and 1460

I

2. The first blank column appearing in the operand
field terminates a numeric constant.

3. The maximum size of a numeric constant is 51 digits
and a sign, or 52 digits with no sign.

Example.~ Figure 15 shows the number, +10, defined
as a numeric constant. The address of the constant
will be inserted in the object instruction whenever
TEN appears in the operand field of another symbolic
instruction.

Label
10 'I 40

OPERAND
41

Figure 15. Numeric Constant Defined by a DCW Statement

Alphameric Constants

1. An alphameric constant must be preceded and fol­
foJIowed by the @ symbol. Blanks and the @ sym­
bol can appear within an alphameric constant, but
the @ symbol cannot appear in a comment on the
same line as an alphameric constant.

2. The alphameric constant can contain as many as
50 valid 1401 and 1460 characters.

Example: Figure 16 shows the alphameric constant,
J ANUAFlY 28, 1961, defined in a new statement. The
address of the constant will be inserted in the object
program instruction wherever DATE appears in the
operand field of another symbolic program entry.

Label

JJ.A.r E .

OPERAND
40

Figure 16. Alphameric Constant Defined by a DCW Statement

Blank Constants

A # symbol precedes a number indicating how many
blank storage positions are to be defined. This permits
the programmer to reserve a field of blanks with a
word mark in the high-order position of the field. The
maximum size of this field is 52 blanks.

Example: Figure 1'7 shows an II-character blank field
defined by a new statement. The address of this
blank field will be inserted in an object program in­
struction whenever the symbol BLANK appears as the
operand of another symbolic program entry.

Label OPERAND
10 40 11

:B.~ A tJ K.

Figure 17. Blank Constant Defined by a DCW Statement

Address Constants

An address constant can be preceded by a plus or
minus sign. If a plus sign or no sign is used, the con­
stant is the actual machine language address of the
field whose associated label is included in the operand.
If a minus sign is used, the constant is the 16,000 com­
plement of the actual machine address of that field.

Example: Figure 18 shows an address constant (the
address of MANNO) defined by a DCW statement. The
address of the address constant (MANNO) will be in­
serted in an object program instruction whenever
SERIAL appears as the operand of another symbolic
program entry.

Label

~.fR I A.L

Figure 18. Address Constant Defined by a Dew Statement

An address constant that is defined by a new state­
ment can be addre.;s-adjusted and indexed. The ad­
dress adjustment and indexing refer to the address
constant itself rath,~r than to the address of the loca­
tion of the address constant. If CASH is the symbolic
address of a field, the equivalent address of CASH is
indexed or address-adjusted rather than the equiva­
lent address of +CASH.

Example: In Figure 19 the address constant (the equiv­
alent address of CASH) is 600. Whenever TOTAL ap­
pears as the operand of another symbolic program
entry, it will represent the equivalent address of a
location that contains 604 (the adjusted address con­
stant of CASH). See Figure 14.

I Label

~OTAL.

Figure 19. Address-Adjusted Address Constant Defined by a
Dew Statement

DC-Define Constant (No Word Mark)

General Description: To load a constant without a word
mark, write a ne statement like a DCW statement. The
DC operation code is used in the operation field.

Example: Figure 20 shows TENI defined as a constant
without a word mark.

L Label .eperatl~ OPERAND

~~:=EN~1~:~'~'~'D~c~~J~:_1.1=O~~&~~.~~~~. ___ ~!~& __ ~4~0 __ ~45~ __ ~R

Figure 20. Constant Defined in a De Statement

15

DS-Define Symbol

General Description: A DS statement bypasses and
labels an area of core storage. It differs from a DCW

or DC statement in that no information (constant) is
loaded into this area at program load time.

The programmer:
1. Writes the operation code (DS) in the operation
field.

2. May write a symbolic address in the . label field.
Actual addresses cannot be used in the label field,
and indexing is not permitted.

3. Writes a number in the operand field to indicate
how many storage positions are to be bypassed.

The processor:
1. Assigns an actual address to the low-order posi­
tion of the reserved area.

2. Inserts this address in the instruction wherever
the symbol in the label field appears in the operand
field of another symbolic program entry.

Example: Figure 21 shows how a 10-position core­
storage area can be bypassed. The programmer can
refer to the label by putting ACCUM in the operand
field of another symbolic program entry.

label

~CCUr1,
Figure 21. DS Statement

DSA-Define Symbol Address

OPERAND

!~ ~'. !

General Description: The ability to code address con­
stants in Autocoder language eliminates the need for
the DSA statement except when the three-character
machine address of an actual address in the sym­
bolic program is desired. (The address constants
previously discussed were created from symbolic
addresses.)

The programmer:
1. Writes the mnemonic operation code (DSA) in the
operation field.

2. May write in the label field, the symbol that will
be used to make reference to the address constant.

3. Writes the actual address to be defined in the
operand field. This address may be address-adjusted
and indexed.

The processor:
1. Produces a constant containing the three-charac­
ter machine address of the storage address written
in the operand field.

2. Assigns this address constant an address in core
storage and labels it using the symbol in the label
field.

Result: At program load time, the address constant
will be loaded into its assigned locations with a word
mark in the high-order position.

Example: To create and store an address constant for
an actual address, the entry shown in Figure 22 is
made.

label

~'NS'.x
OPERAND

~D 41
• !

Figure 22. Defining the Address Constant of an Actual Address

Assume that the address assigned to the label
(MINSIX) is 892. Storage locations 890, 891, and 892
will contain I 9 D (the three-character machine ad­
dress of 15994). If index location 1 has been assigned
the label INDEX 1, the instruction shown in Figure 23
will cause I 9 D to be moved to index location 1
(storage locations 087-089). The assembled machine
language instruction for the statement shown in
Figure 23 is M 892089.

label OPERAND
411

Figure 23. Moving the Address Constant to an Index Location

Note.' This example shows how the 16,000's complement
of an amount to be subtracted from an actual address can be
stored in an index location to decrease an indexed address. In
this case the amount is 6, which has a 16k complement equal
to 15994.

DA-Define Area

General Description: DA statements reserve and define
portions of core storage, such as input, output, or
work areas. They can also define more than one area,
if all these areas are identical in format. A DA state­
ment differs from a DCW statement in that a DA state­
ment can, in addition to defining the large area, also
define several fields within it. The DA statement fur­
nishes the processor with the lengths, names, and
relative positions of fields within the defined area.

The programmer:
1. Constructs a header line for the DA entry as fol­
lows:

a. Writes the operation code (DA) in the opera­
tion field.

b. May write an actual or symbolic address in the

16 Autocoder (on Tape) Specs. and OPt Proc. IBM 1401 and 1460

I

label field. This address represents the high-order
position of the entire area defined by the DA state­
ment.

c. Indicates in the operand field the required size
of the area in the form B X L. B is the number of
identical areas to be defined, and L is the length
of eaeh area. For example, if four identical areas,
each 100 characters long, are to be defined, the
first entry in the operand Held is 4 X 100 as shown
in Figure 24. If only one area is to be defined, the
first entry is 1 X 100.

Label

7:.4 P EA,R

Figure 24. Four Areas Defined

30 40
OPERAND

45

Indexing: To index a DA entry, write a comma and the
number of the index location (Xl, X2, or X3) after
the B X L indication in the operand field. When the
DA HEADER specifies indexing, the equivalent ad­
dresses of all labels in subsequent DA entries will be
indexed by the contents of the specified index loca­
tion. The equivalent address of the entire defined
area (B X L), represented by the label of the DA

HEADER, is also indexed.
The tag bit that represents the specified index lo­

cation will be inserted whenever the labels are used
as operands in other symbolic program entries,
unless the operand is indexed. For example, INAREA

is defined by the DA HEADER shown in Figure 25. The
second statement in Figure 25 is a defined field
within INAREA. Thus the equivalent address of
ACCUM has a tag bit (A-bit) over the tens position to
indicate that it is to be indexed by the contents of
index location 1.

Lobel

INAREA D,A. l3)('0 , Xl.
A cc. u t1. l1's,"I.4.".

Figure 25. Indexing a DA Entry

30 40
OPERAND

45

However, a subsequent instruction in the program
(Figure 26) indicates that ACCUM is to be indexed by
the contents of index location 2. Because the instruc­
tion shown in Figure 26 is itself indexed, the proc­
essor will tag the equivalent address of ACCUM with
a B-bit when it assembles the instruction for that
statement only. Thus, the indexing in the instruction
that uses the symbol ACCUM overrides the indexing
prescribed by the DA HEADER statement. (Symbolic
indexing is not permitted in a DA header statement.)

Figure 26. Overriding Previously Prescribed Indexing

To negate the effect of indexing on a field or subfield,
put an XO in the operand field of each instruction in
which indexing is not wanted (Figure 27).

Label OPERAND

:5 ~o

Figure 27. Negating the Effect of Indexing

Record Marks: Can be inserted to separate records in
the defined area. The processor will cause a * to be
placed in storage immediately following each identi­
cally defined area if a * foHows the B X L entry in
the operand field. B X L does not include an allow­
ance for the record mark. For example, 2 X 100 will
cause 200 positions to be reserved for the defined
area, but 2 X 100, =1= will cause 202 positions to be
reserved as shown in Figure 28.

--------202 Positions------------~

-100 Positlons---+ --100 Positions-

Figure 28. Record Marks

Group-Mark with Word-Marks: The user can cause
the processor to put a group mark with a word mark
one position to the right of the entire defined area by
writing a G, preceded by a comma, in the operand
field as shown in Figure 29.

I Label

OUTA
40

OPERAND
40 DO so

Figure 29. Group-Mark with 'Vord-Mark

Note: The programmer may write a comma followed by a
C if the defined area is to be cleared before word marks,
etc., are set at program load time. The =1=, index code, G,
and C entries can appear in any order in the operand field of
a DA header statement provided they follow the B X L entry.

Subsequent DA Entries

The programmer:
1. Leaves the operation field blank.

2. May write a symbolic label in the label field. This
label will have, as its equivalent address, the core­
storage address of the field or subfield with which it
is associated.

3. Specifies the relative location of a field within an
area by writing two numbers in the operand field on

17

the same line as the label that identifies the field.
The first location of the defined area is considered
location 1. Write the high-order and low-order posi­
tions of the field beginning in column 21. Separate
these two numbers by a comma.

In Figure 25 the ACCUM field is in relative posi­
tions 35-40. This means that the high-order position
of the ACCUM field is to be associated with the 35th
position of the defined area, and the low-order posi­
tion, with the 40th position.

4. Specifies the location of a subfield (a field within
a defined area) by writing, beginning in column 21,
the number that represents the low-order position of
the field whose label appears in the label field of the
same line.

5. May list fields and subfields in any order in the DA

entry. All positions within the defined area do not
have to be included in the defined fields.

The processor:
1. Allocates an area in core storage equal to B X L
plus positions for record marks and a group mark if
they are specified in the heading line of the DA entry,
and assigns actual addresses to the defined fields and
subfields.

2. Inserts the assigned address of the high-order
position of the entire defined area wherever the con­
tents of the heading line label field appear as the
operand of another symbolic program entry.

3. Inserts the assigned addresses of the low-order
positions of fields and subfields in the place of sym­
bols corresponding to the labels of the field-defining
entries.

ten on tape in blocks of three. Each record is eighty
characters long and has the following format:

Positions 4-8
Positions 11-26
Positions 32-37
Positions 45-64
Positions 74-79

Man Number
Employee Name
Date
Gross Wages
FICA Deduction

Remaining positions contain data not Ulsed in this
operation. Positions 34 and 35, which indicate the
month within the date, will be defined as a subfield.
A group-mark with word-mark is to be placed in
storage immediately following the third area.

The DA statement in Figure 30 defines three adja­
cent identical areas into which each block of three
records will be read. It also defines the fields and
subfields that are to receive the data listed. The no­
tation 3 X 80 in the header line indicates that three
consecutive areas of eighty locations each are to be
reserved. The entire 240-location area can be re­
ferred to by its high-order label, RDAREA +XO. The G
in the header line will cause a group-mark with
word-mark to be placed in the 241st position. The
reference to index location 2 in the header line indi­
cates that the labels RDAREA, NAME, MANNO, DATE,

GROSS, FICA, and MONTH, when referred to in sym­
bolic instructions, will be indexed by index location 2.

OPERAND
15

Result: At object-program load time: Figure 30. DA Entry

1. If a , C appeared in the DA entry, the entire de­
fined area is cleared.

2. A word mark is set in the high-order position of
the entire defined area. If more than one area is de­
fined (for example, 3 X 100), the high-order position
of each area is identified by a word mark.

3. Word marks are set for field definition as noted
previously.

4. A group mark and record marks are loaded as
specified in the heading line.

Example: In this example, data is to be read from mag­
netic tape into an area of storage where it is to be
processed. It is a payroll operation, and each record
refers to a different employee. The records are writ-

18 Autocoder (on Tape) Specs. and Op. Proc. IBM 1401 and 1460

The user can now, in his symbolic program, give
an instruction to read data from tape into a storage
area labeled RDAREA +XO. This causes a block of
three data records to be placed in the 240 reserved
core locations. As a result, the significant data is read
into the appropriately labeled fields. This data can
now be referred to via the labels DATE, MANNO, FICA,

etc., and the user need not concern himself with ac­
tual machine addresses. In this example, the user
begins by setting index locations 2 to zero. He then
processes the significant data in the first record, in­
creases index location 2 by eighty, and branches back
to the first instruction of the particular routine. Be­
cause all labels defined by this DA statement are in­
creased by the contents of index location 2, the pro­
gram will now be processing the second record read

I

into storage. When this routine is performed three
times, the user has processed three input records and
is rea.dy to read three more records into storage. This
has all been performed without any reference to ac­
tual machine addresses.

Notes::

1. An area can be reserved for a record(s} with variable­
length fields by defining all possible fields as subfields. In
this case no word marks will be set in the area (except in
the high-order position) but the programmer can control
data transfer by setting word marks in the receiving fields.

2. If the length of the whole record(s} can also vary, the
programmer should reserve an area equal to the largest
possible record size.

EQU-Equate

General' Description: An EQU statement assigns a sym­
bolic label to an actual or symbolic address. Thus,
the user can assign different labels to the same stor­
age location in different parts of his source program.

The programmer:
1. Writes the operation code (EQU) in the operation
field.

2. Writes a symbolic address for the new label in the
la bel field.

3. Writes an actual or symbolic address in the oper­
and field. This address can have indexing and ad­
dress adjustment.

The processor:
1. Assigns to the label of the equate statement the
same actual address that is assigned to the symbol
in the operand field (with appropriate alteration if
indexing and address adjustments are indicated).

2. Inserts this a.ctual address wherever the label ap­
pears as the operand of another symbolic program
entry.

Result: The programmer can now refer to a storage
location by using either name.

Examples: Figure 31 shows the label INDIV equated to
MANNO, which has been assigned storage location
1976. Whenever either MANNO or INDIV appear in a
symbolic program, 1976 will be used as the actual
address.

, "20
1tfl
'1ll _ U ___ 3<><.Q ___ 3iU1.0 __ :uo4Q~_..2j45i1.....-_

Label ~rati~.J OPERAND

IHOIY. ~G~A=N=W~;~~,~~~~~~~~~~

Figure 31. Equating Two Symbolic Addresses

Figure 32 shows an equate statement with address
adjustment. If FICA is assigned location 890, WHTAX

will be equated to FICA-IO (880). WHTAX now refers
to a field whose units position is 880.

Label

~,/:hT AX. , ,

Figure 32. Address Adjustment in an EQU Statement

Figure 33 shows a label aSSigned to an actual ad­
dress. Assume that an input card contains NETPAY in
card columns 76-80. When this card is read into stor­
age, the area locations 076-080 contain net pay. This
field can be referred to as NETP A Y if the EQU state­
ment in Figure 33 is written in the source program.

Figure 33. Assigning a Label to an Actual Address

Figure 34 shows how to index an operand in an
EQU statement. With indexing, the symbol in the
label field of the EQU statement is indexed by the
same index location that is specified in the operand
field of that EQU statement. However, if this symbol
appears in the operand field of another symbolic
program entry with another index code, the new
index code overrides the index code in the EQU state­
ment.

Label

C,o,s ~N.Q

Figure 34. Indexing an EQU Statement

OPERAND
45

For example, in the statement shown in Figure 34
the equivalent address of JOB plus the contents of
index location 3 is assigned to the label CUSTNO.

Thus, if JOB+ X3 is equal to 5H5, CUSTNO also has
5H5 as its equivalent address. However if CUSTNO+ Xl
or CUSTNO+ X2 appears as the operand of another
symbolic-program entry, the address inserted in its
place will be 5Y5 or 5Q5, which specifies index loca­
tion 1 or 2, respectively.

Figure 35 shows the symbol FIELDA equated to an
asterisk address. The asterisk refers to the rightmost
position of the last instruction or data whose location
was aSSigned by the processor. Assume that this ad­
dress is 698. FIELDA is now equal to 698.

Label

~/EL2>.A

Figure 35. Equating with an * Operand

~o
OPERAND

~o
: !

19

Figure 36 shows how a label can be assigned to an
index location. Because the actual core-storage ad­
dress of index location 1 in the IBM 1401 or the 1460
is 089, the EQU statement assigns the label INDEXI

to that index location. INDEXI is now equal to 089.
An index location so equated must still be coded Xl,
X2, or X3 when used to index an operand.

Label

~ ,oIn Ex :L

Figure 36. Assigning a Label to an Index Location

OPERAND

:~

Figure 37 shows how a tape unit can be assigned
a label. In this case, the programmer wishes to refer
to tape 4 as INPUT, which is now equal to %U4.

Label

~'N pur: ~o,

Figure 37. Assigning a Label to a Tape Unit

Imperative Operations

OPERAND

:~ ,

General Description: Autocoder imperative operations
are direct commands to the object computer to act
upon data, constants, auxiliary devices, or other in­
structions. These are the symbolic statements for the
instructions to be executed in the object program.
Most of the statements written in a source program
will be imperative instructions. Although the Auto­
coder processor can assemble instructions with all
the imperative operation code mnemonics that are
shown in Figure 1, the programmer must keep in
mind the particular special features and devices that
will be included in the object machine that will be
used to execute the program he is writing.

The programmer:
1. Writes the mnemonic operation code for the in­
struction in the operation field.

2. If the instruction is an entry point for a branch
instruction elsewhere in the program or if the pro­
grammer wishes to make other reference to it, it
must have a label. This label will be assigned an ac­
tual address equal to the address of the operation
code of the assembled machine-language instruction.
Thus, the programmer can use this label as the sym­
bolic I-address of a branch instruction elsewhere in
the program (see example, Figure 40).

3. Writes the symbolic address of the data, devices,
or constants in the operand field. The first symbol
will be used as the A- or I-address of the imperative
instruction. If the instruction also requires a B-ad-

dress, a comma is written following the first symbol
and its address adjustment andlor indexing codes
(if any); then the symbol for the B-address is written.
If the instruction requires that a d-character be spec­
ified, a comma and the actual d-character follow the
symbolic entries for the B-address or All-address if
the B-address is not needed (see also Address Types).

Unique Mnemonics. Several mnemonic operation
codes have been developed to relieve the program­
mer of coding the d-character in the operand field of
symbolic imperative instructions. However, some
operation codes have so many valid d-characters that
it is impractical to provide a separate mnemonic for
each. In these cases, the programmer supplies the
d-character as previously described. In the listing of
mnemonic operation codes for imperative instruc­
tions (Figure 1) all mnemonics that require that the
d-character be included in the operand field are in­
dicated by a +.

Mnemonics referring to magnetic tape do not re­
quire d-characters. However, it is necessary to spec­
ify, in the operand, the number of the tape unit
needed for the operation. This can be done in one of
three ways.

The programmer can:
a. Assign a label to the tape unit as described in
EQU and use it as the A-operand of a tape instruc­
tion.

b. Write the number of the tape unit in column 21
of the tape instruction. The assembled instruction
for the symbolic entry shown in Figure 38 will
cause a record to be written on tape unit 4 using
the data beginning in a storage area labeled OUT­

PUT.

c. Write the actual address (for example, %U4)
in the A-operand field.

Label
, ~o

Figure 38. Write Tape

40
OPERAND

45

Compatibility with IBM 1410 Autocoder, To make
the IBM 1401 and the IBM 1460 tape Autocoder lan­
guage compatible with its IBM 1410 counterpart, five
new mnemonic Op codes are provided that have the
same function as five mnemonics presently available
in SPS. When coding in Autocoder language, the
programmer can use either mnemonic. These new

20 Autocoder (on Tape) Specs. and Op. Proc. IBM 1401 and 1460

I

mnemonics are shown in· Figure 39, together with
their meanings and their SPS equivalents.

Autocoder I SPS C
Mnemonic Mnemonic Meaning

------------------~
MLC MCW Move Characters to Word Mark

MLCWA

MLNS

MLZS

MRCM

LCA

MN

MZ

MCM

Move Characters and Word Marks to ¥lord
Mark in A-Field

Move Numerical Portion of Single Character

Move Single Zone

Move Characters to Record Mark or Group
Mark-Word Mark

Figure 39. Alternate Move Mnemonics

The processor:
1. Assembles the object instruction as follows:

a. Substitutes the actual machine language opera­
tion code for the mnemonic written in the opera­
tion Held.
b. Substitutes the actual addresses of symbols
used in the operand field to specify the A- or 1-,
and B-addresses of the instructions. If address ad­
justment and/or indexing is indicated, the substi­
tuted address will reflect these notations (tag bits
will be inserted for indexing and addresses will be
altered by adding or subtracting the adjustment
factor if address adjustment is specified). The d­
character will be supplied automatically for unique
mnemonics, or will be taken from the operand
field if the programmer has supplied it.
c. Assigns the actual machine langdage instruction
an area in storage. The address of this area is the
position occupied by the operation code in object­
machine core storage. This address is assigned to
the label if one appears in the label field.

Result: This instruction will be placed in the self-load­
ing object program deck or tape. A word mark will
be set in the operation code position by the loading
routine at program load time.

Examples: Figure 40 shows an imperative instruction
with 1- and B-operands and a mnemonic which re­
quires that the programmer include the d-character.
A branch to a location labeled READ will occur if the
location labeled TEST has a 5 in it. Assume that the
address of READ is 596, and TEST is in 782. The assem­
bled instruction is ~ 596 782 5.

10

Figure 40. Branch if Character Equal

OPERAND
4!1

Figure 41 shows an imperative instruction with a
unique mnemonic. A branch to a location labeled
OVFLO will occur if an arithmetic overflow has oc­
curred. Assume that the address of OVFLO is 896. The
assembled machine language instruction is ~ 896 Z.

Figure 41. Branch if Arithmetic Overflow

Processor-Control Operations
Autocoder has several control operations that enable
the user to exercise some control over the assembly
process. They are:

Op Code Purpose
JOB Job Card
CTL Control Card
aRC Origin
LTORC Literal Origin
EX Execute
XFR Transfer
SFX Suffix
ENT Enter New Coding Mode
END End Assembly
ALTER Alter

JOB-Job

General Description: This is the first card in the user's
source program deck. It is used to print a heading
line on each page of the output listing from the as­
sembly process and to identify the self-loading pro­
gram deck or tape.

The programmer:
1. Writes the mnemonic operation code (JOB) in the
operation field.

2. Writes in the operand field the indicative infor­
mation to be printed in the heading line. This infor­
mation may be any combination of valid 1401 and
1460 characters and appears in columns 21-72.

3. Writes in the identification field the information
to be contained in the self-loading program deck or
tape.

The processor:
1. Prints the information, the identification number
from columns 76-80, and a page number from the
JOB card on each page of the output listing. If there
is no JOB card, the processor will generate one. In
this case nothing will be printed in the heading line,
except the page number.

2. Punches the identification number (cols. 76-80) in
all condensed cards produced for the object pro­
gram. If another JOB card (or cards) appear else-

21

where in the source program, the new identification
number will be punched in subsequent condensed
cards. This new JOB card will also cause the carriage
to restore during listing, and the new information
will appear in the heading line.

Result: The programmer can identify a job or parts of
a job in the output listing.

CTl-Control

General Description: The control statement is the sec ..
ond entry (card) in the source program deck. The
user prepares this card to specify the size of the
processing machine, the size of the object machine,
the type of output he wishes, and the presence or
absence of the Modify-Address feature. The modify
address (MA) instruction is standard in IBM 1460
systems and in IBM 1401 systems with 8-, 12-, and
16-thousand positions of core storage. For an object
machine not equipped with the MA feature, the
Autocoder processor automatically assembles a rou­
tine to simulate the MODIFY-ADDRESS instruction.

The programmer:

1. Writes the Op code (CfL) in the operation field.

2. Writes codes in the operand field as follows:

Column 21 indicates the storage size of the ma­
chine to be used to process the Autocoder entries.

Storage Size Code

4,000 3
8,000 4

12,000 5
16,000 6

Column 22 indicates the storage size of the object
machine.

Storage Size Code

1,400 1
2,000 2
4,000 3
8,000 4

12,000 5
16,000 6

Column 23 indicates the type of Autocoder output
desired.

Output Code

Printed listing containing the symbolic source Blank
program and the machine-language object pro- or 0
gram.

Printed listing and self-loading condensed pro- 1
gram card deck.

Printed listing and self-loading program tape. 2

Printed listing, condensed card deck, and self- 3
loading program tape.

Printed listing and one-instruction-per-card re- 4
sequenced source deck.

Printed listing, condensed card deck and one- 5
instruction-per-card resequenced source deck.

Printed listing, self-loading program tape, and 6
one-instruction-per-card resequenced source
deck.

All output options. 7

Error - list only Any other
code

Column 24 indicates the presence or absence of
the modify-address feature in the object machine.
The code 1 in column 24 specifies that MA is present.
If column 24 is blank, the processor treats the mne­
monic operation code MA as a macro instruction and
generates the instructions necessary to modify an in­
struction address (SET WORD MARK, ADD AND CLEAR

WORD MARK) for object machines less than 8k.

Column 25. A code 1 in column 25 indicates the
presence of a fifth tape, which will contain the out­
put listing and images of the condensed cards.

Column 26. A code 1 in column 26 indicates the
presence of the Read-Punch Release Feature.

The processor: Interprets the codes and processes the
source program accordingly.

If the CfL card is missing, the processor assumes
that both the processing machine and the object
machine have 4,000 positions of core storage. If the
CTL card is included, lack of punching in column 21
and/ or column 22 results in:

Column 21

blank

blank

punched

Column 22

blank

punched

blank

Error message

Bad statement

Bad statement

Bad statement

Assembly

No

No

Yes

If column 23 is left blank, or if the CTL card is miss­
ing, the processor provides a listing only.

ORG-Origin

General Description: An origin statement can be used
by the programmer to specify a storage address at

22 Autocoder (on Tape) Specs. and Gp. Proc. IBM 1401 and 1460

I

which the processor should begin assigning locations
to instructions, constants, and work areas.

The programmer:
1. Writes the mnemonic operation code (ORG) in the
operation field.

2. Writes the symbolic, actual, blank, or asterisk ad­
dress in the operand field. Symbolic or blank, or *
addresses can have address adjustment (including
XOO) but indexing is not permitted in ORG state­
ments.

3. If a symbolic label appears in the operand field of
an ORG statement, it must appear in the label field
elsewhere in the program sequence. It need not pre­
cede the ORG statement.

The processor:
1. Assigns addresses to instructions, constants, and
to work areas as specified in the operand field of the
ORG statement.

2. If there is no ORG statement preceding the first
symbolic program entry, the processor automatically
begins assigning storage locations at 333 (the first
storage location following the fixed 1401 and 1460
read, punch, and print areas).

3. An ORG statement inserted at any point within the
symbolic program causes the processor to assign sub­
sequent addresses beginning at the ·address specified
in the operand field of the new ORG statement.

Result: The programmer chooses the area(s) of storage
where the object program will be located.

Examples: Figure 42 shows an ORG statement with an
actual address. The first symbolic program entry
following this OlRG statement will be assigned with
storage: location 500 as a reference point. (If the first
entry is an instruction, the Op code position (1-
address) of that instruction will be 500; if the first
entry is a 5-character new, it will be assigned ad­
dress 504, etc.)

Label OPERAND

Label OPERAND

:0. " ~II'--L-L

Figure 43. Saving the Address of the Last Storage Allocation

,

The programmer can insert another ORG statement
later in the source program to direct the processor to
begin assigning storage at ADDR (Figure 43).

If a symbolic label appears in the label field of an
ORG or LTORG statement, it cannot be used in any
other place except as the operand of another ORG or
LTORG statement.

Figure 44 shows an ORG statement that directs the
processor to start assigning addresses with the actual
address assigned to ADDR (see Step 3 Program,mer).

Label

Figure 44. ORG Statement with a Symbolic Address

Figure 45 shows an ORG statement that directs the
processor to bypass 200 positions of core storage
when assigning addresses. This statement is the type
that is included within the source program (see
Step 3 Processor).

Label
~II

Figure 45. ORG Statement with an Asterisk Operand and Ad­
dress Adjustment

When the processor encounters the statement
shown in Figure 46, it will assign subsequent ad­
dresses beginning with the next available storage
location whose address is a multiple of 100. For ex­
ample, if the last constant was assigned location 525,
the next instruction would have an address of 600.

Label

tratiCII~
.!!..-___ --!i. !plI--~IIqu... _....tiI&..D __ ---JIODL-__ l!uD __ .:D40L-_~4DL.__ Figure 46. ORG Statement Advancing Address Assignment to

G ~5ao q , the next Available Address that is a Multiple of 100

Figure 42. ORG Statement with an Actual Address

The ORG statement in Figure 43 shows how the
programmer can direct the processor to save the ad­
dress of the last storage location allocated. The label
ADDR is the symbolic address of the storage locations
used to save this address. The processor will continue
to assign addresses beginning at the actual address
of START.

Note: + XOO is permitted as character adjustment in any
ORG or L TORG statement.

Figure 47 shows an ORG statement with a blank
operand. When the processor encounters this state­
ment, it begins assigning addresses to subsequent en­
tries beginning with the first address (beyond 332)
follOWing the highest address assigned to other
entries.

23

Label OPERAND

.~ ~!! ~5
, I

Figure 47. ORG Statement with a Blank Operand

A blank ORG statement that follows a DA statement
will not be correctly assembled.

LTORG-Literal Origin

General Description: LTORG statements are coded in
the same way as ORG statements. They direct the
processor to assign storage locations to previously
encountered literals and closed library routines, be­
ginning with the address written in the operand field
of the LTORG statement. LTORG statements can appear
anywhere in the source program.

If no LTORG statement appears in the source pro­
gram, the processor begins assigning addresses to
literals and closed library routines when it encoun­
ters an EX or END statement.

Example: Figure 48 shows how the programmer can
direct the processor to begin assigning storage loca­
tions to literals and closed library routines.

Figure 48. Using a L TORG Statement

The ORG statement instructs the processor to as­
sign storage beginning with location 500 to all in­
structions, constants, and work areas (ending with
BsuB01). However, the literal (+ 10) in the statement
ZA + 10, WKAREA, and the library routine (SUB 01) ex­
tracted by the CALL macro (see Call) will not be
assigned storage until the LTORG statement is encoun­
tered. The first instruction in the library routine
(SUB 01) will be assigned address 1500 (VOO) because
CALC has been equated to 1500. After all instructions
in SUB 01 have been assigned storage locations, the
literal + 10 will be assigned an address. The proc­
essor will begin assigning the rest of the instructions,
constants, and work areas with the storage location
immediately to the right of the area occupied by the
instruction BsuBOI. Thus, if BsuBOI (BVoo) is assigned
locations 591-594, FIELDA will be assigned storage lo­
cations 595-600.

EX-Execute

General Description: During the loading of the assem­
bled machine-language program, the programmer
may want to discontinue the loading process tempo­
rarily to execute a portion of the program just loaded.
The EX statement is used for this purpose.

The programmer:

1. Writes the mnemonic operation code (EX) in the
operation field.

2. Writes an actual or symbolic address in the oper­
and field. This address must be the same symbol that
appears in the label field of the first instruction to
be executed.

The processor:

1. Incorporates closed library routines, literals, and
address constants in the program.

2. Assembles a branch instruction, the I-address of
which is the address aSSigned to the instruction
referenced by the symbol in the operand field (an
unconditional branch to the first instruction to be
executed). This instruction does not become part of
the assembled machine-language program, but it
causes the processor-produced loading routine to
halt the loading process at the appropriate time and
execute the branch instruction.

Result: The programmer can use several program sec­
tions if his total program exceeds the limits of avail­
able storage capacity. For example, if input to the
program is on magnetic tape and the program is also
on tape, one tape unit can be aSSigned to the pro­
gram and another can be assigned to the input data.

Example: Figure 49 shows how an EX statement can be
coded. When this statement is encountered in the
loading data, the loading process halts and a branch
to the instruction whose label is ENTRYA occurs.

To continue the loading process after the desired
portion of the program has been executed, the pro­
grammer must provide re-entry to the load routine.

Label ~~RAND

Figure 49. EX Statement

Figure 50 shows an example of this coding when
the condensed card deck is used. The read area is
cleared, word marks are set in 024, 056, 063 and 067;
and a card is read with a branch to 056.

24 Autocoder (on Tape) Specs. and Op. Proc. IBM 1401 and 1460

I

Figure 50. Re-Entry to the Load Routine

The programmer must be sure that a word mark is
present in the location following the R056 instruction
at program execution time.

XFR-Transfer

General Description: This entry has the same function
as an EX statement except that literals, closed library
routines, and address constants are not stored. An
XFR statement transfers to and executes instructions
that have been previously loaded.

END-lend

General Description: This is always the last card in
the source deck. It is used to signal the processor that
all of the source program entries have been read, and
to provide the processor with the information neces··
sary to create a bootstrap card. This bootstrap card
causes a transfer to the first instruction in the object
program after it has been loaded into the machine at
program load time. Thus, program execution begins
automatically.

The programmer:
1. Writes the mnemonic operation code (END) in the
opera.tion field.
2. Writes in the operand field, the symbolic or actual
address of the first instruction to be executed after
the program has been loaded.

The processor: Creates a CLEAR AND BRANCH instruc­
tion that is used as part of the loading data. The
read area is cleared.

SFX-Suffix

General Description: This statement directs the proc­
essor to put a suffix code in the sixth position of all
labels in the symbolic program that have five, or
fewer characters, until another SFX statement is en­
countered. In this way, the programmer can use the
same label in different sections of the complete
program.

A suffix statement with a blank operand can be
used to stop the assignment of a suffix code.

The programmer:
1. Writes the mnemonic operation code (SFX) in the
operation field.

2. Writes the character (which can be any valid 1401
and 1460 character) to be used for the suffix code in
the operand field.

The processor:
1. Inserts the suffix code in the sixth position of all
labels in the source program that have fewer than
6 characters.

2. Changes the suffix code when a new SFX card is
encountered.

Result: Each program section has unique labels.

Example: Figure 51 is an example of coding for a suf­
fixing operation.

Figure 51. Specifying a SUFFIX Operation

ENT-Enter New Coding Mode

General Description: The 1401 and 1460 tape Auto­
coder processor accepts source programs coded in
either free-form Autocoder language or in fixed-form
SPS language. It is also possible to assemble a single
program coded in a combination of the two lan­
guages. An ENT statement is used by the programmer
to inform the processor that a change in coding form
follows.

The programmer:
1. Writes the mnemonic operation code (ENT) in col­
umns 16, 17, and 18 when entering the SPS mode
from the Autocoder mode; or columns 14, 15, and 16
when entering the Autocoder mode from the SPS
mode.

2. Writes SPS in columns 21, 22, and 23 to enter the
SPS mode from Autocoder; or AUTOCODER in columns
17-25 to enter the Autocoder mode from SPS.

Note: If the program is coded entirely in SPS form, the
program must be preccded by an ENT statement. If this ENT

card is missing, or if a coding form change is encountered
with no ENT card preceding it, an error condition will result.
Before assembly, remove the SPS control card from the
original SPS source deck and replace it by an Autocoder JOB

card, an Autocoder CTL card, and an ENT card in Autocoder
fonnat.

The processor: Interprets the source program coding
as identified by the ENT statements.

Result: Programs prepared wholly or partially in SPS
format can be reassembled by the Autocoder proc­
essor.

25

Example: Figures 52 and 53 are ENT statements to be
used with Autocoder.

label OPERAND

!~
Figure 52. ENT Statement for Entering SPS mode

lGbeI OPERAND

!~ ~A
t !

Figure 53. ENT Statement for Entering Autocoder Mode

ALTER-Alter

General Description: An ALTER statement makes it
possible to add, delete, or substitute instructions in
the object program after the original assembly has
been completed.

By saving tape 4 which, at the end of assembly,
contains a source program, it is possible to reassem­
ble the program easily by processing ALTER cards.
During each assembly, each statement that can be
altered by an ALTER entry is assigned a sequence
number. This number is listed in the first column of
the output listing. These numbers are used in the
ALTER entries to reference statements to be changed
during the reassembly.

Additions

The programmer:
1. Writes the mnemonic operation code (ALTER) in
the operation field of the ALTER statement.

2. Writes a number in the operand field in column
21. This number represents the sequence number
after which the entries following the ALTER state­
ment should be included.

3. Writes the statements to be included.

The processor: Adds the new statements and reassem­
bles the object program.

Example: The programmer wishes to insert two state­
ments after the statement whose sequence number
is 132. The three entries shown in Figure 54 are used.

All statements following an ALTER entry will be
included in the object program until the next ALTER

card or last card has been read.

Figure 54. Adding Statements to an Assembled Object Program

Deletions

The programmer:
1. Writes the mnemonic operation code (ALTER) in
the operation field of the ALTER statement.
2. Writes two numbers separated by commas in the
operand field. The first of these numbers is the se­
quence number of the first statement to be de­
leted. The second number is the sequence number
of the last statement to be deleted. If only one state­
ment is to be deleted, only the sequence number is
written twice in the operand field.

The processor: Deletes object program statements in­
cluded between the two sequence numbers in the
operand field.

Example: If the programmer wishes to delete object
program statements 192 through 203, he uses the
entry shown in Figure 55.

II label l~i~.,~Q,3 OPERAND

,: ~ ~I ~g, !II III

Figure 55. Deleting Statements from an Assembled Object
Program

Substitutions

The programmer:
1. Writes the ALTER statement exactly as described
under deletions.

2. Writes the statements to be substituted.

The processor:
1. Deletes the statements included by the sequence
num bers in the operand field.

2. Substitutes the statements following the ALTER

entry.

Example: The entries shown in Figure 56 cause the
processor to delete the statement whose alter num­
ber is 162 and add in its place the MLC and B instruc­
tions.

Figure 56. Substituting Statements in an
Program

OPERAND
!II III

Assembled Object

When reassembling with alterations, the instruc­
tions or constants inserted immediately following se­
quence number 103 or changes to sequence number
103, will not be assembled correctly. (Sequence num­
ber 103 is normally associated with the ORIGIN state­
ment.)

26 Autocoder (on Tape) Specs. and Op. Proc. IBM 1401 and 1460

I

Many of the routines that must be incorporated in pro­
grams are general in nature and can be used repeatedly
with llittle or no alteration. Autocoder makes it possi­
ble for the user to write a single symbolic instruction
(a macro instruction) that causes a series of machine­
language instructions to be inserted automatically in
the object program. Thus, the aMity of Autocoder to
process macro instructions relieves the programmer of
much repetitive coding. With a macro instruction, the
programmer can call, from a library of routines, a se­
quence of instructions tailored by the processor to fit
his particular programs.

Defini'tion of Terms

In this publication several programming terms describe
the requirements and operational characteristics of the
macro system. These terms are explained here as they
are applied in the following discussions.

Obiect Routine. The speCific machine-language instruc­
tions needed to perform the functions speCified by
the macro instruction. If the object routine is in­
serted directly in a larger routine (e.g., the main
routine) without a linkage or calling' sequence, it is
called an open routine (or in-line routine). If the
routine is not inserted as a block of instructions
within a larger routine, but is entered by basic link­
age from the main routine, it is called a closed rou­
tine (or off-line routine).

Model Statement. A general outline of a symbolic pro­
gram entry. Model statements are used only in flexi­
ble library routines.

Library Routine. The complete set of instructions or
model statements from which the object routine is
developed. If the library routine can not be altered,
it is inflexible. If the library routine is designed so
that symbolic program entries can be deleted from
certain object routines (at the discretion of the pro­
grammer), or if parameters can be inserted, it is
fleXible.

Library. The complete set of library routines, stored
on magnetic tape with an identifying label for each
routine, that can be extracted by a macro instruc­
tion. Several macro instructions and library routines
are provided by IBM (see Supplied Macros). Others
are designed by the user to suit particular processing
requirements.

Librarian. The phase of the processor that creates the

The Macro System

library tape from card input. After the original writ­
ing of the library tape, this phase is used to insert ad­
ditionallibrary routines and their identifying labels.
This phase is omitted during program assembly.

Parameters. The symbolic addresses of data fields, con­
trol names, or information to be inserted in the sym­
bolic program entries outlined by the model state­
ments. By placing parameters in the operand field of
a macro instruction, the programmer can specify
symbolically the data to be operated on. The actual
addresses of the data (or other information) are in­
serted in the object routine by the processor during
assembly.

Macro Operations
To illustrate the basic operation of the macro system,
a macro called COMPR with a simple flexible library
routine is used. The routine is designed to read a card,
compare an input field to another field, test the com­
pare indicator for a high, low, or equal condition or
any combination of the three. For example, in some
programs it will be necessary to test only for an equal
condition; in others, high or equal, etc.

The library entry, a macro instruction specifying that
all instructions in the library routine appear in the ob­
ject program, and the symbolic program entries created
during the macro phase of Autocoder are shown in
Figure 50. The symbolic program entries are inserted
in the source program behind the macro instruction.
During assembly of the object program, the symbolic
program entries will be translated to actual machine
language instructions with the actual addresses of the
parameters inserted in the label, operation, and oper­
and fields.

The Library Entry

The library entry for the COMPR MACRO was created by
writing a header statement and five model statements
as shown in Figure 57.

HEADR-Header

General Description: A header statement identifies a
library routine. This identification precedes the li­
brary routine in the library tape.

The programmer:
1. Writes the operation code (HEADR) in the opera­
tion field.

27

lobel 15 ~perati:; lz I "'1'1 II.
OPERAND

• --"- 40 411

l~ary Entry

COMRR UEAOR
ltOO Il

C .cO l, .. Wo,2,

:BH)toe'

:if)(0])

111..)foE
Macro Il'IStructlon

X X,X,XX It? O~,(TJl. P,IU~, 1, •• P,R/l 2 .P,II R l.a P " IV# .• P II.R.S,

Generated Symbolic Program Entries
XXXXX R

C PAR1,PAR2
BH PAR3
BE PAR4
BL PARS

Figure 57. Macro Operations

2. Writes the five-character label for the library rou­
tine in the label field. This label will be the same as
the name that appears in the operation field of the
associated macro instruction (except when either the
CALL or INCLD macro is used). The first three charac­
ters must be unique (no two library entry labels may
have the same first three characters).

The processor: Puts the indicative information ahead
of the model statements in the library tape during
the librarian phase of Autocoder.

Result: During assembly, the header label is matched
with the macro name in the operation field of the
macro instruction. The model statements following
the header label in the library tape are used to as­
semble the symbolic program entries as specified by
the macro instruction.

Model Statements

General Description: Model statements establish the
conditions for insertion of parameters in the object
routine and define the basic structure of the symbolic
program entries.

The programmer:
1. Designs a general routine to perform a specific
function when it is executed in the object program.

2. Writes the model statements as follows:

a. If the entry is complete, it is written exactly as
though it were an entry in a source program. This
entry will be included in all object routines unless
a bypass condition exists.

Example: Read a card (Figure 58).

Figure 58. Model Statement for a Complete Instruction

110 ~ 10 .11 71'1

)(0101

b. If the entry is incomplete, the programmer
writes a special three-character code to indicate
that a certain parameter from the macro instruc­
tion operand field must be inserted (substituted)
in its place. This code is a [J followed by anum ber
from 01 to 99 (the position of the parameter in the
macro instruction). This entry will be inserted in
all object routines unless a bypass condition exists.

Example: Insert parameters 01 and 02 specified by the
COMPR macro instruction as shown in Figure 59.

label

~II,

Figure 59. Model Statement Specifying that the First and
Second Parameters be Present in the Associated
Macro Instruction

c. If the entry is incomplete, the programmer
writes a [J followed by a number from 01-99 with
AB-bits over the units position (parameter 01 is
[J 0 A; parameter 02 is [J 0 B; etc.) to indicate that
the entry is to be included in the object routine
only if the parameter is specified by the macro in­
struction and no bypass condition exists.

Example: Insert parameter 03 in the following instruc­
tion if it is specified by the macro instruction. If
parameter 03 does not appear in the macro instruc-

28 Autocoder (on Tape) Specs. and Op. Proc. IBM 1401 and 1460

I

tion, the instruction shown in Figure 60 will be de.­
leted. from the object routine.

Figure 60. Model Statement for an Incomplete Instruction with
Conditional Parameters

Substitution codes can be used to substitute a
parameter in any part of a model statement. For ex­
ample, it is possible to substitute an operation code,
any part of a literal, a label, etc.

Bypassing. The Autocoder processor permits the pro­
grammer to establish multiple conditions for bypass ..
ing model statements in the library routine. Any of
the three basic types of model statements can be by­
passed if certain parameters are missing from or
present in the macro instruction and if special con­
dition codes are included in the right-hand portion
of the operand. field (comments field). The first code
may be placed in columns 70, 71, and 72; the second
code in 67, 68 and 69, etc. These codes are inter­
preted by the processor as follows:

a. If the code is a 0 followed by a number from
01 to 99 with AB-bits over the units position (for
example 0 0 A), the model statement will be by­
passed if the indicated parameter is missing from
the macro instruction.

Example: Bypass the model statement shown in Figure
61 only if either parameter 04 or 05 is missing from
the operand field of the macro instruction.

b. If the code is a 0 followed by a number from
01 to 99 with an A-bit over the units position (for
example 0 0 I), the model statement will be by­
passed if the indicated parameter is present in the
macro instruction.

Example: Bypass the model statement shown in Figure
62 if either parameter 04 or 05 is present in the oper­
and field of the macro instruction.

c. Combinations of the two types of conditions for
the same model statement are permissible.

Example: Bypass the model statement shown in Figure
63 if parameter 04 is present or if parameter 05 is
missing.

The processor scans the condition codes from right
to left. If a bypass condition is encountered, the
model statement is not used for the object routine.
There must be at least two non-significant blank
spaces between the operand(s) of the model state­
ment and the leftmost condition code.

Labeling. If the model statement represents an instruc­
tion that is the entry point for a branch instruction
elsewhere in the program, it must have a label. A
o 0 0 code in the first such model statement causes

Figure 61. Condition Codes for Bypassing if Parameters are Missing from the Associated Macro Instruction

Figure 62. Condition Codes for Bypassing if Parameters are Present in the Associated Macro Instruction

Figure 63. Condition Codes Combined

29

the contents of the label field of the macro instruc­
tion to be inserted in the label field of the generated
symbolic entry as shown in Figure 64.

Generated Symbolic Program Entry
TESTZ B STRTl

Figure 64. Labeling

If additional external labels are required and spec­
ified as parameters in the macro instruction, they can
be inserted in the label field of the symbolic program
entry by using a 0 01-99 code.

Example: Insert parameter 02 in the label field of the
generated symbolic program entry as shown in Fig­
ure 65.

Generated Symbolic Program Entry
START2 SBR ENTRYA+3

Figure 65. Additional External Label

Symbolic Addressing within the Library 'Routine. To
allow symbolic reference to other instructions in a
flexible library routine, a 0 followed by a number
from, 01 to 99 with a B-bit over the units position
(0 0 J = symbolic address 1; 0 0 K = symbolic ad­
dress 2, etc.) can be used. The processor generates
the symbolic address if the code (for example, 00 J)
is used as a label for one entry and as an operand of
at least one other entry in the same library routine.

Internal labels within flexible routines are gener­
ated in the form 0 nnmmm, where nn is the code
(OJ-9R), and mmm is the number of the macro
within the source program. This avoids duplicate
address assignments for labels.

Example: Use the generated symbolic address of
(00 J) as an operand for entry 3 and as the label for
entry 6. UPDAT is the 23rd macro encountered in the
source program (Figure 66).

label

i& ltD.¥'

IZ.A lJt.o.1. ~O.2.

Generated Symbolic Program Entries

B 00J023

00J023 ZA COST,AMOUNT

Figure 66. Internal Labels

10 II 10
OPERAND

41

Address Adjustment and IndeXing. The parameters in
a macro instruction and the operands in partially
complete instructions in a library routine can have
address adjustment and indexing.

If address adjustment is used in both the param­
eter and the instruction, the assembled instruction
will be adjusted to the algebraic sum of the two. For
example, if the address adjustment of one is +7 and
the other is -4, the assembled instruction will have
address adjustment equal to +3.

Operands may be indexed in the library routine.
If a parameter supplied by the macro instruction is
indexed, the leftmost indexed code in the assembled
model statement takes precedence.

Literals: Operands of instructions in flexible routines
may use literals as reqUired.

1. A model statement in the library routine for a
macro instruction may not be another macro in­
struction, except the CALL, INCLD, or CHAIN macro
(see Call).

2. Literal Origin, Ex and End statements cannot be
used in library routines.

The processor: Enters model statements in the library
tape immediately following the header statement
during the librarian phase of Autocoder.

Result: Any library routine can be extracted by writing
the associated macro instruction in the source pro­
gram.

Figure 67 is a summary of the codes that can be
used in the model statements of flexible library rou­
tines.

30 Autocoder (on Tape) Specs. and Op. Proc. IBM 1401 and 1460

I

COOl: POSITION FUNCTION

001-0'»9 Statement Substitute parameter
(parameter must be present)

00A-D91 Statement Substitute parameter
(if parameter is missing,
delete statement)

00A-091 Comments Field If parameter is missing,
(right-hand portion delete statement
of operand field)

DO/-On Comments Field If parameter is present,
delete statement.

000 Label Field Substitute contents of
macro-instruction label field

00J-09R Label field and Assign internal label
Operand Field

Figure 67. l\1odel Statement Codes

Macro Instructions
General Description: A macro instruction is the entry

in the source program that: causes a series of instruc­
tions to be inserted in an object program.

The programmer:
1. Writes, in the label field, the label that is to be
substituted in the model statement that contains
o 0 0, if such a model statement appears in the
library entry. If the 0 0 0 model statement is by­
passed, the label is transferred to the next included
statement.

2. Writes the name of the library routine in the oper­
ation field. This name must be the same five charac­
ters that appear in the label field of the header state­
ment of the library entry.

3. Writes in the operand field the parameters that
are to be used by the model statements required for
the particular object routine desired as follows:

a. Parameters must be written in the sequence in
which they are to be used by the codes in the
model statements. For example, if COST is param­
eter 1, it must be written first so that it will be
(1) substituted wherever a 0 0 1, or 0 0 A appears
as an operation code or operand of a model state-

Label

Figure 68. All Parameters are Present

Figure 69. Parameters 4 and 8 are Missing

ment and (2) tested for a missing or present condi­
tion wherever a bypass condition code (0 0 A or
o 0 /) appears in the right-hand portion of the
operand field.

b. As many parameters may be used as can be
contained in the operand fields of five or fewer
coding sheet lines. If more than one line is needed
for a macro-instruction, the label and operation
fields of the additional lines must be left blank.
Parameters must be separated by a comma. They
cannot contain blanks unless the blanks appear be­
tween @ symbols. If parameters for a single macro
instruction require more than one coding sheet
line, the last parameter in each line must be fol­
lowed immediately by a comma. The last param­
eter in a macro instruction must not be followed
byacomma.

c. Parameters that are not required for the par­
ticular object routine desired can be omitted from
the operand field of the macro instruction. How­
ever, a comma must be inserted in place of the
omitted parameter to indicate that it is missing,
unless the omitted parameter is the last parameter
in the macro instruction.

Figures 68, 69, and 70 show how parameters can
be omitted. The hypothetical macro instruction
called EXACT is used. EXACT can have as many as 9
parameters.

The processor: Extracts the library routine and selects
the model statements required for the object routine
as specified by the parameters in the macro instruc­
tions and by the substitution and condition codes in
the model statements.

Result: The resulting program entries are merged with
the source-program entries following the macro in­
struction. In the listing of the source and object pro­
grams (produced by the listing and condensed cards
phase of Autocoder), the macro instruction is identi­
fied by a MACRO tag and the symbolic program en­
tries generated by the processor are identified by
GEN (Generated) tags.

, :~ , I

31

Label

Figure 70. Parameters 1,4,5,6, and 8 are Missing

Call Routines

The Autocoder processor permits the user to add inflex­
ible routines to the library tape. These are commonly
used sequences of instructions that can be extracted
for an object program by the CALL macro. They differ
from the routines processed by other macro instruc­
tions in several ways:

1. All instructions must be complete (no parameters
can be inserted).

2. All instructions in the routine are incorporated.

3. A CALL routine is not inserted at the point where the
CALL macro was encountered in the source program.
Instead, it is inserted only once as a closed routine
elsewhere in the object program or program section.
Linkage to the routine is provided automatically by
the processor whenever its particular CALL macro is
encountered in the source program. (The processor
does not produce automatic linkage to the routines
incorporated by other macro instructions because
these routines are inserted as open routines where
the associated macro instructions were encountered
in the source program.)

4. Data needed by a CALL routine must be in the loca­
tions indicated by the symbols in the operand fields
of its instructions.

ReqUirements: CALL routines have several specific re­
quirements that must be considered when the rou­
tine is created:

1. Every entry point in a CALL routine must have a
label. These labels (and all other symbols used in a
CALL routine) must be five characters in length, and
each of these must have the same first three charac­
ters. The first of these three characters must be al­
phabetic. The last four characters of each symbol
can be alphameric (no special characters).

CALL routines are stored at the time and place
where a Literal Origin, End, or Execute processor
control statement is encountered. Duplicate symbols
can occur if a CALL routine is used in more than one
program overlay (if the same CALL routine is named
in CALL macros that are separated by a Literal Origin
or Execute statement). To prevent this possibility the
Autocoder processor provides a Suffix (see SFX)

operation. The programmer should use a suffix state­
ment containing a new character in each program
section.

2. The first instruction at each entry point in a CALL

routine must store the contents of the B-address reg­
ister (SBR) in an index location or in the last instruc­
tion executed in the CALL routine. This provides for
re-entry at the proper place in the main routine after
the CALL routine .is executed.

3. All macro instruction operation codes except
CALL, INCLD, and CHAIN are invalid in CALL routines.
All other symbolic entries acceptable to Autocoder,
except Literal, Origin, Execute, and ElIld can be
used. A CALL macro:

a. allows one CALL routine to be used at some
point in another CALL routine or,

b. can be used as a model statement in the library
routine for a regular macro instruction.

IBM-Supplied Macros

Six macro instructions are currently available as part of
the Autocoder Processor. They are: CALL, INCLD, CHAIN,

MA, OVLAY, and TOVLY.

CALL Macro

General Description: The CALL. macro provides access
to inflexible routines written by the user and stored
in the library tape. It establishes linkage to a closed
routine and inserts that routine elsewhere in the
program. The CALL macro is part of the Autocoder
processor.

The programmer:

1. Writes the name of the macro (CALL) in the oper­
ation field.

2. Writes the label of the library statement that is
the desired entry point in the library routine start­
ing in column 21 of the operand field. The first three
characters of this label must be the same as the first
three characters in the label field of the header
statement that was used to enter the routine in the
library tape (see Headr).

a. If the CALL routine is constructed so that all
the data it requires must be taken from specifically
labeled areas of storage, the remainder of the oper­
and field must be left blank. For example, a CALL

routine whose entry pOint is sQR01 requires that

32 Autocoder (on Tape) Specs. and Op. Proc. IBM 1401 and 1460

I

the number whose square root is to be computed
must be placed in a location labeled sQR02. The
CALL macro is written as shown in Figure 71.

Label OPERAND
151 '21 II 5et 35 r~ti~ 40 ~5 Call Macro : : : : :: , :

Generated Symbolic Program Entry

B SQROl

Figure 71. CALL Statement Specifying That Data be in Specifi­
cally Labeled Areas of Storage

b. If the CALL routine is constructed so that the
data it requires can be located in arbitrarily la­
beled areas of core storage, the symbols for these
areas must be included immediately following the
label in the operand field. These symbols must be
entered in the order in which they are required by
the CALL routine. This makes it possible to design
CALL routines in which the required data can be
placed in locations labeled in any way the pro­
grammer desires. This frees the source program
writer from the restriction that he insert data in
locations labeled according to the requirements of
the CALL routine. However, CALL routines to be
used in this manner must be coded to utilize the
address constants that will be created from the
sym boIs in the operand field.

Example: Call a routine whose entry point is SUB 0 1
(Figure 72). The addresses of DATA 1, DATA 2, and
DATA 3 are needed by the CALL routine.

Label
211 30 35 10

<;aJI Macro , • !

CRIo.L.. SUB Oi ,PATII,J."r>,IlT,JI,~') l)A.r.A3

Generated Symbolic Program Entries

B SUBOl
DCW DATAl

DATA2

DATA3

OPERAND
15

Figure 72. CALL Statement for a Routine with Arbitrary Data
Storage Assignments

The processor:
1. Establishes linkage from the main routine to the
CALL routine by assembling a symbolic program
entry for an unconditional branch instruction. The
operand for this branch instruction is the entry point
given in the operand field of the CALL macro as
shown in Figures 64 and 65. The branch instruction
follows the CALL macro.

2. Creates address constants for other symbols ap­
pearing in the operand field of the CALL macro, and
inserts them following the unconditional branch
instruction as shown in Figure 65. Note that these
address constants are defined in the order in which
the associated symbols appear in the CALL operand.

Result: A given CALL routine is inserted once per pro­
gram or program section in a location determined by
a processor-control statement. Branch instructions
are inserted as many times as an associated CALL
macro is encountered in the source program. Thus
the CALL routine can be entered from several points
in the main routine.

Example: Assume that a library routine to compute the
value of X + Z is associated with a regular macro in­
struction called TAKSQ. There is also a CALL routine
in the library tape named sQR01, which calculates
the square root of a number in a work area (sQR02)
and places the answer in another work area (sQR03).
The programmer can design a library entry for the
TAKSQ macro that will provide linkage to the CALL
routine as shown in Figure 73.

Label hpNati:J
e ISIi! W21 2!1 50

library Entry For TAKSQ Macro

TA I<~,Q. IH ,E.II,]),/(

Ie 4 L L S,Q.Ro,'i .

10
OPERAND

45

~,A ~~Ko3,.XO~~~~~~~~~~~
!;!tacro Instruction . .<.......1..-. -'----'-...I-L--'-'--L-L--'--'-~-L-'-

TA KSQ 1)(,,, z ... t'.ES 1.1 I.. T.

Generated Symbolic Program Entries

T AKSQ X,Z,RESU LT

ZA X,SQR02

A Z,SQR02

CALL SQROl

B SQROl

ZA SQR03,RESULT

Figure 73, CALL Statement Within a Library Routine for a
Macro Instruction

When the object routine is executed, X + Z will be
stored in sQR02. Then the program will branch to the
CALL routine where the square root of X + Z will be
calculated and the result stored in sQR03. The last
instruction in the sQROl routine will cause an uncon­
ditional branch to the last instruction in the T AKSQ
routine that puts the answer in an area labeled
RESULT, This illustration is designed to show the
combination of a regular macro and the CALL macro.
The same result could be achieved by writing entries
in the source program as shown in Figure 74.

33

Label I~peratl: OPERAN
L- IJ. '~I ". !l0 !II .0 411

.~~!.Progra'!'....~~~me,:,t~
1z . .4 ik' .. S.QRO . .t.
A Z .• S. QJc. 0.2..
C-IU.:.1. SQ.Ro:/,

ZA. S.Q.~O.'!. . • R.E S U L. r.

Generated Symbolic Program Entries

ZA X,SQR02
A Z,SQR02

CALL SQROl

B SQROl

ZA SQR03,RESULT

Figure 74. Alternative Source Program Entries

INCLD Macro

General Description: This macro extracts an inflexible
library routine from the library tape. However, the
INCLD macro does not insert a branch instruction fol­
lowing the INCLD statement in the source program
as does the CALL statement. The programmer estab­
lishes his own linkage to the closed routine. INCLD

statements are constructed in the same manner as
CALL statements.

Example: Figure 75 shows an INCLD statement that
causes a library routine named SUBOl to be incorpo­
rated in the object program.

D Macro Processing

Figures 76, 77, and 78 are diagrams showing the effects
of the three different uses of library routines:

1. As extracted by a regular macro instruction.

2. As extracted by the CALL macro.

3. As extracted by the INCLD macro.

The symbolic programs that result from the proc­
essor actions described in Figures 76, 77, and 78 are
later processed as though the user had inserted all
the entries in the source program. (Symbolic entries
are translated to machine-language instructions; con­
stants cards are produced, etc.)

SOURCE PROGRAM PROCESSOR OPERATIONS

y

M

B

Substitute J
parameters in
model statements wherl9ver
substitution codes appElar

Label ~perati~ OPERAND Delete model ~
1!l1 21

AlcCSU8n~ :~
Figure 75. INCLD Statement

The processor does not produce a branch instruc­
tion. The programmer must insert a branch at the
place in the main routine at which the 'exit to the
closed routine is needed. Several INCLD statements
can be written in a group in a source program to
cause the associated library routines to be stored at
LTORG, END, or EX time, by the processor. Thus, one
exit from the main routine can cause several library
routines to be executed at object time. The INCLD

macro also enables the programmer to extract library
routines in alphabetic sequence if he so desires. This
saves assembly time because all library routines are
stored in alpha sequence in the library tape.

CALL and INCLD statements may appear in either
flexible or inflexible library routines. Also, an inflexi­
ble library routine may, in turn, have CALL or INCLD

statements.
If CALL or INCLD are written within a library rou­

tine, only a single operand is permitted in the CALL

or INCLD statement. This single operand is the name
or entry point of the closed library routine. (See Call
Macro.)

o
L

C

P

R

o -----G ____ _

R

A
M ____ _

E
N ___ _

T

R

I

E -----

statements if bypassing conditions
are satisfied

Insert symbolic program entries as an open
routine in the symbolic program

When a regular macro-instruction is encountered in the source program,
the processor extracts the specified library routine, tailors H, and inserts
it in-line in the users source program.

Figure 76. Macro Processing

34 Autocoder (on Tape) Specs. and Op. Proc. IBM 1401 and 1460

SOURCE PROGRAM PROCESSOR OPERATIONS

Figure 77. CALL Proce.'Jsing

[,--,-------, Create a branch instruction
and insert it in the source program

program statement

When the processor encounters a CALL macro, it creates an uncondi­
tlunal branch instruction to link the main program to the library routine.
The branch instruction is placed in the symbolic program immediately
following the CALL macro statement. Later, when the processor en­
counters a LTORG, END or EX statement in the source program, it
extracts all library routines specified by CALL macros and stores them
as closed routines.

Extract library
routine at LTORG,
END or EX time

Closed Library Routine

{-

SOURCE PROGRAM PROCESSOR OPERATIONS

{--
...... ---­---------c

Figure 78. llNCLD Proc~lssing

Branch Extract library
routine at LTORG, END or EX time

INCLD Macro

Closed Library Routine

{-

When the processor encounters an INCLD macro, it incorporates the
specified library routines when an LT ORG, END, or EX statement is
encountered in the users source program. Note that the branch instruc­
tic)n that links the main routine to the closed library routine is provided
by the programmer.

35

CHAIN Macro
The CHAIN macro makes it easier for the programmer
to code chained instructions.

The programmer:

1. Writes the instruction to be chained as usual.

2. Writes the chain statement using CHAIN as the
mnemonic operation code, and writes anum ber from
1 to 99 in the operand field. This number represents
the number of chained instructions desired.

The processor: Produces the desired number of addi­
tional operation codes.

Example: Figure 79 shows how an MLC statement can
be chained five times.

lUI

Source Program Entries

Ill'lL ell ... B

Generated Symbolic Program Entries
MLC
MLC
MLC
MLC
MLC

Figure 79. Chain Macro

OVLA Y Macro-Card Overlay

110 llA

General Description: This statement prepares storage
and loads a new program section (overlay) from
cards. The library routine for the OVLA Y macro in­
struction is shown in Figure 80.

Label lperotl: OPERAND
• II II ""
'.V.LA.Y. 'LAllA
rID.D. I ~.g. t.'

1 If. 1.4 .G"&.
1 ~w. J '.7.
I ~~
I D.C."'. ~.J..

Figure 80. Library Routine for OVLA y Macro

The programmer: Writes the macro instruction as fol­
lows:

1. Writes the name of the macro (OVLAY) in the op­
eration field.

2. Writes in the label field, the label to be inserted
in the first statement in the library routine.

Result: The library routine is extracted and the label
(if any) is substituted for 000.

Example: At the end of a program section, the pro­
grammer places an OVLA Y macro instruction in the
source program as shown in figure 81.

.. Label I.~rotl:
15

OPERAN
ll'll 30 '!II !II

Macro InstructIon I
O.VI...A.Y I I I I I I I

Generated Symbolic Program Entries
CS 80
SW 24, 56
SW 63, 67
R 56

Figure 81. Using the OVLAY Macro

TOVLY Macro-Tape Overlay

General Description: The TOVL Y macro prepares stor­
age for and loads a new program section from
magnetic tape. The library routine for the TOVLY

macro instruction is shown in Figure 82.

I.
Label I"p'peroti~ OPERAND

I 2021 U 50 !15 ... :U AQ
TOV LV HE A D.R
n:-O J I EQU ~Hl

no.O I c.s. 8.0
, I

I
~.TW.

I

I
1)1 I I I , I ,

8ER *,+S.
I

I I , I , ,
8 007

: SSP 1
I , ,

I H 0..:)0
I ,

I I -....... -
8 "OJ

Figure 82. Library Routine for To\'LA Y Macro

The programmer: Writes the macro instruction as
follows:

1. Writes the name of the macro (TOVLY) in the op­
eration field ..

2. Writes in the label field the label to be inserted
in the first statement in the library routine.

Result: The library routine is extracted and the label
is substituted for 000.

Example: In the source program the programmer in­
serts the TOVL Y macro as shown in Figure 83.

D

I!S lIO
Macro Instruetlon

:SS
OPERAND

!II

rOvL..Y

Generated Symbolic Program Entries
[JOJ023 EQU *+ 1

CS 80
RTW 1,1

BER *+5
B 007
BSP 1

H 0,0
B OOJ023

Figure 83. Tape Overlay

36 Autocoder (on Tape) Specs. and Op. Proc. IBM 1401 and 1460

MA Macro-Modify Address

General Description: This library routine makes it pos­
sible to modify addresses with two addresses, or a
single address when MA hardware is not available.
The library entry is shown in Figure 84.

Label
I! Psperati rc 121 2& :so :Sll II

116 :ZUni:, II-L~A.JU'

.!{QQ Is.w . I}(.o.p,,- l

, A. .lCoi .11. o. B

r.w. JrO.B-.2.)

I I , , , , Is.\J. i)l',O,A,-~.
, A)tOt!
, 1(I.w. ilt,O,A.-2- (

l4) , ..L-J. ,

Figure 84. Library Entry for MA Macro

The programmer:

1. Writes the mnemonic operation code (MA) in the
operation field.

2. May write a label in the label field.

3. Writes the macro instruction with one or two
parameters.

The processor:
1. Selects the model statements indicated by the
substitution and condition codes in the library rou­
tine and the parameters in the macro instruction.
2. Inserts the label (if any) in the first model state­
ment used in the object routine.

Result: A group of tailored symbolic program entries
is inserted as an open routine behind the macro in­
struction in the source program.

Examples: Figure 85 shows the MA macro instruction
with parameters for both A- and B-addresses. The
symbolic routine developed by the processor is also
shown.

Label I<=.>perati()l1 __
§ l!IlUI 20 I ~.. :so 55 40

OPERAND
45

Macro Instruct!~I- __ ~~-+_~L...L..L-L--'--'-_"'-'-~~'--'-~_~-'--'-~-'--'~
AL "ERA, MA lE I EL P,A) E..!..c,E.~,L.~'P:..o.J,8o!L' -'-'--'--'_-'->.-L.'--'---'--'--L-L-1-

Generated Symbolic Program Entries
ALTERA SW ,FrELDB·2

A FIElDA,FIELDB

CW FIELDB·2

Figure 85. MA Macro with Two Parameters

Figure 86 shows the MA macro instruction with a
parameter for the A-address only. The symbolic rou­
tine developed by the processor is also shown.

Note: An MA macro instruction with an asterisk in the
B-operand will not be assembled correctly.

Label 15 ~perati~21 OPERAN
I 25 :10 55 ~. 45

D

Macro Instruction ,
At. TE.RB 1M. A IF I E.LPA

Generated Symbolic Program Entries
ALTERB SW FIELDA·2

A FIELDA

CW FIELDA-2

Figure 86. MA Macro with One Parameter

The System Tape
The Autocoder system tape contains the Autocoder
processor and the library entries that can be extracted
by macro instructions. All library routines must be
stored on the system tape in alpha sequence. The IBM

1401 and 1460 standard collating sequence must be
used.

Insertion and deletion of all or part of a library
routine can also be made. The INSER and DELET state­
ments are used for these purposes. The PRINT and
PUNCH statements produce listings and punched card
documents containing the library routines.

DELET-Delete

General Description: This entry deletes a library rou­
tine or parts of a library routine from the library
tape.

The programmer:
1. Writes the mnemonic operation code (DELET) in
the operation field.

2. Writes the name of the library routine in the label
field.

3. Writes, in the operand field, the number of the
model statement to be deleted. If a whole routine is
to be deleted, the operand field is left blank. If more
than one model statement of a continuous sequence
is to be deleted, the first and last numbers must be
written separated by a comma.

The processor:
1. Deletes the model statement or statements specifi­
fied in the operand field.

2. Lists the action taken.

Result: The new library tape contains the modified li­
brary routine.

Examples: Figure 87 is a DELET statement that will
cause the whole COMPR library routine to be re­
moved from the library.

Label ~perati~ OPERAND
~ 1111- _2 I ~!!, ~O ~5 40 ~5

Figure 87. Deleting an Entire Library Routine

37

Figure 88 is a DELET statement that will cause the
first model statement to be deleted from the COMPR

library routine.

Figure 88. Deleting a Single Model Statement

Figure 89 is a DELET statement that will cause
model statements 2, 3, 4, and 5 to be deleted.

Label

C,OM fR,

Figure 89. Deleting Multiple Model Statements

INSER-Insert

49
OPERAND

45

General Description: This entry inserts a whole library
routine or part of a library routine in the library
tape.

The programmer:
1. Writes the mnemonic operation code (INSER) in
the operation field.

2. vVrites the name of the library routine in the label
field.

3. Writes the line number of the model statement
after which the insertion is to be made. If two oper­
ands, separated by a comma, are written, the implied
deletion will take place.

The processor:
1. Deletes model statements, if necessary, and inserts
the new model statement(s) in the library routine.

2. Lists the action taken.

Result: The library tape contains the modified library
routine.

Examples: Figure 90 is an INSER statement that will
cause a library routine named COMPR to be inserted
in the library tape.

Label OPERAND
49

:~ OtH1P R,

Figure 90. Inserting an Entire Library Routine

Figure 91 is an INSER statement that will cause new
model statement 1 to be inserted in the COMPR li­
brary routine.

OPERAND

: :: , :
Figure 91. Inserting a Single Model Statement

Figure 92 is an INSER statement that will cause the
first model statement that is presently in the library
routine to be deleted and the model statement shown
below to be inserted in its place.

Figure 92. Substituting One Model Statement for Another

Figure 93 is an INSER statement that causes model
statements 1 and 2 to be deleted and the model state­
ments shown below to be inserted in their places.

I Label
39

OPERAND
49 45

C,O,M,P,R, 1/,#/,5£.'" .1,,, 2.. ,

~oA
(a I1l,O.1.,lto&,
tR.E. ~.o C.

Figure 93, Substituting Multiple Model Statements

PRINT-Print Library Routine

General Description: This entry causes the processor
to list a library routine with sequence numbers as­
signed as follows: HEADR Statement, 00; First Model
Statement, 01; Second Model Statement, 02; etc.

The programmer:
1. Writes the mnemonic operation code (PRINT) in
the operation field.

2. Writes the name of the library routine in the label
field.

The processor: Extracts and lists the library routine.

Result: The line numbers can be used for making inser­
tions and deletions to the library.

Example: The statement shown in Figure 94 causes the
COMI:'R routine to be listed by the IBM 1403 printer.

Label

(J,O,l1ee,

Figure 94. PRINT Statement

PUNCH-Print and Punch Library Routine

49
OPERAND

45

General Description: This entry causes the processor
to list and punch a specified library routine.

The programmer:
1. Writes the mnemonic operation code (PUNCH) in
the operation field.

38 Autocoder (on Tape) Specs, and Op. Proc, IBM 1401 and 1460

2. Writes the name of the library routine in the label
field.

The processor: Extracts, lists, and punches the library
routine.

Result: The user has a numbered listing and a deck of
cards containing all entries in the library routine.

Example: The statement shown in Figure 95 causes
the library routine called COMPR to be printed and
punched.

Label OPERAND

O.aMP',
~o :11, ,

Figure gEl. PUNCH Statement

Additional Language Specifications

Machine Language Coding

To permit the user to code instructions for systems
equipped with special features and devices that are not
otherwise handled by the 1401 Autocoder mnemonics,
actual operation codes and d-characters may be written
in Autocoder imperative statements.

The programmer:
1. Writes in column 19 the actual machine language
operation code for the instruction. Columns 16, 17,
and 18 must be left blank.
2. Writes in column 20 the d-character in actual ma­
chine language .. If no d-character is needed, column
20 must be left blank.

3. May write a label in the label field as described
in Imperative Operations, Programmer Step 2.

4. Writes in the operand field a blank, actual, sym­
bolic, or asterisk address, or a literal or address con­
stant. The operand field must not contain the d-char­
ter. The actual address of an input/output unit must
be used unless the actual address has been equated
to a symbol. For example,

Label Operation Operand
MR %Ul, INPUT or

TAPE 1 EQU %Ul
MR TAPE1, INPUT

are correct but,
MR 1, INPUT is incorrect

Disk Input/Output Instructions

The IBM 1401 and the IBM 1460 tape Autocoder in­
cludes mnemonic operation codes for IBM 1405 Disk
Storage operations. When using these mnemonics, it is
not necessary to specify the A-operand, and it is incor-

rect to use a comma to indicate that the A-operand is
missing. Thus, the statement

Label Operation
RD

Operand
INPUTA

results in M %Fl xxx R, which reads a single sector
without word marks from IBM 1405 Disk Storage into a
core-storage area whose high-order address is xxx,

When coding programs that use the IBM 1311 Disk
Storage Drive, or models 11, 12, 21, or 22 of the IBM

1301 Disk Storage unit, either of the following proce­
dures can be used:

Label Operation
MCW

MR

Operand
% Fx, INPUTA, R
%Fx,INPUTA

or

These same procedures can be used for the IBM 1405.

Auxiliary I/O Devices

Input and output devices are available with 1401 sys­
tems for which unique mnemonics are not provided.
The programmer may use the actual operation code or
existing mnemonics in Autocoder statements that in­
volve these devices. For example:

1. READ FROM CONSOLE PRINTER WITH WORD MARKS,

statements:

Label Operation Operand
LCA % TO, INPUTB, R or

CONPR EQU %TO
LCA CONPR, INPUTB, R or

LR CONPR, INPUTB or
LR %TO,INPUTB

produce the actual machine language instruction

L %TO xxx

2. For SELECT STACKER 9 on Magnetic Character Reader
statements:

Label Operation
SS

KL

Operand
L or

produce the actual machine language instruction K L.

3. For ENGAGE optical-character-reader statements:

Label Operation Operand
CU %S2,E or

OPTRD EQU %82
CU OPTRD, E or

UE OPTRD or
UE %82

39

produce the actual machine language instruction
U%S2E.

4. For MOVE CHARACI'ER TO TRANSMITTING 1009 Data
Transmission Unit statements:

Label Operation Operand
MCW %Dl, INPUTC, W or

DTUNIT EQU %Dl
MCW DTUNIT, INPUTC, W or

MW DTUNIT,INPUTC or
MW %Dl,INPUTC

produce the actual machine language instruction
M%D1xxxW.

Processing Overlap
Special coding is required for all overlap operations
because the A-address of the input/output instructions
for these units contains the @ symbol. Autocoder rec­
ognizes the @ symbol as the leftmost and rightmost
limits of an alphameric literal. To code overlap instruc­
tions for these units in Autocoder, we recommend that
the programmer use the macro facility of Autocoder.
A typical library routine and macro instruction to read
a tape record in the overlap mode are:

Label Operation Operand
RTOXX 3, INPUT

RTOXX HEADR
DCW @M@UOOl@
DC 002
DC @R@

The macro instruction will cause the machine-lan­
guage instruction M @ U3 xxx R (where xxx is the
equivalent address of INPUT) to be inserted into the
object program.

40 Autocoder (on Tape) Specs. and Op. Proc. IBM 1401 and 1460

1401 or 1460

Obi-" D~
-------1 --- Card Input

I

O'lj 1401

/
/ I "'-

/
I "-/ "-/ I

" /
I " /

/ I " " / I " /
I " f

(Co,d OUII:]
Printer
Output

Figure 96. Tape Autocoder and Object Program Operations

Autocoder (on Tape)

Operating Procedures

The assembly of IBM 1401 and 1460 object programs
from an Autocoder source program requires several
distinct operations. First, a system card deck and list­
ing are prepared from the Autocoder transmittal tape
obtained from IBM. IBM supplies the 1401 Autocoder
processor program on a reel of magnetic tape (called
the transmittal tape). Requests for the Autocoder proc­
essor should be made through the local IBM sales office
or sales representative. The Autocoder system tape is
prepared from the card deck. Then, a librarian run
may be performed to include user library routines (in
cards) on the system tape. The assembly of a machine­
language object program can then be performed, using
the system tape and an Autocoder source program on
magnetic tape or in punched-card form.

A listing of the assembled program with diagnostic
messages is automatically provided by the processor.
The following output options are also provided: new
resequenced source deck, condensed object program
card deck, loadable tape, and listing tape (for stacked
multiple-program output).

In addition to program assembly, the processor al­
lows printing and/or punching of all or part of the
library routines on the system tape. This listing is use­
ful when a new system tape containing additions, de­
letions, or modifications of the library routines is to
be written.

Figure 96 illustrates the tape Autocoder and object
program operations. Input/output operations are rep­
resented.

41

Writing the System Tape
To assemble a machine-language object program from
an IBM 1401 Autocoder source program, the user must
first prepare a system tape. The system tape is written
in two or three steps:

1. A pre-system run that prints a listing of the Auto­
coder processor program and punches a system card
deck.

2. A system run that generates the Autocoder system
tape from the system card deck.

3. A library run that combines the tape written in step
2 with user library routines (in punched-card form)
to produce a new system tape. Additional library
runs can be performed to add, delete, or modify
user routines in the library.

Pre-System Run

The 1401 Autocoder transmittal tape can be identified
by an external label which reads: 1401 Autocoder­
Listing and System Deck-Program #1401-AU-037. The
tape is high density, BCD mode, and contains a pro­
gram at the beginning which will cause the Autocoder
listing to be printed and the system deck to be punched
into cards. Autocoder makes it necessary to generate a
system deck to create the system tape, because the
Autocoder system is maintained by IBM by the use of
change cards to be inserted into the system deck (see
Change Cards).

To retrieve the 1401 Autocoder Listing and the 1401
Autocoder System Deck from the Autocoder transmit­
tal tape:

1. Mount the tape on Tape Unit 1 (high density).
2. Place paper in the printer. The listing uses approxi-

mately 210 sheets of paper (length per sheet is II").
3. Place at least 1500 blank cards in the punch.
4. Turn OFF the I/O check-stop switch.
5. Press the check-reset and start-reset keys.
6. Press the tape-load key.
7. A halt will occur at I-address 0365. To print the

listing, press the start key. To bypass the listing,
press the start-reset key, then the start key.

8. When the listing (or the bypass) is complete, a halt
occurs at I-address 0505. To punch the system deck,
press the start key. To rewind the tape instead, press
the start-reset key, then the start key .

. 9. After the deck is punched, the message: 1401
AUTOCODER SYSTEM DECK PUNCHED is
printed. The tape rewinds and a halt occurs at
I-address 0514. The system deck is in pocket 4. To
obtain an additional listing and/or system deck,
return to step 5.

System Halts - Pre-System Run

The following additional halts may occur in the pre­
system run:

I-ADDRESS REASON

0497 Print error.

0638 10 cumulative punch
errors on one or more
cards.

0836 10 read errors, single­
tape record.

REST AHT PnOCEDuRE

Press the start key to print
the same data-line again.
Press the start key to allow
for 10 additional attempts.

1. Turn ON Sense Switch E
and press the start key to
retry the read operation
an additional 10 times.

2. If the same halt occurs
again, turn OFF Sense
Switch E. Set the tape­
select switch to D, and
press the start key.

3. A halt will occur at 1-
address 0856. Scan storage
for incorrect charactcr(s)
and correct it if possible.
Set the tape-select switch
back to N, set the I-address
to 0805, and press the
start key to process rec­
ord.

4. If error is not detected in
step 3, set the I-address to
0780 and press the start
key to retry the read op­
eration 10 times.

In all system halts, if the error is not corrected, the
program should be restarted.

System Card Deck Format
The Autocoder system card deck is in a format which
makes it possible to automatically generate a system
tape. The cards are numbered sequentially, beginning
with 0001 punched in columns 72-75. The deck is iden­
tified by punching in columns 76-80. Columns 76-77
contain the system program number for the processor,
which is 37.

The Autocoder deck is divided into sections with
the cards in each section identified by a number which
is punched in columns 78-79. The first section of the
deck, punched 11 in columns 78-79, contains a pro­
gram that will generate the system tape. (This program
itself is not written on the tape.) Cards on all succeed­
ing sections in the system deck, with the exception of
the last card (punched 99 in columns 78 and 79) are
punched in the following format:

Column 78. The phase of the processor in which the
card is contained (see Autocoder Phases).

Column 79. The section within each phase.

For example, the third section within Phase 7 is num­
bered 73 in columns 78-79.

42 Autocoder (on Tape) Specs. and Op. Froc. IBM 1401 and 1460

A control card precedes each of sections 12 through
83 in the program. Its identification (columns 76-80) is
that of the section it precedes. Columns 6-12 contain
the word CONTROL. Columns 21-24 contain, the high­
order address of core storage (left-justified) where the
section will be located during execution of the pro­
gram section. Columns 28-33 contain PASS (1-8) repre­
senting the pass or phase in which the section is
contained (see Autocoder Phases). The name of the
section is punched on the control card beginning in
column .38.

Change Cards

The Autocoder system is maintained with the use of
change cards which are inserted into the system deck.
The change cards are numbered sequentially in col­
umns 72·-75, beginning with COOL In addition, there is
an 11 zone punch in column 80 of each card. When
a modification is made to the Autocoder system, a set
of change cards is sent to each user along with a
modification letter containing a listing of the cards, an
explanation of the changes, and instructions specifying
where to insert the cards into the system deck. A new
system tape must be generated when the system deck
is modified (see System Run).

An Autocoder transmittal tape obtained from IBM

contains all change cards up to and including the
present modification level. When the system deck is
punched, the change cards will be in their proper
places. All modification letters to date are sent with
each Autocoder transmittal tape.

Autocoder Listing Format
The Autocoder system tape listing is in the same
format as the object program listing obtained after
assembly (see Assembly Listing). Each program or
section of the processor is printed beginning on a new
page. Included in the listing, with identifying head­
ings, are the system tape generation program and the
passes of the processor.

System Run
Following the pre-system run, a system run is per­
formed to obtain an Autocoder system tape.

1. Place the system deck in the card reader.
2. Mount a reel of tape (with file-protection ring) on

tape unit 1.

3. Turn ON Sense Switch A.

4. Turn ON the I/O check-stop switch.
5. Press the check-reset, start-reset, and load keys. At

the start of generation, the message: GENERAT­
ING 1401 AUTOCODER SYSTEM will be printed.
All cards, with the exception of change cards (if they
are present) are sequence-checked on columns 72-75.

6. After all cards have been processed, Tape 1 will re­
wind. The message: 1401 AUTOCODER SYSTEM
GENERATED ON TAPE UNIT 1 will be printed,
and the machine will halt at B-address 0142. At this
point, file-protect the system tape.

System Halts - System Run

B-ADDRESS REASON

0152 End of sequence
checking (after a
previous 0176 halt).

0161 Ten attempts to
write Tape 1
correctly.

0176 Sequence error in
system card deck.

0177 Missing control card
in deck.

RESTART PROCEDURE

Check the system deck and
put the cards in sequential
order. Restart system run.

Replace the tape reel on
Tape Unit 1. Restart system
run.

Press the start key to check
the sequence of the balance
of the deck.

Check the deck and insert
the necessary control card.

In all system halts, the program should be restarted
if the error is not corrected.

System Tape Format
The 1401 Autocoder processor on tape consists of eight
phases (Figure 97), each phase requiring a separate
pass of the source program or partially assembled ob­
ject program. The functions of these phases (or passes)
are discussed in the Autocoder Phases section of this
manual.

With the exception of section 12 of the first pass,
which contains the Autocoder library, each section of
the processor becomes a separate record on the system
tape. As previously mentioned, the program (Section
11) which generates the system tape is not itself writ­
ten on the tape. Therefore, section 12 becomes the
first record on the system tape. An inter-record gap
follows section 12. Then the following three built-in
library routines are written in the form of card images:
Modify Address - MA Macro; Card Overlay - OVLAY
Macro; and Tape Overlay - TOVLY Macro. (Each
instruction of each library routine is a separate record
on tape.) Following the library is a tape mark, after
which comes the balance of the system in individual
tape records by section. A final tape mark comes at
the end of Pass 8.

43

Card
Record Identification
Numbers Name (78-79)

1 Pass 1. Select Program 12

2-25 Library 12
(MADXX, OVLAY,
TOVLY)

- Tape Mark (7-8) -

26-29 Pass 1. Librarian 13-16

30-37 Pass 2. Macro Phase 21-28

38-42 Pass 3. Translator Phase 31-35

43-48 Pass 4. Relative Addressing 41-46
Phase

49-50 Pass 5. Label Phase 51-52

51-52 Pass 6. Operand Phase 61-62

53-57 Pass 7. List, Condense Phase 71-75

58-60 Pass 8. Loadable Tape Phase 81-83

- Tape Mark (7-8) -

Figure 97. System Tape Layout

Librarian Run
After the system run, the Autocoder system tape is
ready for program assembly. However, the user may
wish to insert his own routines in the system library
before he assembles an object program. This is accom­
plished by a librarian run, which involves Pass 1 of
the processor.

Pass 1 of the processor includes a selection program
and a librarian program. The selection program, which
is at the beginning of Pass 1, analyzes sense-switch set­
tings to determine whether a librarian run or an as­
sembly run is to be performed. (If an assembly run is
specified, the remainder of Pass 1 is bypassed and
processing begins with Pass 2.)

The librarian program has three functions

l. Updating the system library
2. Copying the system tape

3. Displaying the system library

Updating the System Library

At the completion of the system run, the system library
contains three routines: MADXX - Modify Address,
OVLA Y - Card Overlay, and TOVLY - Tape Over­
lay.

Subroutines in the library are on tape in the form of
card images (each statement in the routine is an 80·
character tape record). The first "card" of each routine
contains the operation code HEADR and a labe] which is
the name of the library routine. The HEADR statement
of a routine is referenced as statement 0; the remain·
ing (model) statements are referenced as 1 through n.

The name of a library routine must be five charac­
ters in length. The arrangement of the first three char·
acters must be unique for each routine. Some names
are not available to the user for naming his routines
because they are used or are reserved for use by
Alltocoder:

CAL MAD
CIIA OPE
CLO OVL
DCL PUT
DIO RDL
DTF REL,
FEO SPA
GET STA
Ii\C TOV

All library routines are stored on the tape in 1401
collating sequence by routine name; therefore, all
cards used to update the library must be in the same
order.

All routines to be inserted into the system library
must begin with a HEADR statement containing the
name of the routine in the label field. Each routine is
preceded by an IXSER statement and the routJ1ne(s) are
placed in the card reader in collating sequence by
routine name.

An updating librarian run may also be used to insert
parts of routines and replace or delete entire routines
or parts of user routines from an existing system li­
brary. Instructions to modify the library, using INSER

and DELET statements, are given in the Specifications
section of this publication. Cards specifying changes
must be in collating sequence by library routilne name.
Only the library may be altered during an updating
librarian run.

To update the system library:

l. Mount the old system tape on Tape Unit l.
2. Ready a tape (with file-protection ring) on Tape

Unit 6.

3. Turn o:\' (up) Sense Switches A and F.
4. Turn ox the I/O check-stop switch.

5. Place the deck of routines or changes, in collating
sequence by name, in the card reader.

6. Press the, check-reset and start-reset keys.
7. Press the tape-load key.

44 Autocoder (on Tape) Specs. and Op. Proc. IBM 1401 and 1460

8. At the end of the run, the message: 1401 AUTO­
CODER SYSTEM COPIED ON TAPE UNIT 6
will be printed. Tape reels on Units 1 and 6 will be
rewound. The machine will halt at B-address 0122.
Tape Unit 6 contains the updated system tape.

9. At this point, a copy run may be initiated by inter­
changing the tape-unit-select dial settings of Tape
Unit 6 and Tape Unit 1 and obeying the rules for
copying. (See Copying the System Tape.)

MESSAGES DURING UPDATING PROGRAM

A diagnostic listing is printed as changes are being
made to the system library.

Error messages may occur during an updating run.
Except for the occurrence of a card sequence error
(which causes a programmed machine halt), the error
message is printed, and the machine bypasses the card
in error and continues processing.

MESSAGE

SUBROUTINE UNKNOWN

BAD STATEMENT

STATEMENT DOES NOT EXIST

END OF LIBRARY REACHED

INPUT CARDS OUT OF
SEQUE~CE - START OVER

Copying the System Tape

REASON

Routine to be modified is
not in the system library.

An INSEH or DELET card has
two statement numbers in
reverse order in the oper­
and field.

An INSER or DELET card
references a statement not
in the routine. For exam­
ple, an instruction is given
to delete statement 15 in
a routine which contains
fewer than 15 statements.

The end of the library is
reached before a routine is
found. This message will
sometimes appear with a
SU13HOUTINE UNKNOWN er­
ror message.

The input cards were not
in collating sequence by
routine name. The machine
halts at this condition. See
System Halts - Librarian
Run.

The librarian provides the ability to copy the system
tapes as many times as desired.

Besides copying the system, the librarian copy pro­
gram allows space for reflective spots to be placed
between copies of the system on the same tape. When
this arrangement is used to copy the system many
times on the same tape, if one system becomes un­
usable, the tape may be cut beyond the first reflective
spot and the next system used.

To copy the system tape:

1. Mount the current system tape on Tape Unit 1.
2. Ready a tape (with file-protection ring) on Tape

Unit 6.
3. Turn ON (up) Sense Switches C and F. Turn ON

I/O check-stop switch.
4. Press the check-reset and start-reset keys.
5. Press the tape-load key.

6. At the end of the run, the message: 1401 AUTO­
CODER SYSTEM COPIED ON TAPE UNIT 6
will be printed. In addition, a series of skip and
blank tape instructions will have been executed to
allow space for reflective spots (load pOints) to be
placed by the user between copies of the system.
After the skipping and blanking has taken place, the
program will halt at B-address 0122. At this point
the user may unload the tape (without rewinding),
place a reflective spot at that point, and reload the
tape, making sure that the new reflective spot is on
the take-up reel. Press the start key to copy the
system again.

Displaying the Library

Because additions, deletions, and modifications of user
library routines can be made by an updating run, it is
desirable to have a list of the library routines on the
system tape. Also, when generating a new system tape
from a modified card deck (see Change Cards) or when
inserting selected library routines on a different sys­
tem tape, it is necessary to have the routines in
punched-card form.

The librarian makes it possible to obtain a listing
of the library routine headers only or a complete or
partial listing of the routines themselves. The entire
library or part of the library can be punched into cards,
with each HEADR card preceded by an appropriate
INSER card.

A. To print the entire library:

1. Mount the system tape on Tape Unit 1.
2. Turn ON Sense Switches B, E, and F.
3. Turn ON I/O check-stop switch.
4. Press the tape-load key.

5. After all of the library routines have been printed,
the message: END OF LIBRARY is printed. Tape 1
rewinds and the machine halts at B-address 0155.

B. To print a list of the library routine headers only:

1. Perform the preceding steps with Sense Switches B,
E, D, and F ON.

45

C. To punch the entire library, together with appro­
priate INSER statements for each routine, into cards
in Autocoder format:

1. Perform instruction steps (A) with Sense Switches
B, E, F and CON.

2. Besides punching, the entire library will also be
printed.

D. To print or punch and print selected library rou­
tines:

1. Mount the system tape on Tape Unit l.
2. Turn ON Sense Switches A, B, and F.
3. Turn ON I/O check-stop switch.
4;. Press the check-reset and start-reset keys.

5. Place the appropriate PRINT and/or PUNCH cards in
the card reader. These cards, described in the
Specifications section of this publication, specify
the routines to be printed or punched and printed.

Librarian
Function B-Address Message and/or Reason

U,C,D 0111 Second tape read redundancy halt.

6. Press the tape-load key.
7. At the end of the operation, the message: END OF

LIBRARY is printed. Tape 1 rewinds and the ma­
chine halts at B-address 0155.

System Halts- Librarian Run

Figure 98 is a listing, by librarian function, of the halts
that can occur during the librarian run. The informa­
tion given for each halt consists of:
l. the librarian routine(s) in which the halt may occur

(U = Updating, C = Copying, D = Displaying).
2. the B-address that can be displayed on the 1401

console when the halt occurs.
3. the message associated with the halt and/or the

reason for the halt.
4. the procedures to be followed by the operator. Re­

start procedures for tape-read or write-error halts
are given in Tape Redundancy Procedures.

Procedure

Note the contents of the I-address
register. Follow the tape relld redundancy
procedure in the text,starting with step 3"

U,C 0122 1401 AUTOCODER SYSTEM COPIED ON
TAPE UNIT 6 - Message printed at the
end-of-job halt for the Update and Copy
Program.

U 0133 Input cards out of sequence. A message Check input cards and put them in collati ng
accompanies this halt. (See Messages During sequence by routine name. Restart Updati ng
~Rdating~ram.) Program.

D 0144 Input cards do not contain a correct PRINT or Correct the cards and restart the Display Program.
PUNCH operation code.

D 0155 END OF LIBRARY - Message printed at the
end-of-job halt for the Display Program.

U,C,D 0166 Write redundancy, Tape 6. Follow the procedure given in the text for tape
write redundancy.

U,C,D 0191 Read redundancy, Tape 1. Follow step 1 only of the tape read redundancy
procedure. If halt re-oCCurs, restart the
I ibrarian run with another system tape.

U,C,D 0199 Read redundancy, Tape 1. Occurs in the Rewind system tape and press tape-load ke!y
Selection Program when the tape-load key is again. If holt re-occurs, try another system
pressed. tape or tape unit, restarting librarian run.

Figure 98. System Halts and/or Messages - Librarian Run

46 Autocoder (on Tape) Specs. and Op. Froc. IBM 1401 and 1460

Program Assembly
After the system run (or librarian run, if the library
has been modified), the Autocoder system is ready for
program assembly. During an assembly run, the Auto­
coder processor produces a 1401 object program in
condensed card format from a source program written
in Autocoder. A listing of this program along with
diagnostic and assembly messages is produced auto­
matically by the processor. Other output options are
selected by the user with the use of a CTL card in the
source program deck.

To assemble an object program, the following steps
are required:

If the source program is on cards,

1. Mount the system tape on Tape Unit 1. This tape
must be rewound before starting, but the other
tapes (4, 5, and 6) are rewound by the processor.

2. Place the source program card deck in the card
reader. The first card in the deck should be the
JOB card (used to provide identification); the sec­
ond card must be a CTL card to specify

a. output options desired by the user, and
b. processor and object machine configurations.
The last card in the deck must be an END card used
by the processor as a signal that all source program
entries have been read.

3. Mount: working tapes on Tape Units 4, 5 and 6.
4. Mount a fifth tape on Tape Unit 3 if a listing tape

is to be generated.
5. Turn ON Sense Switch A. All other sense switches

must be OFF. (For machines without sense switches,
this step may be bypassed. However, only initial as­
semblies using card input: described here can be
performed without sense switches.)

6. Turn ON I/O check-stop switch.
7. Press the check-reset, start-reset, and tape-load keys.
8. The message: PASS 3 COMPLETED is printed at

the end of Pass 3 to indicate that Tape Unit 4 now
contains the source program in free form for a
re-assembly run (see Reassembly Run).

9. At the end of assembly when the listing and other
requested output options are completed, the ma­
chine halts at B-address 0880 after the following
messages are printed:

END OF ASSEMBLY
IF EXTRA OUTPUT DESIRED, SET SENSE SWITCH

F ON, AND
B ON FOR CONDENSED CARDS
C ON FOR LOADABLE TAPE 6
D ON FOR LISTING TAPE 3
E ON TO SUPPHESS LISTING
G ON FOR NEW SOURCE DECK

AND PRESS START
IF NO EXTRA OUTPUT DESIRED, PRESS START.

If no extra output is requested or if the processor
machine does not contain sense switches (applies to
assembly from card input only) press the start key.

10. All tapes (except the listing tape, if it is used) are
rewound by the processor to be ready for the
next assembly. The machine halts at B-address
0889 after the following messages are printed:

END OF JOB
INPUT FOR REASSEMBLY ON TAPE UNIT 4

If loadable tape has been produced, the mes­
sage: LOADABLE TAPE ON TAPE UNIT 6
will be printed.

If the source program is on tape, it must be in 80-
character records (exact image of the source program
deck).

l. Mount the system tape on Tape Unit l. This tape
must be rewound before starting, but the other
tapes (4, 5, and 6) are rewound by the processor.

2. Mount the source program tape on Tape Unit 4.
3. Mount working tapes on Tape Units 5 and 6.
4. Mount a fifth tape on Tape Unit 3 if a listing tape

is to be generated.
5. Turn ON Sense Switches A and C. Follow the pre­

ceding steps 6 through 10.

Autocoder Phases
The 1401 Autocoder is an eight-phase processor, each
phase of which requires a separate pass of the input:

Pass 1. Selection Program and Librarian. This phase
is discussed in Librarian Run. The selection program
at-the beginning of the system tape determines whether
an assembly or librarian run is needed. The librarian
program maintains the Autocoder library and copies
the system tape. It is bypassed in an assembly run.

Pass 2. Input, IOCS Processor, and Macro Phase.
This is the first assembly phase. During it, the proces­
sor:

1. Reads source program from cards or tape (Tape 4).
2. Processes all macro-instructions, including 10CS

instructions, needed from the library on the system
tape.

3. Processes ALTER statements.
4. Writes symbolic statement records (including gen­

erated macro statements) on Tape 6.

47

Pass 3. Translator Phase. During this phase, the
processor:

1. Reads statement records from Tape 6.
2. Translates any fixed form (SPS) information present

in the program to free-form (see Conversion of SPS
Statements).

3. Translates mnemonic operation codes to machine
language, and checks for validity.

4. Assigns sequence numbers to free-form records.

5. vVrites 86-character free-form statement records on
Tape 4. After this pass, Tape 4 is in condition for a
re-assembly run.

Pass 4. Relative Addressing Phase. During this
phase, the processor:

1. Reads statement records from Tape 4.
2. Assigns relative addresses to all data to be loaded

into storage at object time.
3. Converts all literals, including duplicates, to DCW's

and merges them into the source program when a
LTORC, EX, or END is encountered.

4. Converts free-form statements to fixed-form.

5. Generates DC and DCW statements when a DA spe­
cifies:
a. record marks are to be placed between records; or
h. a group mark is to be placed after the area; or
c. the area is to be cleared at the time the object

program is loaded.

6. Counts number of labels and stores total for Pass 5.
7. Writes blocked statement records on Tape 5 (see

Blocking).

Pass 5. Label Phase. During this phase, the proc­
essor:

1. Reads blocked records from Tape 5.
2. Assigns actual addresses to instructions and con­

stants.
3. Generates a table of labels in storage, each entry

containing the label and its true address.

4. Partially processes ORC, LTORC, and EQU statements.
5. Eliminates duplicate literals from the object pro­

gram.
6. Writes blocked statement records on Tape 6.

Pass 6. Operand Phase. During this phase, the
processor:

1. Processes all operands, looking up symbolic oper­
ands on the table.

2. Assigns addresses to partially processed aRC, LTORC,

and EQU statements. If the symbol which defines an
aRC, LTORC, or EQU statement appears after the state-

ment, the processor must execute at least one more
iteration. (Rearrangement of the source deck may
reduce the number of iterations of this type.)

3. Lists, at the end of the phase, the entire symbol
table and all unreferenced labels.

4. Writes blocked assembled program statement rec­
ords on Tape 5.

5. If the total number of labels in the program ex­
ceeds the maximum number that can be processed
in one iteration of Passes 5 and 6 (see Symbol Table)
or if there are unprocessed aRC, L TORC, or EQU state­
ments, additional iterations are required and control
is transferred to Pass 5.

Pass 7. Listing and Condensed Cards Phase. During
this phase, the processor:

l. Generates from Tapes 4 and 5 a combined listing
of the source and object program along with source
program error messages to the right of the state­
ments in error.

If requested by the CTL card, the processor:

2. Punches a condensed self-loading object program
deck.

3. Produces, if a fifth tape is available, Tape 3 con­
taining the listing and condensed cards.

Pass 8. Loadable Tape and New Source Deck Phase.
During this phase, the processor (if requested by the
control card):

l. Produces, from Tape 5, a loadable tape (Tape 6)
containing the assembled program.

2. Punches, from Tape 4, a new resequenced source
program deck.

At the end of Phase 8 a message is printed indicating
the user's options to select additional output options by
sense-switch control. If no additional output is re­
quested, pressing the start key causes the processor to
rewind all tapes (except the listing tape 3, if it is used)
and to print end-of-job messages.

BLOCKI?\C

Statement records are processed one-per·-block (un­
blocked) in passes 1-3. Pass 4 docs the initial blocking,
according to the following format.

MACHINE SIZE BLOCK LENGTH RECOHD LENGTH

4,000 80
8,000 5 80

12,000 10 80
16,000 10 80

In passes 5-8, the statements are processed in blocked
format.

48 Autocoder (on Tape) Specs. and Gp. Proc. IBM 1401 and 1460

SYMBOL TABLE

The number of labels that can be processed during one
iteration of Passes 5 and 6 depends upon the size of
the processor machine. If unprocessable symbolic ori­
gins or equates are encountered, the maximum num­
ber of labels may not be processed.

MACHINE SIZE MAXIMUM NUMBER OF LABELS

4,000
8,000

12,000
16,000

150
510
870

1,270

ALLOWABLE BLANKS IN AUTOCODER STATEMENTS

When coding in Autocoder, any number of blanks may
be used between the A- and B-operands if the comma
(,) immediately follows the A-operand. One blank
only is tolerated between the B-operand and the d­
character, if the comma (,) immediately follows the
B-operand.

CONVERSION OF SPS STATEMENTS

Source program statements in SPS are processed by
Autocoder if they are preceded by an Enter (ENT)

SPS statement and succeeded by an Enter (ENT)

AUTOCODER statement. These fixed-form state­
ments are converted to Autocoder format in Pass 3 of
the assembly run.

DS statements in SPS, which are used to assign labels
to a symbolic or actual address, are given the Auto­
coder mnemonic operation code EQU. Dew, DC, and DSA

statements in SPS, which have labels and actual ad­
dresses, are expanded into two statements in Auto­
coder (Figure 99). Five-character branch instructions
are converted to unique mnemonic operation codes
where these codes exist.

Autocoder Output
The 1401 Autocoder system provides six types of out­
put.

1. Diagnostic messages during assembly.

2. Listing of source program and assembled program
with error codes.

SPS Instruction -

Converted to

Figure 99. SPS Conversion Example

3. Condensed assembled program card deck.
4. Loadable tape containing assembled program.
5. New resequenced source deck in Autocoder lan­

guage format.
6. Tape containing the assembly listing and the as­

sembled program in condensed card format (only
if the fifth tape is available).

The assembly messages and listing with error codes
(1 and 2) are produced automatically by the processor
during every assembly run.

The diagnostic assembly messages are explained in
System II alts and/or M essages- Program Assembly.

The other output options must be requested on the
CTL card in the source program deck or, for extra out­
put, as sense-switch options after assembly. Machines
without sense switches can only obtain output re­
quested on the control card.

Assembly Listing (with Error Codes)

On the top of the first page of the listing are printed
the images of the clear storage and bootstrap cards
generated by the processor for loading the object
program. At the extreme left are the legends CLEAR
STORAGE 1, CLEAR STORAGE 2, and BOOT­
STRAP to identify the cards. At the extreme right are
numbers 1, 2, and 3 to indicate these are the first three
cards of the condensed deck.

Below the clear storage and bootstrap card images
on the first page of the listing, and at the top on every
succeeding page are two heading lines followed by the
detailed source-object program listing. The first head­
ing line contains the page number on the right, and
the contents of the operand and identification fields of
the JOB card on the left. The second heading line
identifies each column of information in the detail
section of the listing (Figure 100).

HEADING

SEQ

PC

LIN

SOUHCE

PHOGHAM

CAHD

COLUMNS

1-2

MEANING

The instruction scquence number,
starting with 101 (used for re­
assembly changes - see Reassem­
bly Run.
Sequence numbers, but no page
and line numbers, appear for state­
ments generated by a macro­
instruction.

Page ~umber of the source pro­
gram statement.

3-5 Line number of the source pro­
gram statement.
For literals generated every time
they are used, literal-address con­
stants, and area-defining literals,
the sequence number of the source

49

CLEAR STORAGE 1
CLEAR STORAGE 2
BOOTSTRAP

,008015,OI9026,030,034041,045,053~0570571026
L068112,102106,113/101099/199,027A010028a021B0010210BO261,001/00111310
,008015,022029,036040,041054,061068,012/061039 ,0010011040

UPDATE PAYROLL RECORDS 11111 PAGE

2
3

SEQ PG LIN LABEl OP OPERANDS SFX cr LOCN INSTRUCTION TYPE CARD

101
102 1 02
103 1 O.J
104 1 04
105 1 05
106 1 06
101 1 01 ----=- :;:::::zaa¥

Figure 100.

HEADING

LABEL

OP

OPERANDS

SFX

CT

LOCN

000 JOB UPDATE PAYROLL RECORDS
CTL 632
ORG 335

START CS 180
CW LlSTSW
RT 1,200
BEF BEGIN ------...... -

Autocoder Assembly Listing

SOURCE
PROGRAM

CARD
COLUMNS MEANING

statement is printed on the line of
the generated statement in the PG
LIN area.

6-U}
16-20 Source Program Statement.

21-72

Suffix (SFX) character, if any.

Count. The number of characters
to be loaded into core storage at
object time.

The location at which the assem­
bled instruction or data field will
be loaded. (High-order position is
given for instructions and DA
header; low-order position is given
for DCW, DC, DS, EQU, DSA, DA fields
and subfields; and the label ad­
dress, if any, is given for ORG and
LTORG statements.)

INSTRUCTION The assembled instruction. For
ORG and L TORG statements this. field
contains the address of the origin.
It contains the low-order position
of the area generated by a DA
statement.

TYPE This field contains an abbreviation
indicating the type of an Autocoder
or IOCS-generated statement. It is
blank for non-generated state­
ments.
ADCON. Address Constant Literal
AREA. Area-defining literal
FIELD. DA field
GEN. Macro-generated statement
GENIO. Generated IOCS

statement
GMARK. DA Group Mark
IOCS. DIOCS and DTF

statements
LIT. Alphabetic or Numeric

literal
MACRO. Macro Statement
RMARK. DA Record Mark
SBFLD. DA Subfield

HEADING

CARD

4
4

SOURCE
PROGRAM

CARD
COLUMNS

Ol35
0335 1 180
0339 a 868
0343 M lUI 200 R
0351 B 361 K
:: ----v

MEANING

4
4
4
4

The condensed card number on
which the data appears. This leg­
end is always printed, even when a
condensed card deck is not re­
quested as output.

The remaining field of the printed listing, the error
code field, does not have a heading. This field is used
to print an indication if the statement on the same line
has an error.

ERROR CODE MEANING

ADDR Address. The data would be loaded into
the read area (locations 001-080). This
might result in an error when loading the
object program.

LABEL The label is doubly defined (i.e., another
statement defines the same label).

MACRO ERROR The statement indicates an incorrect
macro instruction.

NO BXL The length of a DA was not specified
correctly. If this error occurs, BXL is
assumed to be 1Xl.

OP Invalid mnemonic operation code or blank
operation code following an imperative
operation.

OVERCALL The maximum number of CALL state­
ments allowed for this overlay (58) has
been exceeded.

SYM Unprocessable operand, usually an un­
defined symbolic operand. In the assem­
bled instruction, the address appears as
#.

UNDEF ORG Undefined symbolic ORG or LTORG.

BAD STATEMENT The statement on the same line was
either unprocessable or may have been
processed incorrectly because of an input
error.

Statements which are marked BAD STATEMENT

but are processed anyway include:
1. Those whose last operand is not followed by two

blanks.

50 Autocoder (on Tape) Specs. and Op. Froc. IBM 1401 and 1460

2. DA fields or subfields whose parameters exceed the
record length size specified in the header.

3. Instructions whose A-operand is followed by a
comma, but which contain no B-operand.

4. Symbolic addresses greater than six characters. In
this case, the operand in error is marked undefined.
A common cause of this error is a missing comma
between operands. This case will cause the proc­
essor to treat the entire field as the A-operand.

5. A CTI~ card punched in column 21, but unpunched
in collumn 22.
Statements which contain the error message and are

unprocessed include:

1. Alphameric literals or constants that have no ending
@ sign.

2. A control card with illegal codes.

3. An area-defining Dew (for example, Dew #53) whose
length exceeds 52.

4. An operand which apparently extends beyond col­
umn 72.

5. A constant whose length is zero (for example, Dew
@@).

6. A DA field whose low-order location is specified as
being a lower value than its high-order limit (for
example, 20, 19).

Condensed Assembled Program Deck

The first three cards of the object program deck are
generated by the processor. Two clear core storage
cards clear all of core storage, and a bootstrap card
sets word marks in the read area before the object
program is loaded.

The remainder of the cards contain assembled pro­
gram instructions and load instructions in condensed
card format. There may be as many as seven instruc­
tions or constants on each card. The card format is:
CARD

COLUMNS CONTENTS

1-39 The data (instructions or constants) to be loaded
into storage.

40-46 Load instruction; instructions necessary to load the
data into storage.

47 -67 Three 7 -character set-word-mark instructions (or
one clear-word-mark and two set-word-mark instruc­
tions for cards containing DC'S)' These instructions
set the word marks that define the separate fields
in the block of storage being loaded.

68-71 1040. This is an instruction which will cause the
1401 to read a card and branch to location 040.

72-75 Card Number. The card deck, beginning with the
first clear storage card, is numbered sequentially in
these columns.

76-80 Identification. The identification in columns 76-80
of the JOB card appears in all cards in the con­
densed deck. Each new JOB card resets the iden­
tification of the condensed deck.

The assembled deck is selected to the NP stacker.

Loadable Tape

"Vhen requested, the processor writes the object pro­
gram on Tape 6 in a format which makes it possible to
load the program from tapc using the tape-load key.
The four high-order characters of the identification in
the JOB card are placed in every tape record. The
loader and tape area are in locations 001-080. Positions
076-079 will contain the four-character identification
in each record. Position 080 contains a group mark
with a word mark.

The first tape record is a clear storage routine. The
second record is a bootstrap record, which, when read,
appears as follows (omitting identification):

Characters
Core Storage
Positions

1l % U 1 B..:..L % U 1 020RliOO 1 L..:..020
t t t t

001 007 015 020

Subsequent records are read into location 020 and con­
tain the data (one instruction or constant per record)
to be loaded. The format is as follows:

Characters L. X X X X X X I:::i 0 0 0.8. 0 0 7 (- ... Data. ..)
Core Storage t t t t t
Positions 020 0~7 031 035 066

o X X X (DC only)
Constants with a high-order group mark have a dif-
ferent format:

...z. 04 31. X X X X X X b! 0 4 3 0 4 3] 007 _ ($... Data. ..)

t t t t t t
020 024 031 035 043 075

~
X X X (DC only)

An assembled execute statement record (EX, XFR) is
as follows:

Characters
Core Storage
Positions

NO 0 0 0 0 0l!.X X X
t t t

020 027 031

Following the execute record is a new bootstrap
record which begins in location 001.

An assembled END statement record is as follows:

Characters
Core Storage
Positions

-LX X X 0 8 0_
t t

020 027

Resequenced Source Deck

If requested, the processor will punch a new rese­
quenced source deck (selected to stacker 4). All state­
ments are in Autocoder format (free-form) and the
sequencing starts with 0101 in columns 1-4 of the first
source program card. If another assembly is made
from the resequenced source deck, the page and line
number on the listing is in sequential order, agreeing

51

with the cards. On the listing there are no page and
line numbers assigned to statements generated by a
macro instruction, but these statements have sequence
numbers.

Listing Tape

If there is a fifth tape available (Tape 3), it is possible
to obtain the assembly listing and condensed cards on
tape for postponed output. Because this tape is not re­
wound before or after program assembly, it is possible
to stack output from many assemblies.

Additional listings can be printed from the tape by
using the IBM 1401 Tape-to-Printer Utility Program
(1401-UT-026) with the following control card:

CARD

COLUMNS CONTENTS

1-10 0133001132
11-20 blank
21-23 111
24-53 blank
54-66 0100021320011
67-79 blank
80 1

The condensed cards can be punched from this tape
using the IBM Tape-to-Card Utility Program (1401-UT-
028) with the following control card:
CARD

COLUMNS CONTENTS

1-7 0081001
8-16 blank
17-30 1&120001&20001
31-41 blank
42 3
43-58 blank
59-70 o ~\sqooo~o lOll
71-80 bl~mk I,

When retrieving the listing or condensed cards, mount
the listing tape on Tape Unit 3. For additional infor­
mation about the 1401 Tape Utility programs, refer to
the SRL publication, IBM 1401/1460 Bibliography,
Form A24-1495, which lists the publication for these
programs.

System Halts and/or Messages - Program Assembly

Figure 101 constitutes a listing, by phase, of the halts
and/or messages that can occur during the assembly
run. The information given for each halt consists of:

l. the B-address that can be displayed on the 1401
console when the halt occurs.

2. the message associated with the halt and/or the
reason for the halt. (A printed message can occur
without a machine halt.)

3. the procedures to be followed by the operator.

TAPE-REDU~DA~CY PROCEDURES

There are standard restart procedures for tape read or
write error halts which may occur during program
assembly (and/or the librarian run). When a tape­
redundancy halt occurs, pressing the B-address regis­
ter key will display the contents of the B-address
register in the storage-address display lights.

The thousands and hundreds positions of the storage­
address lights represents the pass in which the redun­
dancy occlirred. The tens position will note whether
it is a read or a write redundancy (6 will be displayed
for a write redundancy; 9 for a read redundancy). The
units position shows the tape unit on which the re­
dundancy occurred.

For example, if 0466 is displayed from the B-address
register, there is a write redundancy (6) on tape 6 (6)
in Pass 4 (04). NOTE: Exceptions to this B-address
convention for tape-redundancy halts occur under spe­
cial conditions (see Figures 98 and 101).

Read Redundancy. If an error occurs during a
tape read operation, the processor attempts to read the
tape an additional ten times. If still unsuccessful, the
machine halts at one of the B-addresses for read-re­
dundancy errors given in Figure 98 or 10l. After the
halt occurs.

l. Turn o:s- Sense Switch E and press the start key to
retry the read operation an additional 10 times.

2. If the same halt occurs again, turn OFF Sense Switch
E. Set tape-select switch to D, and press the start
key.

3. A halt will occur at the B-address given for the
second tape read redundancy (Figure 98 or 101).
Find the contents of the I-address register at this
halt. Scan storage for incorrect characters and cor­
rect if possible. Set the tape-select switch back to
N, set the I-address to the contents when the halt
occurred, and press the start key to process record.

4. If the error was not corrected, restart the assembly
run (or librarian run). After Pass 3 has been suc­
cessfully completed, a reassembly run without al­
terations can be performed instead of restarting
the assembly run from the beginning, unless the
error occurred on Tape 4.

Write Redundancy. If an error occurs during a tape­
write operation, the processor attempts to rewrite the
record on successive portions of tape, skipping and
blanking tape between writes. If in anyone pass of
the processor the redundancy procedure accumulates
fifty skips (in either one, or a series of tape-write op­
erations), the machine halts at one of the B-addresses

52 Autocoder (on Tape) Specs. and Op. Proc. IBM 1401 and 1460

Pass B-Address Message and/or Reason Procedure

I 0111 Second tape read redundancy hall'. Note the contents of the I-address register.
Follow tape read redundancy procedure, given in
the text,starting with step 3.

I 0165 Write redundancy Tape 5. Follow the procedure given in the text for tape
write redundancy.

I 0166 Write redundancy, Tape 6. Same as the preceding item.

I 0191 Read redundancy, Tape I. Follow step I only of the tape read redundancy
procedure. If halt re-occurs, restart with another
system tape.

I 0195 Read redundancy, Tape 5. Follow the tape read redundancy procedure.

I 0199 Read redundancy, Tape I. Occurs in Selection Rewind system tape and press tape-load key again.
Program when tape-load key is pressed. If ha It re-occurs, try another system tape or

tape unit.

2 0201 Second tape read redundancy halt. Note the contents of the I-address register.
Follow the tape read redundancy procedure,
starti ng wi th step 3.

2 0265 Write redundancy, Tape 5. Follow tape write redundancy procedure.

2 0266 Write redundancy, Tape 6. Same as the preceding item.

2 0288 Read redundancy, Tape I,in overlay program Press the start key to retry the read operation once
segment. If unsuccessful after ten or so attempts, restart the

assembly run with another system tape.

2 0291 Read redundancy, Tape I. Follow step I only of the tape read r~dundancy
procedure. If halt re-occurs, restart the assembly
run with another system tape.

2 0294 Read redundancy, Tape 4. Follow the tape read redundancy procedure.

2 0295 Read redundancy, Tape 5. Same as the preceding item.

3 0301 Indicates that the record being processed is coded Restart assembly run.
by the processor with an invalid statement type

3 0302 Second tape read redundancy halt. Note the contents of the I-address register.
Follow the tape read redundancy procedure,
starting with step 3.

3 0364 Write redundancy, Tape 4. Follow the tape write redundancy procedure.

3 0391 Read redundancy" Tape I. Follow step I only of the tape read redundancy
procedure. If ha It re -occurs, restart the assemb I y
run with another system tape.

3 0395 Read redundancy I Tape 5. Follow tape read redundancy procedure.

3 0396 Read redundancy, Tape 6. Same as the preceding item.

3 No Halt. PROCESSING AS FIXED FORM RECORD - Check the source deck later and insert correct
Message printed when the processor encounters a ENT card(s}.
statement which is not in acceptable Autocoder
free-form format and there has not been a
preceding Enter (ENT) SPS statement.
The statement is processed and mayor may not
be assembled correctly.

3 No Halt. INCORRECT PROCESSOR MACHINE SIZE Correct the CTL card if performing another
SPECIFIED - Message printed if the size of the assembly.
processor machine specified in column 21 of the
CTL card is larger than the machine actually used.
In this case the processor assumes a 4k machine.

Figure 101. System Halts and lor Messages - Program Assembly (part 1 of 3)

53

Pass B-Address Message and/or Reason Procedure

3 No Halt. ACTUAL OP CODES PRESENT IN FIXED FORM Check the source deck and insert correct E NT
IMAGES - Message printed when the processor card(s} if necessary.
is handling SPS fixed-form statements and encount-
ers an actual operation code (which was punched
in column 16 of the source program card).
Because SPS allows the coding of actual machine
op codes, the statement may be valid and the
processing of this statement may be correct.

However, th is message warns the operator
in case the punch in column 16 is the first
character in an Autocoder mnemonic operation
code and an Enter (ENT) Autocoder card is
missing.

3 No Halt. PASS 3 COMPLETED- Message printed at the end
of the pass to indicate that Tape Unit 4 now
contains the source program in free-form in condi-
tion for a reassembly run. (See Reassembly~).

4 0401 Second tape read redundancy halt. Note the contents of the I-address register"
Follow the tape read redundancy procedure,
starti ng with step 3.

4 0402 Indicates that the record being processed is coded Restart assembly run.
by the processor with an invalid statement type.

4 0465 Write redundancy, Tape 5. Follow the tape write redundancy procedure.

4 0491 Read redundancy, Tape 1. Follow step 1 only of the tape read redundclncy
procedure. If halt re-occurs, restart assembly
run with another system tape.

4 0494 Read redundancy, Tape 4. Follow the tape read redundancy procedure.

5 0511 Second tape read redundancy halt. Note the contents of the I-address register.
Follow the tape read redundancy procedure,
starting with step 3.

5 0566 Write redundancy, Tape 6. Follow the tape write redundancy' procedun~.

5 0591 Read redundancy, Tape 1. Follow step 1 only of the read redundancy
procedure. If halt re-occurs, restart the
assembly run with another system tape.

5 0595 Read redundancy, Tape 5. Follow the tape read redundancy procedure.

6 0611 Second tape read redundancy ha It. Note contents of the I-address register. FOillow
the tape read redundancy procedure startin~l
with step 3.

6 0612 Second tape read redundancy halt in overlay which Same as the preceding item.
prints symbol table

6 0665 Write redundancy, Tape 5. Follow the tape write redundancy procedure.

6 0691 Read redundancy, Tape 1. Follow step 1 only of the tape read redundancy
procedure. If halt re-occurs, restart
assembly run with another system tape.

6 0696 Read redundancy, Tape 6. Follow the tape read redundancy procedure.

7 0711 Second tape read redundancy halt during Note the contents of the I-address register.
initialization phase of Pass 7. Follow the tape read redundancy procedure"

starting with step 3.

7 0712 Second tape read redundancy halt in the main-line Same as the preceding item.
section of Pass 7.

7 0763 Write redundancy, Tape 3. Follow the tape write redundancy procedure.

7 0766 Write redundancy, Tape 6. Same as the preceding item.

Figure 101. System Halts and/or Messages - Program Assembly (part 2 of 3)

54 Autocoder (on Tape) Specs. and Gp. Proc. IBM 1401 and 1460

Pass B,-Address Message and/or Reason Procedure

7 0770 Indicates that a record being processed is coded Restart assembly run.
by the processor with an inval id statement type.

7 0777 Occurs when sequence numbers on input Tapes 4 and Restart assembly run.
5 do not match.

7 0791 Read redundancy, Tape 1. Follow step 1 only of the tape read redundancy
procedure. If halt re-occurs,restart assembly
run with another system tape.

7 0794 Read redundancy, Tape 4. Follow the tape read redundancy procedure.

7 0795 Read redundancy, Tape 5. Same as the preceding item.

7 No Halt. NO CONTROL CARD - Message printed in Other output options may be specified by the
place of the missing statement on I"he listing if a programmer at the end of assembly. (See
control (CTL) card has not been placed in the Pro9!.Q!!! Assembly.)
source deck. The processor assumes that both the
processing and object machine are 4k (without
Modify Address) without the Read-Punch Release
Special Feature. Only a assembly I isting with
diagnostic messages will be provided by the
processor.

7 No Halt. OBJECT CORE EXCEEDED - Message printed
on the last page of the I isting if the object
program exceeds the core size specified in column
22 of the cn card.

8 0811 Second tape read redundancy halt. Note the contents of the I-address register.
Follow the tape read redundancy procedure,
starting with step 3.

8 0812 Second tape read redundancy ha It after attempting Same as the preceding item.
to read Pass 7 when additional output is requested.

8 0866 Write redundancy, Tape 6. Follow the tape write redundancy procedure.

8 0880 END OF ASSEMBLY - Message printed with extra Select extra output options, if desired, and
output options and instructions after completion of press the start key. If no extra output is desired,
assembly. (See PrQgram Assembly.) press the start key.

8 0889 END OF JOB - This and other end-of-job messages
are printed and the tapes (except the listing tape,
if used) are rewound by the processor.

8 0891 Read redundancy, Tape 1. Follow step 1 only of the tape read redundancy
procedure. If halt re-occurs, restart the
assembly run with another system tape.

8 0894 Read redundancy, Tape 4. Follow the tape read redundancy procedure.

8 0895 Read redundancy, Tape 5. Same as the preceding item.

Figure 101. System Halts and/or Messages - Program Assembly (part 3 of 3)

55

for write-redundancy errors given in Figure 98 or 101.
After the halt occurs,

1. Press the start key to retry write operation an addi­
tional 50 times.

2. If the machine halts at the same address, replace
the tape in error and restart the assembly run (or
librarian run). (After Pass 3 has been successfully
completed, a reassembly run'without alterations can
be performed instead of restarting the assembly
run from the beginning.)

RETRIEVIKG ASSEMBLY OUTPUT

If the processor is interrupted while generating output
in Pass 7 or 8 (for example, while printing assembly
listing, punching condensed deck, writing loadable
tape, etc.) the output passes can be retrieved without
having to restart the assembly run.

1. Rewind the system tape on Tape Unit 1.

2. Turn ON Sense Switches F and G.

3. Press the tape-load key. A halt will occur at B-ad­
dress 0880 (end-of-assembly halt) after the extra
output option messages are printed.

4. Select desired output by setting sense switches and
press the start key.

Reassembly Run

If Pass 3 of the original assembly has been successfully
completed, a considerable amount of time may be
saved when reassembling an object program (with or
without alterations) by using tape 4, which contains
(after Pass 3) the source program statements in free­
form with assigned sequence numbers.

Reassembly Without Alterations. If a system halt
that requires restarting the assembly run occurs after
Pass 3 of the assembly, the operator can save time by
reassembling using Tape 4 instead of the original
source program on cards (or tape).

Reassembly With Alterations. After the original as­
sembly has been completed, it is possible to alter and
reassemble the program by using ALTER cards and
Tape 4. During assembly, each statement that can
be altered by an ALTER entry is assigned a sequence
number which is listed in the first column of the as­
sembly listing. These sequence numbers are used in
ALTER entries to add, delete, or substitute instructions
in proper places in the source program.

This method permits alteration of the program
without recompiling the macro statements which were
processed in the initial assembly, unless the macro
statements are also being altered. Note that::

1. Only those statements with sequence numbers can
be altered.

2. Alteration to a CALL or INCLD macro statement does
not automatically alter the referenced subroutine.

3. If a macro-statement is altered, the generated in­
structions will be recompiled.

4. If lOCS macro-instructions are altered, the IOCS
routines wi1l be recompiled only if Sense-Switch G
is ox. (See subsequent reassembly instructions.)

5. If a macro-generated statement (lOCS or Auto­
coder) is altered, the entire macro routine is not re­
processed.

6. If LTORG or EX statements are added or deleted,
closed subroutines are not rearranged due to this
change.

To reassemble the object program:

1. ~IIount the system tape on Tape Unit 1. This tape
must be rewound before starting, but the other
tapes (4, 5, and 6) are rewound by the processor.

2. Ready the Tape 4 output from the original assembly
on the same tape unit.

3. Mount working tapes on Tape Units 5 and 6.

4. Nlount a fifth tape on Tape Unit 3 if a listing tape
is to be generated.

If reassembling without alterations:

5. Turn ox Sense Switches A, B, and C.

6. Press the check-reset, start-reset, and tape-load
keys. After this, follow steps 5 through 8 of the as­
sembly run. (See Progrant Assembly.)

If reassembling with alterations:

5. Place the ALTER cards (in sequential order by state­
ment numbers) in the card reader.

6. Turn ox Sense Switches A and B. If lOCS state­
ments are to be regenerated also, turn ON Sense
Switch G.

7. Turn ox the I/O check-stop switch.

8. Press the check-reset, start reset, and tape-load keys.
After this, follow steps 8 through 10 of the assem­
bly run. (See Program Assembly.)

56 Autocoder (on Tape) Specs. and Op. Proc. IBM 1401 and 1460

Patching the Object Program
Correcting or revising an assembled program is accom­
plished through a procedure known as patching. Patch­
ing makes it possible for the programmer to change
the condensed object-program deck without reas­
sembling.

Two methods are used in patching:

1. The user duplicates the condensed card, substitut­
ing the correct information where needed. The cor­
rected card is then placed in the proper location
within the condensed deck before loading the object
program. (The condensed deck is numbered sequen­
tially in columns 72-75, and the card number for all
data appears in the listing on the same line as the
data.) This method is often used to substitute cor­
rect equal-length information (for cxample, ad­
dresses, d-characters) on a condensed program card.

2. The correct information is loaded into storage after
the original object program has been loaded, over­
laying part of the original object program. The user
punches patch card(s) and places them just before
the assembled END, XFR, or EX card in the object
program or program segment to which the patch
applies. (Check the listing for card number of the
END, XFR, or EX assembled instruction.)
A patch card is punched in the following format:

CAHD

COLUMNS CONTENTS

1-39 The data, machine-language instruction(s) or con­
stant(s), to be loaded into storage. The information
must be left-justified in this field.

40.-46 A load instruction which loads the above data into
storage with a high-order word mark.

47 -53 If the data should not have a high-order word mark,
this field contains a seven-character clear-word-mark
instruction. If the high-order word mark is to be left
in storage, this field contains:

Card
Columns CD

1. A set-word-mark instruction. If two or more in­
structions have been loaded, into storage, a word
mark must be set for each instruction, or:

2. A NOP instruction (Naaaaaa), if additional word
marks are not needed.

® 40 @

CAlm

COLUMNS CONTENTS

54-60.) These fields contain set-word-mark or NOP instruc-

61-67 tions~ (See preceding paragraph.)

68-71 1040.. An instruction which causes the 140.1 to read
a card and branch to location 0.40., which is the
address of the next load instruction or an execute
instruction.

72-75 Card number

76-80. Program identification

EXAMPLE: Suppose that a programmer wishes to
insert a MOVE (M 523201) instruction in his assembled
program after a 7 -character add instruction (~ 430 523)
whose high-order location is 629. This patch involves
changing the add instruction to an unconditional
branch to an area which will contain instructions to
add, move, and branch back to the next instruction in
the program. Suppose the high order of this patch
area is 800.

If the second method of patching is used, two patch
cards are needed (Figure 102):

The three KOP instructions, which are loaded into
positions 633, 634, and 818 of core storage, are used so
that word marks are set after the unconditional
branches.

After the patch cards arc loaded, core-storage loca­
tions 629-635 will contain:

1\cxt
B 8 a a ~ J:::! 3 lmitr
t t t t t

629 633 634 635 636

The N3 becomes a two-character KOP instruction.

The patch area (core-storage locations 800-818) will
contain

A43a523M5232a1B636
T T t

80.0. 80.7 814

The two patch cards are placed in the object deck
(before the assembled END, XFR, or EX card) before load­
ing the object program.

72

B 8 0 0 NN B L 0 066 3 4 ,6 3363 4 NO 0 0 0 0 0 NO 000 0 0 104 0

L
A
N
K

A4 3 0 5 23M 5 2 3 2 0 1

Figure 10.2. Patch Card Sample

L019818,807814,818818N0000001040

Card
Number Ident.

57

Running the Object Program
To run the object program:

If the l)rogrmn is on cards,

1. Place the condensed deck in the card reader. (If
for any reason the user does not wish to clear stor­
age before loading the object program, remove the
first two cards from the deck. These are the clear
storage cards generated by the processor.)

2. Turn 0;'1; the I/O check-stop switch and sense
switc:.hes as needed by the program.

3. Press the check-reset, start-reset, and load keys.

If the program is on loadable tape,

1. Mount the program tape on Tape Unit 1.

2. Turn ox the I/O check-stop switch and sense
switches as needed by the program.

3. Press the check-reset, start-reset, and tape-load keys.

If the output of the assembly was on a listing tape,
the condensed card deck can be punched from the
tape using the utility program described in Listing
Tape. Run the object program using the preceding
instruction for a condensed deck.

58 Autocoder (on Tape) Specs. and Op. Froc. IBM 1401 and 1460

Index

Actual Address 10, 13, 16 INCLD Macro 34
Adding Library Routines 44 Index Locations .. 13
Address Adjustment 9, 10, 13, 14, 15 Indexing .. 9, 10, 13, 16, 19
Address C:onstants .. 13, 15 Indexing (DA Entry) .. 17
Address 1'ypes .. 10 Input/Output Devices, Auxiliary.. 39
Allowable Blanks in Autocoder Statements 49 INSERT - Insert .. 38
Alphamerllc Constants 15 Instruction Statements .. 6, 9
Alphameric Literals .. 11
ALTER-Alter .. 26 JOB - Job Card .. 21
Altering the Object Program .. 57
Area-Defining Literals .. 11
Area-Definition Statements .. 5, 6, 16
Assembly Listing (with Error Codes) 49
Asterisk ()perand .. 10, 19
Autocoder Listing Format .. 43
Autocoder Output .. 49
Autocoder Phases .. 47
Autocoder Programming System .. 5
Autocoder Transmittal Tape .. 41, 42

Label .. 9, 29
Librarian Run .. 44
Library .. 27
Library Entry .. 27
Line Number 9
Listing Tape .. 52
Literal ... "................................ 10, 30
Loadable Tape .. 51
Loader .. 6, 8, 24
L TORG - Literal Origin .. 24

Blank Operand .. 10
Blank Constants .. 15
Blocking .. 48
Bootstrap Card .. 49, 51
Bootstrap Record, Loadable Tape 51
Branch Instructions .. 9, 20, 21

MA Macro 43, 44
MA Macro - Modify Address .. 37
Machine Language ".................................. 5, 6
Machine-Language Coding .. 39
Machine Requirements .. 5
Macro Instructions .. 31

CALL Macro .. 32
Call Routines .. 32
Card Overlay Library Routine 43, 44
CHAIN Macro .. 36
Change C:ards .. 43
Clear Core-Storage Cards .. 49, 51
Clear Core-Storage Routine, Loadable Tape 51
Coding Sheet .. 8
Collating Sequence .. 9
Comments .. 9

Macro Operations .. 27
Macro Processing .. 34
Macro System .. 5, 27
Maximum Number of Labels ... 49
Messages During Updating Program 45
Mnemonic Operation Codes 5, 6, 9, 20
Model Statements .. 27, 28
Modify Address Feature .. 22, 37
Modify Address Library Routine 43, 44
Modifying Library Routines 44

Condensed Assembled Program Deck 51
Constants .. 6, 10, 14
Conversion of SPS Statements 49

Numeric Constants .. 14
Numeric Literals .. 10

Copying the System Tape .. 45 Operand .. 5, 9
CTL - Control Card 22 Operation .. 9

d-Character .. 9, 20
DA - Define Area .. 16
DC - Define Constant (No Word Mark) 15

ORG - Origin 22
OVLAY Macro .. 43, 44
OVLAY Macro - Card Overlay i......................... 36

new - Define Constant with Word Mark 14 Page Number .. 9
Declarative Operations .. 14 Parameters .. 27, 28, 31
DELETE _. Delete .. 37 Pass 1. Selection Program and Librarian 47
Deleting Library Routines .. 44 Pass 2. Input, IOCS Processor, and Macro Phase 47
Disk Input/Output Instructions .. 39
Displaying the Library 45

Pass 3. Translator Phase .. 48
Pass 4. Relative Addressing Phase 48

DS - Define Symbol.. 16 Pass 5. Label Phase 48
DSA - Define Symbol Address 16 Pass 6. Operand Phase ,... 48

END - End Card .. 25
ENT - Enter New Coding Mode .. 25
EQU - Equate .. 19
Error Codes, Assembly Listing 50
EX - Execute 24

Pass 7. Listing and Condensed Cards Phase 48
Pass 8. Loadable Tape and New Source Deck Phase 48
Patching Example .. 57
Patching the Object Program .. 57
Pre-System Run "... 42
PRINT - Print Library Routine .. "... 38

HEADR - Header 27 Processing Overlap .. 40
Processor Control Operations .. 6, 21

IBM-Supplied Macros .. 32 Processor Program .. 5, 6
Identification ... 10 Program Assembly .. 47
Imperative Operations 20 Program Overlay.. 11, 24

59

Programming with Autocoder 6
PUNCH - Print and Punch Library Routine 38

Read Redundancy 52
Reassembly Run 56
Reassembly with Alterations 56
Reaassembly Without Alterations .. 56
Resequenced Source Deck .. 51
Retrieving Assembly Output 56
Running the Object Program 58

SFX - Suffix 25
Source Program .. 5, 6
Special Features .. 5, 13, 22, 39
SPS Statements, Conversion of 49
Symbol Table .. 49
Symbolic Address .. 9, 10, 16, 30
Symbolic Language 5, 6
System Card Deck Format .. 42
System Halts - Librarian Run 46
System Halts - Pre-System Run 42
System Halts - System Run 43
System Halts and/or Messages - Program Assembly 52
System Run 43
System Tape .. 37
System Tape Format .. 43

Tape Overlay Library Routine 43, 44
Tape Read Errors 52
Tape Redundancy Procedures 52
Tape-to-Card Utility Program .. 52
Tape-to-Printer Utility Program .. 52
Tape Write Errors .. 52
TOVLY Macro .. 43, 44
TOVLY Macro - Tape Overlay.. 36

Updating the System Library .. 44

Write Redundancy.. 52
Writing the System Tape .. 42
Work Areas .. 5, 11, 15, 16

XFR - Transfer 25

60

READER'S SURVEY FORM
Autocoder (on Tape) Language
Specifications and Operating Procedures
IBM 1401 and 1460, C24-3319-0

• Is the material:
Easy to read?
Well organized?
Fully covered?
Clearly explained?
Well illustrated?

Yes

o
o
o
o
o

• How did you use this publication?

Satisfactory

o
o
o
o
o

As an introduction to the subject D
For additional knowledge of the subject 0

• Which of the following terms best describes your job?
Customer Personnel IB~1 Personnel

Manager 0 Customer Engineer 0
Systems Analyst 0 Instructor 0
Operator 0 Sales Representative 0
Programmer 0 Systems Engineer 0
Trainee 0 Trainee D
Other Other

• Check specific comment (if any) and explain in the space below:
(Give page number)

No

o
D
o
o
D

D Suggested Change (Page 0 Suggested Addition (Page)
D Error (Page) D Suggested Deletion (Page)

Explanation:

Space is available on the other side of this page for additional comments.
Thank you for your cooperation.

C24-3319-0

Fold

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ..

IBM Corporation

General Products Division
Development Laboratory
Endicott, N. Y. 13764

Attention: Product Publications, Dept. 171

Fold

ITm~
(i)

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, N. Y. 10601

Staple

Fold

FIRST ClAs[J
PERMIT NO. 170

ENDICOTT, N. Y.

-
Q)
c:

::i

0>
c:
0 :;;:
'5 - u

I;!;!

~

:;
g
Q
::l
c...

:; - g

~

Fold
5'
iD
c...
5'

!=
~

?>

n
I>.)
..... w
~
'0
b

: SluaUIUIo:) pmon !PPV

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	replyA
	replyB

