IBM 4300 Processors
Principles of Operation
for ECPS:VSE Mode

Systems

GA22-7070-0
File No. 4300-01

IBM 4300 Processors
Principles of Operation

- for ECPS:VSE Mode

First Edition (January 1979)
Changes are continually made to the information herein; any such changes
will be reported in subsequent revisions or Technical Newsletters.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If
the form has been removed, comments may be addressed to [BM
Corporation, Product Publications, Department B98, PO Box 390,
Poughkeepsie, NY, U.S.A. 12602. IBM may use or distribute any of the
information you supply in any way it believes appropriate without incurring
any obligation whatever. You may, of course, continue to use the
information you supply.

@© Copyright International Business Machines Corporation 1979

Preface

This publication provides, for reference purposes, a
detailed definition of the architecture of IBM 4300
Processors when operating in the Extended Control
Program Support: Virtual Storage Extended
(ECPS:VSE) mode. \

The publication describes each function of the ar-
chitecture to the level of detail that must be under-
stood in order to prepare an assembler-language
program that relies on that function. It does not,
however, describe the notation and conventions that
must be employed in preparing such a program.

The information in this publication is provided
principally for use by assembler-language pro-
grammers, although anyone concerned with the func-
tional details of the IBM 4300 Processors will find it
useful.

This publication is written as a reference document
and should not be considered an introduction or a
textbook.

All facilities discussed in this publication are not
necessarily available on every processor. Further-
more, in some instances the definitions have been
structured to allow for some degree of extensibility,
and therefore certain capabilities may be described or
implied that are not offered on any model. An
example of such capabilities is the provision for the
number of channel-mask bits in the control register.
The allowance for this type of extensibility should not
be construed as implying any intention by IBM to
provide such capabilities. For information about the
characteristics and availability of features on a
specific processor, use the functional characteristics
manual for that processor. The availability of
features on processors is summarized in the IBM

4300 Processors Summary and Input/Ouiput & Data
Communications Configurator, GA33-1523.

This publication applies only to the ECPS:VSE
mode of operation. The IBM System/370 Principles
of Operation, GA22-7000, should be consulted re-
garding the functions of the architecture which
appl§* when the processor operates in the
System/370 mode.

Size Notation

The letters K, M, and G denote the multipliers 219,
220 and 239, respectively. It should be noted that
although the letters are borrowed from the decimal
system and stand for kilo (103), mega (106), and giga
(109), they do not have the decimal meaning, but
instead represent the power of 2 closest to the corre-
sponding power of 10. Their meaning in this
publication is as follows:

Symbol Value

K (kilo) 1,024 = 210
M (mega) 1,048,576 = 220
G (giga) 1,073,741,824 = 230

The following are some examples of the use of K,
M, and G:

2,048 is expressed as 2K.

4,096 is expressed as 4K.

65,536 is expressed as 64K (not 65K).
224 is expressed as 16M.

When the words "thousand," ''million," and
"billion" are used, no special power-of-2 meaning is
assigned to them.

iv

This page Iéft blank intentionally

Contents

1-1
1-1

Chapter 1. Introduction
The IBM 4300 Processors

Program-Status-Word Format in BC Mode
Control Registers 4-7

Compatibility 1-2 Monitoring 4-8
Compatibility Among 4300 Processors 1-2 Program-Event Recording 4-9
Compatibility Between 4300 Processors Control-Register Allocation 4-9
and System/370 1-2 Operation 4-10
Control-Programn Compatibility 1-2 Identification of Cause 4-10
Problem-State Compatibility 1-2 Priority of Indication 4-11
Storage-Area Designation 4-11
Chapter 2. Organization 2-1 PER Events 4-12
Main Storage 2-1 Successful Branching 4-12
Central Processing Unit 2-1 Instruction Fetching 4-12
General Registers 2-2 Storage Alteration 4-12

Floating-Point Registers 2-2
Control Registers 2-3
Input and Qutput 2-3
Channels 24
Input/Output Devices and Control Units

Operator Facilities 2-4

Chapter 3. Storage 3-1
Information Formats and Addressing
Information Formats 3-1
Storage Addressing 3-2
Integral Boundaries 3-2
One-Level Addressing 3-2
Storage Size 3-3
Pages 3-3
Page Frames 3-3
Page Description
Storage Key
Page Bits
Page States 3-4
Frame Index 3-5
Page and Frame Control
Capacity Counts 3-5
Storage-Control Instructions
Key-Controlled Protection 3-6
Protection Action 3-6
Accesses Protected 3-7
Reference and Change Recording
Assigned Storage Locations 3-8
Storage While CPU Is in Operating State
Storage While CPU Is in Load State 3-10

3-1

3-3
33
3-4

3-5

3-6

3-7

Chapter 4. Control 4-1
CPU States 4-1
Wait State 4-2

Supervisor and Problem States 4-2

Stopped, Operating, Load, and Check-Stop States

EC and BC Modes 4-3
Program-Status Word 44
Program-Status-Word Format in EC Mode

General-Register Alteration 4-12
Indication of Events Concurrently with Other
Interruption Conditions 4-13
Timing 4-15
Time-of-Day Clock
Format 4-15
States 4-16
Setting and Inspecting the Value
Clock Comparator 4-18
CPU Timer 4-18
Interval Timer 4-19
Externally Initiated Functions
Resets 4-20
Program Reset 4-21
Initial Program Reset
Clear Reset 4-23
Power-On Reset
Initial Program Loading
Machine Save 4-25

4-15

4-16

4-20

4-23

423
424

Chapter 5. Program Execution 5-1
Instructions 5-1
Operands 5-1
Instruction Format
Register Operands
Immediate Operands 5-3
Storage Operands 5-3
Operand-Address Generation
Instruction Execution 5-4
Sequential Instruction Execution
Branching 5-4
Interruptions 5-5
Sequence of Storage References
Instruction Fetch 5-6
Page-Description Accesses 5-6
Storage-Operand References 5-7
Storage-Operand Fetch References
Storage-Operand Store References
Storage-Operand Update References
Storage-Operand Consistency 5-8

5-2

5-3

5-4

3-8 5-4

5-5

42 5-7

5-7

4-4

5-7

Relation Between Operand Accesses 5-8
Other Storage References 5-9

Serialization 5-9

CPU Serialization 5-9
Channel Serialization 5-10

Chapter 6. Interruptions 6-1
Interruption Action 6-1

Source Identification 6-2
Enabling and Disabling 6-4
Instruction-Length Code 6-4

Zero ILC 6-5

ILC on Instruction-Fetch Exceptions 6-5
Exceptions Associated with the PSW 6-6

Early Exception Recognition 6-6

Late Exception Recognition 6-6
Types of Instruction Ending 6-6
Interruptible Instructions 6-7

Point of Interruption 6-7

Ending of Interruptible Instructions 6-7

Machine-Check Interruption 6-8
Supervisor-Call Interruption 6-8
Program Interruption 6-8

Program-Interruption Conditions 6-9
Addressing Exception 6-9
Data Exception 6-9
Decimal-Divide Exception 6-10
Decimal-Overflow Exception 6-10
Execute Exception 6-10
Exponent-Overflow Exception 6-10
Exponent-Underflow Exception 6-10
Fixed-Point-Divide Exception 6-10
Fixed-Point-Overflow Exception 6-11
Floating-Point-Divide Exception 6-11
Monitor Event 6-11
Operation Exception 6-11
Page-Access Exception 6-11
Page-State Exception 6-12
Page-Transition Exception 6-12
PER Event 6-12
Privileged-Operation Exception 6-12
Protection Exception 6-12
Significance Exception 6-13
Special-Operation Exception 6-13
Specification Exception 6-13
Recognition of Access Exceptions 6-13
Nontransparent Nullification 6-16
Multiple Program-Interruption Conditions 6-17

External Interruption 6-19

vi

Clock Comparator 6-19
CPU Timer 6-19
External Signal 6-20
Interrupt Key 6-20
Interval Timer 6-20

Input/Output Interruption 6-20
Restart Interruption 6-21
Priority of Interruptions 6-21

Chapter 7. General Instructions 7-1
Data Format 7-1
Binary-Integer Representation 7-2
Signed and Unsigned Binary Arithmetic 7-3
Signed and Logical Comparison 7-3
Instructions 7-4
ADD 7-7
ADD HALFWORD 7-7
ADD LOGICAL 7-7
AND 77
BRANCH AND LINK 7-8
BRANCH ON CONDITION 7-9
BRANCH ON COUNT 7-10
BRANCH ON INDEX HIGH 7-10
BRANCH ON INDEX LOW OR EQUAL
COMPARE 7-11
COMPARE AND SWAP 7-11
COMPARE DOUBLE AND SWAP 7-11
COMPARE HALFWORD 7-13
COMPARE LOGICAL 7-13
COMPARE LOGICAL CHARACTERS
UNDER MASK 7-13
COMPARE LOGICAL LONG 7-14
CONVERT TO BINARY 7-15
CONVERT TO DECIMAL 7-16
DIVIDE 7-16
EXCLUSIVE OR 7-17
EXECUTE 7-17
INSERT CHARACTER 7-18
INSERT CHARACTERS UNDER MASK
LOAD 7-19
LOAD ADDRESS 7-19
LOAD AND TEST 7-19
LOAD COMPLEMENT 7-20
LOAD HALFWORD 7-20
LOAD MULTIPLE 7-20
LOAD NEGATIVE 7-21
LOAD POSITIVE 7-21
MONITOR CALL 7-21
MOVE 7-22
MOVE INVERSE 7-22
MOVE LONG 7-23
MOVE NUMERICS 7-25
MOVE WITH OFFSET 7-25
MOVE ZONES 7-26
MULTIPLY 7-26
MULTIPLY HALFWORD 7-27
OR 7-27
PACK 7-28
SET PROGRAM MASK 7-28
SHIFT LEFT DOUBLE 7-29

7-10

SHIFT LEFT DOUBLE LOGICAL 7-29
SHIFT LEFT SINGLE 7-30

SHIFT LEFT SINGLE LOGICAL 7-30
SHIFT RIGHT DOUBLE 7-30

SHIFT RIGHT DOUBLE LOGICAL 7-31
SHIFT RIGHT SINGLE 7-31

SHIFT RIGHT SINGLE LOGICAL 7-32
STORE 7-32

STORE CHARACTER 7-32

STORE CHARACTERS UNDER MASK 7-32
STORE CLOCK 7-33

STORE HALFWORD 7-33

STORE MULTIPLE 7-33

SUBTRACT 7-34

SUBTRACT HALFWORD 7-34
SUBTRACT LOGICAL 7-34
SUPERVISOR CALL 7-35

TEST AND SET 7-35

TEST UNDER MASK 7-36
TRANSLATE 7-36

TRANSLATE AND TEST 7-37
UNPACK 7-38

Chapter 8. Decimal Instructions 8-1
Data Format 8-1
Zoned Format 8-1
Packed Format 8-1
Number Representation 8-2
Instructions 82
ADD DECIMAL 83
COMPARE DECIMAL 84
DIVIDE DECIMAL - 84
EDIT 8-5
EDIT AND MARK 8-8
MULTIPLY DECIMAL 8-8
SHIFT AND ROUND DECIMAL 8-8
SUBTRACT DECIMAL 8-10
ZERO AND ADD 8-10

Chapter 9. Floating-Point Instructions 9-1
Data Format 9-1
Guard Digit 9-2
Number Representation 9-3
Normalization 9-3
Instructions 9-4
ADD NORMALIZED 9-6
ADD UNNORMALIZED 9-7
COMPARE 9-8

DIVIDE 9-8
HALVE 99
LOAD 9-10

LOAD AND TEST 9-10
LOAD COMPLEMENT 9-11
LOAD NEGATIVE 9-11
LOAD POSITIVE 9-1i

LOAD ROUNDED 9-12

MULTIPLY 9-12

STORE 9-14

SUBTRACT NORMALIZED 9-14
SUBTRACT UNNORMALIZED 9-15

Chapter 10. Control Instructions 10-1

CLEAR PAGE 10-3

CONNECT PAGE 10-3
DECONFIGURE PAGE 104
DIAGNOSE 104

DISCONNECT PAGE 10-5

INSERT PAGE BITS 10-5

INSERT PSW KEY 10-5

INSERT STORAGE KEY 10-6

LOAD CONTROL 10-6

LOAD FRAME INDEX 10-6

LOAD PSW 107

MAKE ADDRESSABLE 10-7

MAKE UNADDRESSABLE 10-8
RESET REFERENCE BIT 10-8
RETRIEVE STATUS AND PAGE 10-8
SET CLOCK 10-9

SET CLOCK COMPARATOR 109

SET CPU TIMER 10-10

SET PAGE BITS 10-10

SET PSW KEY FROM ADDRESS 10-10
SET STORAGE KEY 10-11

SET SYSTEM MASK 10-11

STORE CAPACITY COUNTS 10-11
STORE CLOCK COMPARATOR 10-12
STORE CONTROL 10-12

STORE CPUID 10-12

STORE CPU TIMER 10-13

STORE THEN AND SYSTEM MASK 10-13
STORE THEN OR SYSTEM MASK 10-14

Chapter 11. Machine-Check Handling 11-1
Machine-Check Detection 11-1
Correction of Machine Malfunctions 11-1
Handling of Machine Checks 112

Invalid CBC in Storage 11-2

Invalid CBC in Page Descriptions 11-2
Invalid CBC in Registers 11-3

Usage of Validation 11-3

Check-Stop State 11-3
Machine-Check Interruption 11-4

Exigent Conditions 11-4
Repressible Conditions 11-4
Interruption Action 11-4
Point of Interruption 11-5
Machine-Check-Interruption Code 11-6
Subclass 11-7
Auxiliary Bits 11-8
Machine-Check Interruption-Code Validity Bits

vii

Machine-Check Extended Interruption
Information 11-9
Register-Save Areas 11-9
Failing-Storage Address 11-9
Machine-Check Masking 11-9

Chapter 12. Input/Qutput Operations 12-1
Attachment of Input/Output Devices 12-2
Input/Output Devices 12-2
Control Units 12-2
Channels 12-3
Modes of Operation 12-3
Types of Channels 12-4
1/0-System Operation 12-5
Compatibility of Operation 12-7
Control of Input/Output Devices 12-7
Input/Output Device Addressing 12-7
States of the Input/Output System 12-8
Resetting of the Input/Output System 12-11
I/0 System Reset 12-11
I/0 Selective Reset 12-11
Effect of Reset on a Working Device 12-11
Reset Upon Malfunction 12-12
Condition Code 12-12
Instruction Formats 12-14
Instructions 12-15
CLEAR I/O 12-16
HALT DEVICE 12-18
HALTI/O 12-21
START I/O 1223
START I/O FAST RELEASE 12-23
STORE CHANNEL ID 12-26
TEST CHANNEL 12-27
TEST 1/0 12-27
Input/Output-Instruction-Exception Handling
Execution of Input/Output Operations 12-30
Blocking of Data 12-30
Channel-Address Word 12-30
Channel-Command Word 12-31
Command Code 12-32
Designation of Storage Area 12-32
Chaining 12-33
Data Chaining 12-35
Command Chaining 12-36
Skipping 12-36
Program-Controlled Interruption 12-36
Commands 12-37
Write 12-39
Read 12-39
Read Backward 12-39
Control 12-40
Sense 12-40
Transfer in Channel 12-42
Command Retry 12-42
Conclusion of Input/Output Operations 12-43
Types of Conclusion 12-43

viii

Conclusion at Operation Initiation 12-43
Immediate Operations 12-44
Conclusion of Data Transfer 12-44
Termination by HALT I/0 or
HALT DEVICE 12-45
Termination by CLEAR I/0 12-46
Termination Due to Equipment Malfunction
Input/Output Interruptions 12-47
Interruption Conditions 12-47
Channel-Available Interruption 12-48
Priority of Interruptions . 12-48
Interruption Action 12-49
Channel-Status Word 12-49
Unit Status 12-50
Attention 12-50
Status Modifier 12-50
Control-Unit End 12-51
Busy 12-51
Channel End 12-53
Device End 12-53
Unit Check 12-53
Unit Exception 12-54
Channel Status 12-55
Program-Controlled Interruption 12-55
Incorrect Length 12-55
Program Check 12-55
Protection Check 12-56
Channel-Data Check 12-56
Channel-Control Check 12-56
Interface-Control Check 12-57
Chaining Check 12-57
Contents Of Channel-Status Word 12-57
Information Provided by
Channel-Status Word 12-57
Subchannel Key 12-58
CCW Address 12-58
Count 12-59
Status 12-60
Channel Logout 12-63
I/0 Communications Area 12-63

Chapter 13. Operator Facilities 13-1
Basic Operator Facilities 13-1
Address-Compare Controls 13-1
Alter-and-Display Controls 13-2
Check Control 13-2
-Check-Stop Indicator 13-2
IML Controls 13-2
Interrupt Key 13-2
Interval-Timer Control 13-3
Load Indicator 13-3
Load-Clear Key 13-3
Load-Normal Key 13-3
Load-Unit-Address Controls 13-3
Machine-Save Key 13-3
Manual Indicator 13-3

12-47

Mode Indicator 13-3
Power Controls 13-4
Rate Control 13-4
Restart Key 13-4
Save Indicator 13-4
Start Key 13-4

Stop Key 13-4

Storage-Size Control 13-4

System Indicator 13-5
Systern-Reset-Clear Key
System-Reset-Normal Key
Test Indicator 13-5

13-5
13-5

TOD-Clock Control 13-5

Wait Indicator 13-5

Appendix A. Number Representation and Instruction-Use

Examples A-1

Number Representation A-2

Binary Integers A-2
Signed Binary Integers

Unsigned Binary Integers

Decimal Integers A-3
Floating-Point Numbers

A2

A4

Conversion Example A-5

Instruction-Use Examples

A-5

Machine Format A-5
Assembler-Language Format

General Instructions A-6
ADD HALFWORD (AH)
AND (N, NR, NI, NC)

AND (NI) A-6

A-6
A-6

A-3

A-5

BRANCH AND LINK (BAL, BALR) A-7
BRANCH ON CONDITION (BC, BCR) A-7
BRANCH ON COUNT (BCT, BCTR) A-8

BRANCH ON INDEX HIGH (BXH)

BRANCH ON INDEX LOW OR
EQUAL (BXLE) A9

COMPARE HALFWORD

(CH)

A-8

A-9

COMPARE LOGICAL (CL, CLR, CLI, CLC)

Compare Logical (CLR
Compare Logical (CLI)
Compare Logical (CLC

MASK (CLM) A-10

) A9
A-9

) A-10
COMPARE LOGICAL CHARACTERS UNDER

COMPARE LOGICAL LONG (CLCL) A-11
CONVERT TO BINARY (CVB)
CONVERT TO DECIMAL (CVD)

DIVIDE (D,DR) A-13
EXCLUSIVE OR (X, XR,
Exclusive OR (XI)
Exclusive OR (XC)
EXECUTE (EX) A-14

XI, XC)
A-13
A-13

INSERT CHARACTERS UNDER

MASK (ICM) A-15
LOAD (L, LR) A-16
LOAD ADDRESS (LA)

A-16

A-12
A-12

A-13

A9

LOAD HALFWORD (LH) A-16
MOVE (MVI) A-17
MOVE (MVC) A-17
MOVE LONG (MVCL) A-18
MOVE NUMERICS (MVN) A-18
MOVE WITH OFFSET (MVO) A-19
MOVE ZONES (MVZ) A-19
MULTIPLY (M, MR) A-20
MULTIPLY HALFWORD (MH) A-20
OR (0O, OR, 01, OC) A-21
OR (OI) A-21
PACK (PACK) A-21
SHIFT LEFT DOUBLE (SLDA) A-21
SHIFT LEFT SINGLE (SLA) A-22
STORE CHARACTERS UNDER
MASK (STCM) A-22
STORE MULTIPLE (STM) A-23
TEST UNDER MASK (TM) A-23
TRANSLATE (TR) A-23
TRANSLATE AND TEST (TRT) A-24
UNPACK (UNPK) A-25
Decimal Instructions A-25
ADD DECIMAL (AP) A-26
COMPARE DECIMAL (CP) A-26
DIVIDE DECIMAL (DP) A-26
EDIT (ED) A-27
EDIT AND MARK (EDMK) A-28
MULTIPLY DECIMAL (MP) A-28

SHIFT AND ROUND DECIMAL (SRP) A-29

Decimal Left Shift A-29
Decimal Right Shift A-29
Decimal Right Shift and Round A-29
Multiplying by a Variable Power of 10
ZERO AND ADD (ZAP) A-30
Floating-Point Instructions A-30
ADD NORMALIZED (AE, AER, AD, ADR)
ADD UNNORMALIZED (AU, AUR,
AW, AWR) A-31
COMPARE (CE, CER, CD, CDR) A-31
Multiprogramming and Multiprocessing Examples
Example of a Program Failure Using
OR Immediate A-32
COMPARE AND SWAP (CS, CDS) A-32
Setting a Single Bit A-33
Updating Counters A-33

Appendix B. Lists of Instructions B-1

Appendix C. Condition-Code Settings C-1

Appendix D. Table of Powers of 2 D-1

Appendix E. Hexadecimal Tables E-1

Index X-1

A-30

A-30

A-32

ix

Chapter 1. Introduction

Contents

The IBM 4300 Processors 1-1
Compatibility 1-2

Compatibility Among 4300 Processors 12
Compatibility Between 4300 Processors and System/370 1-2

Control-Program Compatibility

Problem-State Compatibility

The IBM 4300 Processors

The IBM 4300 Processors are small and moderately
sized processors that have evolved from System/370.
They may be used in one of two architectural modes
of operation. When operating in the Extended
Control Program Support: Virtual Storage Extended
(ECPS:VSE) mode, a processor provides new
facilities that are designed specifically to enhance the
DOS/VSE control program. To run control programs
such as VM/370 and OS/VS1, which do not use
these facilities, a processor is placed in the
System/370 mode. This publication describes the
architecture of the 4300 Processors when operating in
the ECPS:VSE mode.

The architecture of a machine defines its attributes
as seen by the programmer, that is, the conceptual
structure and functional behavior of the machine, as
distinct from the organization of the data flow, the
logical design, the physical design, and the perfor-
mance of any particular implementation. Several
dissimilar machine implementations may conform to a
single architecture. When programs running on
different machine implementations produce the
results that are defined by a single architecture, the
implementations are considered to be compatible.

The ECPS:VSE mode includes a new storage-
control facility, called one-level addressing, for
creating a single virtual storage of up to 16,777,216
bytes, which both the CPU and the channels address
directly using one uniform set of virtual addresses.
Mapping the virtual storage onto the real storage is
performed internal to the machine.

The one-level-addressing facility provides new
instructions and interruptions which the control

1-2

1-2

program uses to determine which parts of virtual

storage currently are mapped onto real storage and

thereby are made addressable. These instructions
and interruptions, and the associated internal
address-mapping functions, take the place of dynamic
address translation (DAT) and channel indirect data
addressing in System/370.

The ECPS:VSE mode also includes a new status-
saving function, called machine save, which preserves
the entire CPU state and the first 2,048 (2K) bytes
of storage. The operator uses machine save in
preparation for a complete storage dump. Machine
save replaces the store-status function of
System /370, which necessarily alters some of the
storage to be dumped.

If multiple virtual storages are not required, the
ECPS:VSE mode affords the following advantages
when compared to System/370:

« .Simpler storage-mapping function, with more of
the function performed automatically by the
machine

« Improved control-program performance, because
the control program need not translate the V1rtua1
addresses of channel programs

Programming of the machine has been simplified,
relative to System/370, by omitting the following
functions:

« Multiprocessing and associated instructions

» Machine-check logout and full channel logout

These model-dependent logouts are replaced by
internal facilities for diagnosing machine
malfunctions. This removes model-dependent error-
handling procedures from the control program and
improves serviceability.

Chapter 1. Introduction 1-1

Compatibility

Compatibility Among 4300 Processors

- Although models of the 4300 Processors differ in
implementation and physical capabilities, logically
they are upward and downward compatible.
Compatibility provides for simplicity in education,
availability of system backup, and ease in system
growth. Specifically, any program will give identical
results on any model, provided that it:

1. Is not time-dependent.

2. Does not depend on system facilities (such as
storage capacity, I/O equipment, or optional
features) being present when the facilities are not
included in the configuration.

3. Does not depend on system facilities being absent
when the facilities are included in the
configuration. For example, the program should
not depend on interruptions caused by the use of
operation codes or command codes that in some
models are not assigned or not installed. Also, it
must not use or depend on fields associated with
uninstalled facilities. For example, data should
not be placed in an area used by another model
for logout. Similarly, the program must not use
or depend on unassigned fields in machine
formats (control registers, instruction formats,
etc.) that are not explicitly made available for
program use.

4. Does not depend on results or functions that are
defined in this publication to be unpredictable or
model-dependent,.-or on special-purpose functions
(such as emulators and assists) that are not des-
cribed in this publication. This includes the
requirement that the program should not depend
on the assignment of I/0 addresses.

5. Does not depend on results or functions that are
defined in the functional-characteristics publica-
tion for a particular model to be deviations from
this publication.

1-2 IBM 4300 Processors Principles of Operation

Compatibility Between 4300 Processors and
System/370

Control-Program Compatibility

If the preceding compatibility restrictions are
observed, a program written for the 4300 Processors
or System/370 will run on the other system.
However, because of the compatibility restrictions,
control programs cannot be transferred between these
systems if they take advantage of facilities that are
available on one system but not the other. In
particular, the 4300 Processors do not offer the
System/370 dynamic-address-translation facility in
the ECPS:VSE mode and, hence, cannot execute
programs which rely on this particular facility.

To provide full control-program compatibility
between System/370 and the 4300 Processors, the
4300 Processors offer an alternate microprogram that
causes the machine to assume the characteristics of a
System/370 model. When the machine is in this
mode, the operation of the machine is as described in
the IBM System/370 Principles of Operation,
GA22-7000.

Problem-State Compatibility

A high degree of compatibility exists at the problem-
state level between 4300 Processors operating in the
ECPS:VSE mode and System/370. Because the
majority of a user’s applications are written for the
problem state, this problem-state compatibility is
useful in many installations.

A program written to run in the problem state on
4300 Processors or System/370 will run on the other
system, provided that it:

1. Observes the limitations described in the section
"Compatibility Among 4300 Processors. "

2. Is not dependent on results defined in this
publication or in the IBM System/370 Principles
of Operation, as appropriate, to be unpredictable
or model-dependent (an extension of the fourth
rule in the section " Compatibility Among 4300
Processors').

3. 1Is not dependent on control-program facilities
which are unavailable on the system.

To allow the problem programmer to guard against
the effects of facilities that are available on
System/370 but not on 4300 Processors, this
publication in several places describes the results of
such effects. For example, when a program is written
which shares storage in a multiprogramming
environment on a single-CPU configuration,

precautions should be taken to allow such a program
to run correctly on a multiple-CPU (multiprocessing)
configuration.

Specifically, COMPARE AND SWAP, COMPARE
DOUBLE AND SWAP, and TEST AND SET are the
only instructions which should be used to create
interlocks between concurrent programs. These are
the only instructions that do not, between fetching
and storing of the storage operand, permit another
CPU to access the operand location. The instructions
AND (NI or NC), EXCLUSIVE OR (XI or XC), and
OR (OI or OC) should not be used for such inter-
locks.

Serialization of CPU operations, which is performed
by all interruptions and by the execution of certain
instructions, affects the sequence of events as
observed by other CPUs in a multiprocessing
configuration as well as by channels. (See the
section "Serialization" in Chapter 5, "Program
Execution.")

Programming Note

This publication assigns meanings to various opera-
tion codes, to bit positions in instructions, channel-
command words, registers, and table entries, and to
fixed locations in the low 512 bytes of storage
(addresses 0-511). Other operation codes, bit
positions, and low-storage locations are specifically
noted as being available for programming use. The
remaining ones are unassigned and reserved for
future assignment to new facilities and other
extensions of the architecture.

To ensure that existing programs run if and when
such new facilities are installed, programs should not
depend on an indication of an exception as a result of
invalid values that are currently defined as being
checked. If a value must be placed in unassigned
positions that are not checked, the program should
enter zeros. When the machine provides a code or
field, the program should take into account that new
codes and bits may be assigned in the future. The
program should not use unassigned low-storage loca-
tions for keeping information since these locations
may be assigned in the future in such a way that the
machine causes this location to be changed.

Chapter 1. Introduction 1-3

Chapter 2. Organization

Contents

Main Storage 2-1

Central Processing Unit 2-1
General Registers 2-2
Floating-Point Registers 2-2
Control Registers 2-3

Input and Output 2-3
Channels - 2-4

Input/Output Devices and Control Units 2-4

Operator Facilities 2-4

Logically, IBM 4300 Processors consist of main
storage, a central processing unit (CPU), operator
facilities, and channels. The channels allow
input/output (I/0) devices to be attached, usually
through control units (see the figure "Logical
Structure''). ‘

Specific processors may differ in their internal
characteristics, the number and types of channels, the
size of main storage, and the representation of the
operator facilities. The differences in internal
characteristics are apparent to the observer only as
differences in machine performance.

Main .
Storage CcPU

/F —7/
Channel Channel

T T

Logical Structure

1/0 Devices

Main Storage

The 4300 Processors provide fast-access main storage
and storage-control functions to permit high-speed
processing of data by the CPU and channels. The
storage-control functions permit main storage to be

 controlled at two levels: real storage and virtual

storage.

Real storage is the storage where data and instruc-
tions actually reside at the time they are accessed by
the CPU and channels, but neither CPU programs
nor channel programs can address real storage
directly. The size of real storage depends on the
model.

Virtual storage allows both CPU programs and
channel programs to address an apparent main
storage of up to 16,777,216 (16M) bytes. Virtual
storage may be larger than the underlying real
storage. If the virtual storage is larger than the real
storage, a supervisory control program using the
storage-control functions of the machine is required
for controlling which parts of virtual storage are
currently mapped onto real storage. This control is
dynamic and transparent to the other programs
except for the time delay.

Central Processing Unit

The central processing unit (CPU) is the controlling
center of the machine. It contains the sequencing
and processing facilities for instruction execution,
interruption action, timing functions, initial program
loading, and other machine-related functions.

The physical makeup of the CPU in the various
models of the machine may be different, but the

Chapter 2. Organization 2-1

logical function remains the same. The result of
executing a valid instruction is the same for each
model.

The CPU, in executing instructions, can process
binary integers and floating-point numbers of fixed

.length, decimal integers of variable length, and logical
information of either fixed or variable length.
Processing may be in parallel or in series; the width
of the processing elements, the multiplicity of the
shifting paths, and the degree of simultaneity in
performing the different types of arithmetic differ
from one CPU to another without affecting the
logical results.

Instructions which the CPU executes fall into five
classes: general, decimal, floating-point, control, and
input/output instructions. The general instructions
are used in performing fixed-point arithmetic opera-
tions and logical, branching, and other nonarithmetic
operations. The decimal instructions operate on data
in the decimal format, and the floating-point
instructions on data in the floating-point format. The
control instructions and the input/output instructions
are privileged instructions that can be executed only
when the CPU is in the supervisor state.

To perform its functions, the CPU may use a cer-
tain amount of internal storage. Examples of such
functions include the mapping of virtual storage to
real storage and the arithmetic and logical functions.
This internal storage is not considered part of main
storage and is not addressable by programs.

The CPU provides registers which are available to
programs but do not have addressable representations
in main storage. They include the current program-
status word (PSW), the general registers, the
floating-point registers, the control registers, and
registers associated with the timing facilities. The
current PSW contains information used to control
instruction sequencing and to hold and indicate the
states of the machine in relation to the program
currently being executed. Registers associated with
the timing facilities are the time-of-day (TOD) clock,
the clock comparator, and the CPU timer.

Some models may use the same physical storage for
both addressable main storage and unaddressable
internal storage, and internal storage may actually
contain the CPU registers. Such internal storage is
not considered to be part of main storage, because
the program cannot access the contents of internal
storage by means of storage addresses.

The general, floating-point, and control registers are
discussed separately in the following sections. (See
also the figure "General, Floating-Point, and Control

2-2 IBM 4300 Processors Principles of Operation

Registers.”") The instruction operation code deter-
mines which type of register is to be used in an
operation.

General Registers

Instructions may designate information in one or
more of 16 general registers. The general registers
may be used as base-address registers and index
registers in address arithmetic and as accumulators in
general arithmetic and logical operations. Each
register contains 32 bits. The general registers are
identified by the numbers 0-15 and are designated by
a four-bit R field in an instruction. Some instructions
provide for addressing multiple general registers by
having several R fields.

For some operations, two adjacent general registers
are coupled, providing a 64-bit format. In these
operations, the program must designate an even-
numbered register, which contains the leftmost
(high-order) 32 bits. The next higher-numbered
register contains the rightmost (low-order) 32 bits.

In addition to their use as accumulators in general
arithmetic and logical operations, 15 of the 16
general registers are also used as base-address and
index registers in address generation. In these cases,
the registers are designated by a four-bit B field or X
field in an instruction. A value of zero in the B or X
field specifies no base or index is to be applied, and,
thus, general register 0 cannot be designated as
containing a base address or index.

Floating-Point Registers

Four floating-point registers are available for
floating-point operations. They are identified by the
numbers 0, 2, 4, and 6. Each floating-point register
is 64 bits long and can contain either a short (32-bit)
or a long (64-bit) floating-point operand. A short
operand occupies the leftmost bit positions of a
floating-point register. The rightmost portion of the
register is ignored and remains unchanged in
arithmetic operations that call for short operands.
Two pairs of adjacent floating-point registers can be
used for extended operands: registers 0 and 2, and
registers 4 and 6. Each of these pairs provides a
128-bit format.

Control Registers

The CPU has provisions for 16 control registers, each
having 32 bit positions. The bit positions in the
registers are assigned to particular facilities in the
system, such as program-event recording, and are
used either to specify that an operation can take
place or to furnish special information required by
the facility.

The control registers are identified by the numbers
0-15 and are designated by four-bit R fields in the

R Field Reg Number Control Registers

General Registers

instructions LOAD CONTROL and STORE
CONTROL. Multiple control registers can be
addressed by these instructions.

Input and Qutput

Input/output (I/O) operations involve the transfer of
information between main storage and an I/O device.
1/0 devices attach to channels, which control this
data transfer.

Floating-point Registers

T

64 Bits >

fe— 32Bits —»]

wo o RN
w [
on s R
oo R
o]

[

Note: The braces indicate that the two registers may be coupled as a double-register pair, designated by specifying the lower-
numbered register in the R field. For example, the general-register pair O and 1 is designated in the R field by the number 0.

General, Floating-Point, and Control Registers

Chapter 2. Organization 2-3

Channels

A channel relieves the CPU of the burden of
communicating directly with I/O devices and permits
data processing to proceed concurrently with 1/0
operations. A channel connects with the CPU, with
maijn storage, and with control units.

A channel may be an independent unit, complete
with the necessary logical and internal-storage
capabilities, or it may time-share CPU facilities and
be physically integrated with the CPU. In either
case, channel functions are identical. Channels may
be implemented, however, to have different maximum
data-transfer capabilities.

There are three types of channels:
byte-multiplexer, block-multiplexer, and selector
channels.

Input/Output Devices and Control Units

Input/output devices include such equipment as card
readers and punches, magnetic-tape units, direct-
access storage, displays, keyboards, printers, tele-
processing devices, and sensor-based equipment.
Many I/0 devices function with an external medium,
such as punched cards or magnetic tape. Some I/O

2-4 IBM 4300 Processors Principles of Operation

devices handle only electrical signals, such as those
found in sensor-based networks. In either case,
1/0O-device operation is regulated by a control unit.
The control-unit function may be housed with the
I/0 device or in the CPU, or a separate control unit
may be used. In all cases, the control-unit function
provides the logical and buffering capabilities neces-
sary to operate the associated I/O device. From the
programming point of view, most control-unit
functions merge with I/0-device functions.

Operator Facilities

The operator facilities provide the functions
necessary for operator control of the machine. It
may have an associated operator-console device
which may also be used as an I/O device for
communicating with the control program and problem
programs.

The main functions provided by the operator facili-
ties are system reset, clearing, initial program loading,
start, stop, alter, and display.

Chapter 3. Storage

Contents

Information Formats and Addressing 3-1
Information Formats 3-1
Storage Addressing 3-2
Integral Boundaries 3-2

One-Level Addressing 3-2
Storage Size 3-3
Pages 3-3
Page Frames 3-3
Page Description 3-3

Storage Key 3-3
Page Bits 3-4
Page States 3-4

This chapter discusses the representation of
information in storage, how information is addressed,
and the one-level-addressing facility for controlling
virtual and real storage. The chapter also contains a
list of permanently assigned storage locations.

The term "main storage" is used generically to
describe both virtual and real storage, in order to
distinguish this fast-access storage from auxiliary
storage, such as direct-access storage devices.
Because, in this publication, most references to main
storage apply to virtual storage, the abbreviated term
"storage" is generally used in place of "virtual
storage' when the meaning is clear.

All addresses of storage locations are virtual
addresses, because they always refer to virtual
storage. Hence, when applied to main storage,
address means virtual address in this publication.

Information Formats and Addressing

Information Formats

Information is transmitted between storage and the
CPU or a channel in units of eight bits, or a multiple
of eight bits, at a time. Each eight-bit unit of
information is called a byte, the basic building block
of all formats. The bits in a byte are numbered 0
through 7, from left to right. '

The bits in an address, which is 24 bits long, are
numbered 8 through 31. Within any other
fixed-length format of multiple bytes, the bits making
up the format are consecutively numbered from left
to right, starting with the number 0. Leftmost bits

Frame Index 3-5
Page and Frame Control 3-5
Capacity Counts 3-5
Storage-Control Instructions 3-6
Key-Controlled Protection 3-6
Protection Action 3-6
Accesses Protected 3-7
Reference and Change Recording 3-7
Assigned Storage Locations 3-8
Storage While CPU Is in Operating State 3-8
Storage While CPU Is in Load State 3-10

are sometimes referred to as the "high-order" bits
and rightmost bits as the "low-order" bits.

For purposes of error detection, and in some models
for correction, one or more check bits may be
transmitted with each byte or with a group of bytes.
Such check bits are generated automatically by the
machine and cannot be directly controlled by the
program. References in this manual to the length of
data fields and registers exclude mention of the
associated check bits. All storage capacities are
expressed in number of bytes.

Bytes may be handled separately or grouped
together in fields. A halfword is a group of two
consecutive bytes and is the basic building block of
instructions. A word or fullword is a group of four
consecutive bytes; a doubleword is a group of eight
bytes. The location of any field or group of bytes is
specified by the address of its leftmost byte.

The length of fields is either implied by the
operation to be performed or stated explicitly as part
of the instruction. When the length is implied, the
information is said to have a fixed length, which can
be one, two, four, or eight bytes.

When the length of a field is not implied by the
operation code, but is stated explicitly, the
information is said to have variable field length.
Variable-length operands are variable in length by
increments of one byte.

When information is placed in storage, the contents
of only those byte locations are replaced that are
included in the designated field, even though the

Chapter 3. Storage 3-1

width of the physical path to storage may be greater
than the length of the field being stored.

Storage Addressing

Byte locations in storage are consecutively numbered,
left to right, starting with 0; each number is
considered the address of the corresponding byte. A
group of bytes in storage is addressed by the leftmost
byte of the group. The number of bytes in the group
is either implied or explicitly defined by the
operation. Addresses are 24-bit binary numbers,
which provide 16,777,216 (224 or 16M) byte
addresses.

Storage addressing wraps around from the maximum
byte address, 16,777,215, to address 0. In a
16M-byte storage, information may be located
partially in the last and partially in the first locations
of storage and is processed without any special
indication of crossing the maximum-address
boundary.

Integral Boundaries

Certain units of information must be located in
storage on an integral boundary. A boundary is

. called integral for a unit of information when its
storage address is a multiple of the length of the unit
in bytes. Special names are given to fields of two,
four, and eight bytes when they are located on an
integral boundary. A halfword is a group of two
consecutive bytes on a two-byte boundary and is the
basic building block of instructions. A word is a
group of four consecutive bytes on a four-byte
boundary. A doubleword is a group of eight
consecutive bytes on an eight-byte boundary.

Thus, a word is on an integral boundary when it is
located in storage so that its address (that is, the
address of the leftmost of the four bytes) is a multiple
of the number 4. Similarly, a halfword is on an
integral boundary when it has an address that is a
multiple of the number 2, and a doubleword is on an
integral boundary when it has an address that is a
multiple of the number 8. (See the figure "Integral
Boundaries for Halfwords, Words, and
Doublewords.")

When storage addresses designate halfwords, words,
and doublewords on integral boundaries, the binary
representation of the address contains one, two, or
three low-order zero bits, respectively.

Instructions must appear on halfword integral
boundaries, and channel-command words and the
storage operands of certain instructions must appear
on other integral boundaries. The storage operands

3-2 IBM 4300 Processors Principles of Operation

of most instructions do not have boundary-alignment
requirements.

[———————— Storage Locations (with Simplified Addresses) —————

1}
|
|
|
|

w0,/
A

' I/ooos '

1
A !)
|) | |
{ | I
| P |
| woro | worp |
! / y, Y,

loooo ' ' ' 0004 ' ' ' 0008

1 L 1 L L 1 1
4 4

|

i |
| |
! |
: DOUBELEWORD I
, v y

1 T T L] T T T

0000 0008
1 1 1 i 1 1 L 1

Integral Boundaries for Halfwords, Words, and Doublewords

Programming Note

Significant performance degradation is possible when
storage operands are not positioned at addresses that
are integral multiples of the operand length. To
improve performance, frequently used storage
operands should be aligned on integral boundaries.

One-Level Addressing

The one-level-addressing facility may be used by the
control program to create virtual storage that is larger
than the actual capacity of the underlying real
storage. Other programs and channels address this
virtual storage directly as if all data and instructions
actually resided in virtual storage.

Main storage is volatile; that is, the contents are not
preserved when power is off.

Storage Size

The storage size is the number of addressable byte
locations provided in virtual storage. A model may
allow one or more storage sizes. If more than one
storage size is provided, the current storage size is
determined by the manual storage-size control during
an initial microprogram loading (IML) operation.
The storage size cannot be changed by programming.

The storage size is always a multiple of 2,048 (2K)
bytes, up to a maximum of 16,777,216 (16M) bytes.

When the storage size exceeds the size of real
storage, the parts of virtual storage which are
currently not directly accessible may be kept on
auxiliary storage, such as direct-access storage devices
(DASD). The transfer of the contents of virtual
storage to and from auxiliary storage may be
controllied by a supervisory control program using
1/0 instructions in such a way that the remaining
CPU programs and channel programs can address any
part of virtual storage as if it were all directly
accessible.

Storage addresses range from zero to one less than
the storage size. If the CPU attempts to refer to a
storage location that is not provided or to the
corresponding page description (see below), that
attempt is indicated by an addressing exception or, in
the case of the LOAD FRAME INDEX instruction,
by the condition code. If an I/O operation attempts
to access a storage location that is not provided, the
operation is terminated by a channel program check.

Normally, the indication that a location is not
provided is given only when the information
associated with that location is actually required, and
not when the operation can be completed without
that information.

When the storage size is set to the maximum of
16M bytes, all storage locations are provided;
addressing exceptions or channel program checks for
CCW or data locations cannot occur.

Pages
Virtual storage is divided into pages, each page
consisting of 2,048 (211) consecutive bytes on a
2,048-byte address boundary. Virtual storage has up
to 8,192 (213) pages of storage. The size of virtual
storage and, hence, the number of pages provided
depend on the model and on the setting of the
manual storage-size control, if one is provided.
Storage-control instructions, except for INSERT
STORAGE KEY and SET STORAGE KEY, refer to
a page by the address of any byte in that page. The
low-order 11 bits of an operand address referring to

a whole page are ignored. The INSERT STORAGE
KEY and SET STORAGE KEY instructions also use
a page address, but the low-order four bits of their
operand address must be zeros.

Page Frames

Real storage is divided into page frames, each capable
of containing the data for one page of virtual storage.
The size of real storage and, hence, the number of
page frames present in the machine depend on the
model. Real storage is not explicitly addressable by
CPU programs and channel programs.

A virtual-storage page, to be accessible to CPU
programs and channel programs, must be associated
with a real-storage page frame. An instruction is
provided which assigns to a page a free page frame
selected by the machine. This instruction is said to
connect the page to its assigned frame. Thereafter,
the page frame is referred to by the address of the
corresponding page. When any previous contents of
the page have been retrieved from external storage
and the page is ready for accessing by a CPU
program, another instruction is used to make the page
addressable.

As the supply of free page frames diminishes, the
control program may make a page not addressable
and, if any bytes in the page have been changed,
write the contents of the page on auxiliary storage.
An instruction may then be issued to disconnect the
page, thus freeing its frame. _

A page frame cannot be assigned to more than one
page at a time.

Page Description

Associated with each virtual-storage page which is
provided are a seven-bit storage key, three
programmable page bits, a page state, and the frame
index of the page frame currently assigned to the
page, if any. This information, called the page
description, is maintained in internal storage.

Storage Key

A control field, called storage key, is associated with
each page that is provided.

ACC FIR|C

Chapter 3. Storage 3-3

The bit positions in the storage key are allocated as
follows:

Access-Control Bits (ACC): The four access-control
bits, bits 0-3, are matched with the four-bit access
key whenever information is stored, or whenever
information is fetched from a location that is
protected against fetching.

Fetch-Protection Bit (F): The fetch-protection bit,
bit 4, controls whether protection applies to
fetch-type references: a zero indicates that only
store-type references are monitored and that fetching
with any access key is permitted; a one indicates that
protection applies both to fetching and storing. No
distinction is made between the fetching of
instructions and of operands.

Reference Bit (R): The reference bit, bit 5, normally
is set to one each time a location in the
corresponding page is referred to either for storing or
for fetching of information.

Change Bit (C): The change bit, bit 6, is set to one
each time information is stored at a location in the
corresponding page.

The entire storage key is set by SET STORAGE
KEY and inspected by INSERT STORAGE KEY.
The reference and change bits are also set by SET
PAGE BITS and inspected by INSERT PAGE BITS.
Additionally, the instruction RESET REFERENCE
BIT provides a means of inspecting the reference and
change bits and of setting the reference bit to zero.

Page Bits

The three programmable page bits associated with
each page may be set by the instruction SET PAGE
BITS and inspected by INSERT PAGE BITS. The
page bits are disregarded by the machine during other
operations.

Programming Note

The page bits may be used by the program to assist in
managing pages on auxiliary page storage. For
example, one of the bits may indicate whether a
version of the corresponding page exists on auxiliary
storage.

3-4 IBM 4300 Processors Principles of Operation

Page States

A page may be in one of three states:
« Disconnected

e Connected

¢ Addressable

If disconnected, the page does not have a page
frame assigned to it. Any attempt by the CPU to
access a disconnected page causes a page-access
exception or, when a CLEAR PAGE instruction is
being executed, a page-state exception. Any attempt
by a channel to access a disconnected page, in order
to fetch a CCW or to access a data area designated
during the execution of a CCW, creates an
I/O-interruption condition indicating protection
check. However, if a CCW is prefetched, a
protection check is not indicated until the CCW is
due to be executed.

If connected, the page has a page frame assigned to
it. A connected page may be accessed, if the
protection mechanism permits:

1. By I/O channels
2. By the CPU as the operand of a CLEAR PAGE
instruction

Except when executing CLEAR PAGE, an attempt
by the CPU to access a connected page causes a
page-access exception.

If addressable, the page has a page frame assigned
to it, and the CPU and 1/0 channels may access the
page if the protection mechanism permits.

Although the addressable state implies that the page
is also connected, the term "connected state" refers
specifically to the state of a page that is neither
addressable nor disconnected.

The page state is checked for all storage accesses to
locations that are explicitly or implicitly accessed by
the CPU or by a channel.

The page state is changed by instructions, which
may make the transition from the disconnected to the
connected state and from the connected to the
addressable state, or vice versa. The instructions are
CONNECT PAGE, DECONFIGURE PAGE,
DISCONNECT PAGE, MAKE ADDRESSABLE,
and MAKE UNADDRESSABLE. Most of these
instructions may also be applied to pages which are

" already in the desired state. An attempt to change

directly from disconnected to addressable, or vice
versa, causes a page-transition exception. A
page-transition exception is also caused by
DECONFIGURE PAGE when applied to a
disconnected page.

The first page, page 0, containing byte locations 0
to 2047, is always addressable. It cannot be placed
in the connected or disconnected state..

The clear-reset function causes a number of
consecutive pages, starting with page 0, to be
assigned to page frames, cleared, and placed in the
addressable state. (See the section "Clear Reset" in
Chapter 4, "Control.")

Programming Notes

1. The three page states permit programs to
distinguish pages in the disconnected state, which
cannot be accessed at all, from pages in the
connected state, which are undergoing I/0
operations to or from external page storage, and
from pages in the addressable state, which are
ready for normal storage access. .

2. The storage-control instructions other than
CLEAR PAGE operate on page descriptions, not
pages. Instructions which operate on page
descriptions do not make storage accesses and do
not cause page-access or protection exceptions.

3. All channel accesses to storage appear as if they
referred to pages and not to the associated page
frames. If a page that is being accessed by a
channel becomes disconnected and another
channel access is attempted, protection check is
indicated, and the I/O operation terminates. If
the page becomes disconnected and then becomes
reconnected before protection check is indicated,
protection check may be indicated subsequently,
or accesses may continue using the newly
assigned page frame.

Frame Index

A unique 16-bit binary integer is assigned to each
page frame existing in the machine. This integer is
the frame index of the page frame. The value of the
frame index ranges from zero up to, but not
including, the existing-frame-capacity count (EFCC)
(see the section ''Capacity Counts" in this chapter).

When a CONNECT PAGE instruction connects a
page to a frame, the frame index of the connected
frame is returned by the instruction. The frame
index remains associated with that page until the
page is disconnected. When the same page is
connected again, the new frame index is, in general,
different and unpredictable unless there was only one
free frame remaining.

The frame index for an already connected or
addressable page may be displayed by LOAD
FRAME INDEX.

When DECONFIGURE PAGE makes a page frame
unavailable, the frame index of that frame will not
recur until a clear-reset operation is performed.

The frame index currently associated with a page is
part of its page description. A disconnected page has
no frame index, and LOAD FRAME INDEX returns
no frame-index value for a disconnected page.

Programming Notes

1. The frame index assists the control program in
maintaining compact tables of connected or
addressable pages. The frame index is not, and
should not be interpreted as, the address of a
frame in real storage. The algorithm for
assigning a frame index to a page frame is
implementation-dependent. Programming should
not depend on a particular algorithm.

2. The set of frame indexes is dense if the EFCC
equals the AFCC, that is, if there are no
unavailable page frames. It becomes nondense to
the extent that frames are made unavailable by
DECONFIGURE PAGE or by maintenance
intervention.

3. DECONFIGURE PAGE removes a page frame
from contention for connection when a machine
check has indicated damage ‘to a’page..This can
be done only while the frame is connected to a
page, because a frame cannot be addressed
directly. '

Page and Frame Control

Capacity Counts

Four internally maintained counts are defined to
assist the program in managing pages and page
frames. Each count is a 16-bit unsigned binary
integer. The counts are set or updated by the
machine. They are displayed by the STORE
CAPACITY COUNTS instruction, which stores each
count as a 32-bit integer with 16 high-order zero bits.

The page-capacity count (PCC) is the number of
virtual-storage pages provided by the machine. The
pages have page addresses from 0 to PCC minus one.
The value of the PCC is equal to the storage size
divided by 2,048; it is set during clear reset according
to the current setting of the manual storage-size
control, if one is provided. ‘

The existing-frame-capacity count (EFCC) is the
number of page frames existing in a particular
implementation of the machine. The EFCC reflects
the total capacity of real storage. The value of the
EFCC is set during clear reset.

Chapter 3. Storage 3-5

The available-frame-capacity count (AFCC) is the
number of page frames connected or available for
connection to pages. The value of AFCC may be .
equal to or less than the EFCC. During CPU
operation, the AFCC may be decreased by the
instruction DECONFIGURE PAGE. The clear-reset
function initializes the AFCC to the value of the
EFCC less the number of frames that are kept
unavailable for connection by maintenance
intervention.

The free-frame-capacity count (FFCC) is the
number of available page frames that are currently
not connected to pages. The value of the FFCC may
range from zero to the AFCC minus one. During
CPU operation, the value of the FFCC may be
changed by the instructions CONNECT PAGE and
DISCONNECT PAGE. The clear-reset operation
initializes the FFCC to zero or to the value of AFCC
minus PCC, depending on whether the AFCC is less
than the PCC or not.

Since page 0 must always be addressable, the frame
connected to page 0 is considered available but not
free. Hence, the minimum value of the AFCC is one,
and the maximum. value of the FFCC is the AFCC
minus one.

Storage-Control Instructions

CONNECT PAGE is used to change a page from the
disconnected to the connected state. MAKE
ADDRESSABLE changes a page from connected to
addressable. MAKE UNADDRESSABLE changes
the page state from addressable to connected.
DISCONNECT PAGE changes the page state from
connected to disconnected. DECONFIGURE PAGE
disconnects a connected page and makes the
corresponding page frame and its frame index
unavailable. LOAD FRAME INDEX tests the page
state of a page and displays its frame index, if any.
These six instructions do not change or check the
storage key of the specified pages.

CLEAR PAGE sets the contents of a page to zero
and validates the page.

SET STORAGE KEY replaces the storage key of a
page. INSERT STORAGE KEY retrieves the storage
key of a page except, in the BC mode, for the
reference and change bits. RESET REFERENCE
BIT tests the reference and change bits and resets the
reference bit to zero.

SET PAGE BITS tests the reference and change
bits of a page and then explicitly sets them along with
the three programmable page bits of that page.
INSERT PAGE BITS retrieves the values of the three

3-6 IBM 4300 Processors Principles of Operation

page bits, the reference bit, and the change bit of a

page.
All storage-control instructions are privileged.

Key-Controlled Protection

Key-controlled protection is provided to protect the
contents of storage from destruction or misuse caused
by erroneous or unauthorized storing or fetching by
the program. It affords protection against improper
storing or against both improper storing and fetching,
but not against improper fetching alone.

Protection Action

When key-controlled protection applies to a storage
access, a store is permitted only when the storage key
matches the access key associated with the request
for storage access; a fetch is permitted when the keys
match or when the fetch-protection bit of the storage
key is zero.

The keys are said to match when the four
access-control bits of the storage key are equal to the
access key or when the access key is zero.

The protection action is summarized in the figure
"Summary of Protection Action."

Conditions Is access to

Fetch-Protection storage permitted?

Bit of Storage

Key Key Relation Fetch Store
(4] Match Yes Yes
0 Mismatch Yes No
1 Match Yes Yes
1 Mismatch No No

Explanation:

Match The four access-control bits of the storage key are equal
to the access key, or the access key is zero.

Yes Access is permitted.

No Access is not permitted. On fetching, the information
is not made available to the program; on storing, the
contents of the storage location are not changed.

Summary of Protection Action

When the access to storage is initiated by the CPU,
and protection applies, the PSW key is the access key
which is used as the comparand. The PSW key
occupies bit positions 8-11 of the current PSW.

When the reference is made by a channel, and
protection applies, the subchannel key associated with
the I/0 operation is the access key which is used as
the comparand. The subchannel key is specified for

an I/O operation in bit positions 0-3 of the
channel-address word (CAW); the subchannel key is
later placed in bit positions 0-3 of the channel-status
word (CSW) that is stored as a result of the I/O
operation. '

When a CPU access is prohibited because of
protection, the operation is suppressed or terminated,
and a program interruption for a protection exception
takes place. When a channel access is prohibited,
protection check is indicated in the CSW stored as a
result of the operation.

When a store access is prohibited because of
protection, the contents of the protected location
remain unchanged. When a fetch access is
prohibited, the protected information is not loaded
into a register, moved to another storage location, or
provided to an I/O device.

Key-controlled protection is always active,
regardless of whether the CPU is in the problem or
supervisor state, and regardless of the type of CPU
instruction or channel-command word being
executed.

Accesses Protected

All accesses to storage locations that are explicitly
designated by the program and that are used by the
CPU to store or fetch information are subject to
protection.

All storage accesses by a channel to fetch a CCW
or to access a data area designated during the
execution of a CCW are subject to protection.

-However, if a CCW or output data is prefetched, a
protection check is not indicated until the CCW is
due to be executed or the data is due to be written.

Protection is not applied to accesses that are
implicitly made by the CPU or channel for such
sequences as:

o Interruptions,

« Updating the interval timer,

 Fetching the CAW during the execution of an 1/0
instruction,

« Storing the CSW by an I/0 instruction or
interruption,

o Storing channel identification during the execution
of STORE CHANNEL ID,

o Limited channel logout, or

« Initial program loading

Similarly, protection does not apply to accesses
initiated via the operator facilities for altering or
displaying information. However, when the program
explicitly designates these locations, they are subject
to protection.

Reference and Change Recording

Reference recording provides information for use in
selecting pages for replacement. Change recording
provides information as to which pages have to have
their contents saved when their connected page
frames are to be reused.

The reference bit normally is set to one each time a
location in the corresponding page is referred to
either for storing or fetching of information. The
change bit is set to one each time information is
stored in the corresponding page.

Reference and change recording takes place for any
storage access and applies to accesses made by the
CPU, as well as accesses due to I/O operations.
References to a storage location associated with
interruptions and I/O instructions, such as references
to the CAW, CSW, or PSW locations, are included.
It is unpredictable whether updating of the interval
timer causes the reference and change bits for
location 80 to be set to ones.

References to the page operand of the following
instructions do not cause storage access and do not
cause reference and change bits to be set to ones
implicitly:

CONNECT PAGE

DECONFIGURE PAGE (both bits are set to zeros)
DISCONNECT PAGE (both bits are set to zeros)
INSERT PAGE BITS

INSERT STORAGE KEY

LOAD FRAME INDEX

MAKE ADDRESSABLE

MAKE UNADDRESSABLE

RESET REFERENCE BIT (reference bit is set to zero)
SET PAGE BITS (both bits are set explicitly)

SET STORAGE KEY (both bits are set explicitly)

The change bit is not set to one for an attempt to
store if the storage reference is not permitted,
regardless of whether the CPU instruction responsible
for the reference is suppressed or terminated. In
particular, a CPU reference causing a protection or
page-access exception, and an I/O reference causing
a protection check, do not cause the change bit to be
set to one.

The instructions SET PAGE BITS and SET
STORAGE KEY may be used to set the reference
and change bits explicitly to either zero or one. SET
PAGE BITS also sets the condition code to indicate
the previous state of the reference and change bits.
The instruction RESET REFERENCE BIT tests both
the reference and change bits and sets the condition
code; it also sets the reference bit to zero. The

Chapter 3. Storage 3-7

instructions DECONFIGURE PAGE and
DISCONNECT PAGE set both the reference and
change bits to zeros.

The record of references provided by the reference
bit is substantially accurate. The reference bit may
be set to one by fetching data or instructions that are
neither designated nor used by the program, and,
under certain conditions, a reference may be made
without the reference bit being set to one. Under
certain unusual conditions, a reference bit may be set
to zero by other than explicit program action.

The record of changes provided by the change bit is
also substantially accurate. Under certain conditions,
the change bit may be set to one when storing is
permitted but no storing has actually taken place.
However, the change bit is always set to one when
storing occurs and is never set to zero without
explicit program action. ’

Programming Note

The accuracy of reference and change recording is
sufficient to allow effective operation of
page-replacement algorithms.

Assigned Storage Locations

Assigned locations in storage have different uses
when the CPU is in the operating state or in the load
state. This section is summarized in the figure

" Assigned Storage Locations."

Programming Note

In the BC mode, there is no implicit storing in

locations 128 and above if all of the following

conditions are met:

1. The manual check control is set to stop.

2. The MONITOR CALL and STORE CHANNEL
ID instructions are not issued.

3. The page-capacity count is equal to or less than
the available-frame-capacity count and all pages
are addressable.

Storage While CPU Is in Operating State

This section shows the format and extent of the

assigned storage locations while the CPU is in the

operating state. Unless specifically noted, the usage

applies to both the EC and BC modes.

0-7 Restart New PSW: The new PSW is
fetched from locations 0-7 during a restart
interruption.

3-8 IBM 4300 Processors Principles of Operation

8-15

24-31

32-39

40-47

4855

56-63

64-71

72-75

80-83

88-95

96-103

104-111

112-119

Restart Old PSW: The current PSW is
stored as the old PSW at locations 8-15
during a restart interruption.

External Old PSW: The current PSW is
stored as the old PSW at locations 24-31
during an external interruption.

Supervisor-Call Old PSW: The current
PSW is stored as the old PSW at locations
32-39 during a supervisor-call interruption.

Program Old PSW: The current PSW is
stored as the old PSW at locations 40-47
during a program interruption.

Machine-Check Old PSW: The current
PSW is stored as the old PSW at locations
48-55 during a machine-check
interruption.

Input/Output Old PSW: The current PSW
is stored as the old PSW at locations 56-63
during an I/0O interruption.

CSW: The channel-status word (CSW) is
stored at locations 64-71 during an I/0O
interruption. It, or a portion thereof, may
be stored during the execution of START
I/0, START 1I/0O FAST RELEASE, TEST
I/0, CLEAR 1I/0, HALT 1/0, or HALT
DEVICE, in which case condition code 1
is set.

CAW: The channel-address word (CAW)

is fetched from locations 72-75 during the
execution of START I/0 and START I/0O
FAST RELEASE.

Interval Timer: Locations 80-83 contain
the interval timer. The interval timer is
updated whenever the CPU is in the
operating state and the manual interval-
timer control is set to enable.

External New PSW: The new PSW is
fetched from locations 88-95 during an
external interruption.

Supervisor-Call New PSW: The new PSW
is fetched from locations 96-103 during a
supervisor-call interruption.

Program New PSW: The new PSW is
fetched from locations 104-111 during a
program interruption.

Machine-Check New PSW: The new PSW
is fetched from locations 112-119 during a
machine-check interruption.

120-127

132-135

136-139

140-143

144-147

148-149

150-151

152-155

Input/Output New PSW: The new PSW is
fetched from locations 120-127 during an
1/0 interruption.

External-Interruption Code: During an
external interruption in the EC mode, the
interruption code is stored at locations
134-135, and zeros are stored at locations
132-133.

Supervisor-Call-Interruption Identification:
During a supervisor-call interruption in the
EC mode, the instruction-length code is
stored in bit positions 5 and 6 of location
137, and the interruption code is stored at
locations 138-139. Zeros are stored at
location 136 and in the remaining bit
positions of 137.

Program-Interruption Identification:
During a program interruption in the EC
mode, the instruction-length code is stored
in bit positions 5 and 6 of location 141,
and the interruption code is stored at
locations 142-143. Zeros are stored at
location 140 and in the remaining bit
positions of 141.

Access-Exception Address: During a
program interruption due to a page-access
exception, the address for which the
exception is being indicated is stored at
locations 145-147, and zeros are stored at
location 144.

Monitor-Class Number: During a program
interruption due to a monitor event, the
monitor-class number is stored at location
149, and zeros are stored at 148.

PER Code: During a program interruption
due to a program event, the program-
event-recording (PER) code is stored in bit
positions 0-3 of location 150, and zeros
are stored in bit positions 4-7 and at
location 151. This field can be stored only
when the instruction causing the PER
condition was executed under the control
of a PSW specifying the EC mode.

PER Address: During a program interrup-
tion due to a program event, the
program-event-recording (PER) address is
stored at locations 153-155, and zeros are
stored at location 152. This field can be
stored only when the instruction causing
the PER condition was executed under the
control of a PSW specifying the EC mode.

156-159

168-171

176-179

185-187

216-223

224-231

232-239

248-251

352-383

384-447

448-511

Monitor Code: During a program
interruption due to a monitor event, the
monitor code is stored at locations
157-159, and zeros are stored at location
156.

Channel ID: The four-byte channel-
identification information is stored at
locations 168-171 during the execution of
STORE CHANNEL ID.

Limited Channel Logout: The limited-
channel-logout information is stored at
locations 176-179. This field may be
stored only when the CSW or a portion of
the CSW is stored.

1/0 Address: During an 1/0 interruption
in the EC mode, the two-byte I/O address
is stored at locations 186-187, and zeros
are stored at location 185.

CPU-Timer Save Area: During a
machine-check interruption, the contents
of the CPU timer are stored at locations
216-223.

Clock-Comparator Save Area: During a
machine-check interruption, the contents
of the clock comparator are stored at
Iocations 224-231.

Machine-Check-Interruption Code: During
a machine-check interruption, the
machine-check-interruption code is stored
at locations 232-239.

Failing-Storage Address: During a
machine-check interruption, a failing-
storage address, if any, is stored at
locations 249-251, and zeros are stored at
location 248.

Floating-Point-Register Save Area: During
a machine-check interruption, the contents
of the floating-point registers are stored at
locations 352-383.

General-Register Save Area: During a
machine-check interruption, the contents of
the general registers are stored at locations
384-447.

Control-Register Save Area: During a
machine-check interruption, the contents
of the control registers are stored at
locations 448-511.

Chapter 3. Storage 3-9

Storage While CPU Is in Load State

0-7

8-15

3-10

IPL PSW: The first eight bytes read
during the IPL initial read operation are
stored at locations 0-7. The contents of
these locations are used as the new PSW at
the completion of the IPL operation.

These locations may also be used for
temporary storage at the initiation of the
IPL operation.

IPL CCWI: Bytes 8-15 read during the
IPL initial-read operation are stored at

IBM 4300 Processors Principles of Operation

16-23

locations 8-15. The contents of these
locations are ordinarily used as the next
CCW in an IPL CCW chain after comple-
tion of the IPL initial-read operation.

IPL CCW2: Bytes 16-23 read during the
IPL initial-read operation are stored at
locations 16-23. The contents of these
locations may be used as another CCW in
the IPL. CCW chain to follow IPL CCW1.

Hex

- - -
® »d OO ® & O

22233823388 88888383R83

NN NN
O ® & O

33%223882888¢88

o W
w0 »

Dec

112
116
120
124
128
132
136
140
144
148
152
156
160
164
168
172
176
180
184

Restart New PSW

Restart Old PSW

External Old PSW

Supervisor-Call Old PSW

Program Old PSW

Machine-Check Old PSW

Input/Qutput Old PSW

Channel Status Word

Channel Address Word

Interval Timer

External New PSW

Supervisor-Call New PSW

Program New PSW

Machine-Check New PSW

Input/Output New PSW

000000000000000 0|External-| nterruption Code

0000000000000}iLC|o| Superv -Call-trptn. Code

0000000000000JiLClolProgram-Interruption Code

[00000000] Access-Exception Address
00000000[Monitor C1 #[Per ¢ [000000000000
00000000 PER Address
00000000 Monitor Code
Channel 1D
Limited Channel Logout
[o0000000] 1/0 Address

Assigned Storage Locations

Hex
BC

co
c4

cc
Do
D4
D8
DC
EO
E4
E8
EC
FO
F4
F8
FC
100

108

158
15C
160
164
168
16C
170
174
178
17C
180
184
188
18C

184
188
18C
1C0
1C4
1C8
1cc

1F4
1F8
1FC

188
192
196

212
216
220
224
228
232
236
240
244
248
252
256
260
264

352

360

372
376

436
440

452

)
({

)
(&

CPU-Timer Save Area

Clock-Comparator Save Area

" Machine-Check Interruption Code

00000000|

Failing-Storage Address

1S9

))

4

Floating-Point Register Save Area

General-Register Save Area

y)

|88

Control-Register Save Ares v

))
149

Chapter 3. Storage

3-11

Chapter 4. Control

Contents

CPU States 4-1
Wait State 4-2
Supervisor and Problem States 4-2
Stopped, Operating, Load, and Check-Stop.States 4-2
EC and BC Modes 4-3
Program-Status Word 44
Program-Status-Word Format in EC Mode 44
Program-Status-Word Format in BC Mode 4-6
Control Registers 4-7
Monitoring 4-8
Program-Event Recording 4-9
Control-Register Allocation 4-9
Operation 4-10
Identification of Cause 4-10
Priority of Indication 4-11
Storage-Area Designation 4-11
PER Events 4-12
Successful Branching 4-12
Instruction Fetching 4-12
Storage Alteration 4-12

This chapter describes in detail a number of facilities
for:

« Changing and interrogating the state of the CP%J

¢ Measuring time

» Initiating certain operations externally

o In general, enhancing the efficiency, utility, and
programmability of the machine

The information determining the state and
controlling the operation of the CPU resides in the
program-status word (PSW) and in control registers.

Additional status and control information appears in

permanently assigned storage locations which are

listed in Chapter 3, "Storage." Supervisor state and a

set of instructions that are valid only in supervisor

state provide a means for avoiding unauthorized or
inadvertent change of the machine state.
There are four facilities for measuring time:

¢ The time-of-day clock permits indication of
calendar time.

« The clock comparator permits a program to be
alerted at a particular value of the time-of-day
clock.

«. The CPU timer and the interval timer provide
means for a program to be alerted after a specified
time interval has elapsed.

General-Register Alteration 4-12
Indication of Events Concurrently with
Other Interruption Conditions 4-13
Timing 4-15
Time-of-Day Clock 4-15
Format 4-15
States 4-16
Setting and Inspecting the Value 4-16
Clock Comparator 4-18
CPU Timer 4-18
Interval Timer 4-19
Externally Initiated Functions 4-20
Resets 4-20
Program Reset 4-21
Initial Program Reset 4-23
Clear Reset 4-23
Power-On Reset = 4-23
Initial Program Loading 4-24
Machine Save 4-25

There is a set of externally initiated functions for
initializing the machine or for inspecting its status.
These operations include resets, initial program
loading, and machine save.

Two facilities enhance the usability of the machine.
Monitoring is useful for performing various
measurement functions. Program-event recording
provides a means to assist in debugging programs.

CPU States

Excluding states that may exist only during
maintenance, the CPU has three sets of alternative
states:

+ Wait and nonwait

+ Supervisor and problem

« Stopped, operating, load, and check stop

These states differ in the way they affect CPU
functions and in the way they are indicated and
changed.

Chapter 4. Control = 4-1

Wait State

In the wait state, no instructions are processed,
whereas in the nonwait state, instruction processing
proceeds in the normal manner. The CPU is
interruptible in the wait state, provided it is enabled
for the interruption source.

The CPU is in the wait state when bit 14 of the
PSW is one. When bit 14 is zero, the CPU is in the
nonwait state.

When the CPU is in the wait state, the wait
indicator is on. .

The updating of timing facilities is not affected by
whether the CPU is in the wait or nonwait state.

Programming Note

The wait state may be used to halt instruction
processing until an I/O or external interruption
occurs. To leave the wait state without manual
intervention, the CPU must be enabled for the
interruption source.

Supervisor and Problem States

The choice between supervisor and problem state
determines whether the full set of instructions is
valid.

In the problem state, only those instructions are
valid that cannot be used to affect system integrity
and that do not pertain to maintenance functions. In
the supervisor state, all instructions are valid.

The instructions that are valid only when the CPU
is in the supervisor state are called privileged
instructions. They include those which modify or
inspect storage keys and other parts of the page
descriptions, those which modify or inspect the
control fields in the PSW and in control registers, and
those which pertain to timing facilities and
input/output. A privileged instruction encountered
in the problem state constitutes a privileged-operation
exception and causes a program interruption.

The CPU is in the problem state when bit 15 of the
PSW is one. When bit 15 is zero, the CPU is in the
supervisor state. '

The updating of timing facilities is not affected by
whether the CPU is in the problem or supervisor
state.

4-2 IBM 4300 Processors Principles of Operation

Programming Note

The CPU may be switched between the wait and
nonwait states and between the supervisor and
problem states only by introducing an entire new
PSW. This may be performed by an interruption or
by initial program loading.

The instruction LOAD PSW may be used to switch
from the supervisor to the problem state and from the
nonwait to the wait state, but not vice versa. To
allow the return from an interruption-handling
routine by LOAD PSW, the PSW for the
interruption-handling routine must specify the
supervisor state. '

Stopped, Operating, Load, and Check-Stop
States

The stopped, operating, load, and check-stop states
are four mutually exclusive states. When the CPU is
in the stopped state, instructions and interruptions,
other than the restart interruption, are not executed.
In the operating state, the CPU executes instructions
and interruptions, subject to the control of the wait
bit and of bits for masking interruptions, and in the
manner specified by the setting of the manual rate
control. The CPU is in the load state during the
initial-program-loading operation. The CPU may
enter the check-stop state only as the result of
machine malfunctions.

A change between these four CPU states cannot be
effected by the program. The states are not
controlled or identified by bits in the PSW.

The state of the CPU is manually changed from
stopped to operating when the start function is
performed or when the restart key is activated and a
restart interruption occurs.

The start function is performed when the start key
is activated. If the rate control is set to instruction
step, the start function causes one unit of operation
to be executed, after which the stop function is
performed. The effect of the start function is
unpredictable when the stopped state has been
entered by means of a reset.

The state of the CPU is changed from operating to
stopped by the stop function. The stop function is
performed when:

o The stop key is activated while the CPU is in the
operating state

e The CPU has finished the execution of a unit of
operation with the rate control set to instruction
step

When the stop function is performed, the transition
from the operating to the stopped state occurs at the

end of the current unit of operation. When the CPU

is in the wait state, the transition takes place

immediately. In the case of interruptible instructions,
the amount of data processed in a unit of operation
depends on the particular instruction and may depend
on the model.

Before entering the stopped state, all pending,
allowed interruptions are taken while the CPU is still
in the operating state. They cause the old PSW to be
stored and the new PSW to be fetched before the
stopped state is entered. When the CPU is in the
stopped state, interruption conditions remain pending.

When the CPU is in the wait state and the rate
control is set to instruction step, initiating the start
function causes no instruction to be executed, but alil
pending, allowed interruptions are taken before the
CPU returns to the stopped state.

The CPU is also placed in the stopped state:

« When a reset is completed, except when the reset
operation is performed as part of initial program
loading, and

« When an address comparison indicates equality
and stopping on the match is specified

The execution of resets is described in the section
"Resets" in this chapter, and address comparison is
described in the section "Address-Compare Controls"
in Chapter 13, "Operator Facilities."

If the CPU is in the stopped state when the start
key is activated, the CPU executes at least one
instruction before taking an interruption for which
the CPU is enabled.

When the CPU is in the stopped state, the manual
indicator is on.

The CPU enters the load state when the
load-normal or load-clear key is activated (see the
section "Initial Program Loading" in this chapter).
While the CPU is in the load state, the load indicator
is on. When the initial-program-loading operation is
completed successfuily, the CPU state changes from
load to operating, provided the rate control is set to
process; if the rate control is set to instruction step,
the CPU state changes from load to stopped.

The check-stop state, which the CPU enters on
certain types of machine malfunction, is described in
Chapter 11, "Machine-Check Handling." The
check-stop indicator is on when the CPU is in the
check-stop state.

The interval timer is updated only when the CPU is
in the operating state. The CPU timer is updated
when the CPU is in the operating state or the load
state. The time-of-day clock is updated whenever
power is on.

Programming Notes

1. Except for the relationship between execution
time and real time, the execution of a program is
not affected by stopping the CPU.

2. When, because of a machine malfunction, the
CPU is unable to end the execution of an
instruction, the stop function is ineffective, and a
reset function has to be invoked instead. A
similar situation occurs when an unending
interruption sequence results from a program new
PSW with a PSW-format error of the type that is
recognized early or from a continuous
interruption conditipn, such as one due to the
CPU timer.

3. Input/output operations continue to completion
after the CPU enters the stopped state. The
interruption conditions due to completion of 1/0
operations remain pending when the CPU is in
the stopped state.

EC and BC Modes

Two control modes are provided for the formatting
and use of control and status information: the
extended-control (EC) mode and the basic-control
(BC) mode. Certain functions available in the EC
mode are not available, or are available in a restricted
form, in the BC mode. The mode currently in effect
is specified by PSW bit 12. Bit 12 is one for the EC
mode and zero for the BC mode.

Program-event recording can be specified only in
the EC mode, because the PSW bit to turn this
function on is not-available in the BC mode.

In the EC mode, I/0 interruptions can be
controlled individually for up to 32 channels using
the correspondingly numbered 32 mask bits in control
register 2; there is also a summary-mask bit for I/O
interruptions, bit 6 of the PSW. The BC mode
provides these capabilities only for channels 6 and
up: these channels are individually controlled by the
corresponding bits of control register 2, as well as the
summary-mask bit, bit 6 of the PSW; channels 0-5
are controlled separately by bits 0-5 of the PSW and
are not subject to the summary mask or to mask bits
in control register 2.

When interruptions occur while in the EC mode, the
interruption code and instruction-length code are
stored at various permanently assigned storage
locations according to the class of interruptions. In
the BC mode, the interruption code and instruction-
length code for all except machine-check
interruptions are placed in the PSW.

Chapter 4. Control 4-3

The program-mask and condition-code fields in the
PSW are allocated to different bit positions in the
two control modes. INSERT STORAGE KEY
provides the reference and change bits when in the
EC mode but produces zeros in the corresponding bit
positions when in the BC mode.

Programming Notes

1. The BC mode provides a PSW format that is
compatible with the PSW of System/360.

2. The choice between EC and BC modes affects
only those aspects of operation that are
specifically defined to be different for the two
modes. It does not affect the operation of any
functions that are not associated with the control
bits in the PSW provided only in the EC mode,
and it does not affect the validity of any
instructions. The instructions SET SYSTEM
MASK, STORE THEN AND SYSTEM MASK,
and STORE THEN OR SYSTEM MASK perform
the specified function on the leftmost byte of the
PSW regardless of the mode specified by the
current PSW. The instruction SET PROGRAM
MASK introduces a new program mask regardless
of the PSW bit positions occupied by the mask.

Program-Status Word

The current program-status word (PSW) contains
information required for the proper execution of the
currently active program. The PSW is 64 bits in
length and includes the instruction address, condition
code, and other control fields. In general, the PSW is
used to control instruction sequencing and to hold
and indicate much of the status of the CPU in
relation to the program currently being executed.
Additional control and status information is
contained in control registers and permanently
assigned storage locations.

Control is switched during an interruption of the
CPU by storing the current PSW, so as to preserve
the status of the CPU, and then loading a new PSW.
The status of the CPU can be changed by loading a
new PSW or part of a PSW.

The instruction LOAD PSW introduces a new PSW.
Other instructions operate on only part of the PSW.
SET PROGRAM MASK introduces a new condition
code and the four program-mask bits; SET SYSTEM
MASK, STORE THEN AND SYSTEM MASK, and
STORE THEN OR SYSTEM MASK change bits in
the leftmost byte of the PSW; SET PSW KEY FROM
ADDRESS introduces a new PSW key; and the
instruction address is updated by sequential
instruction execution and replaced by successful
branches.

The instruction INSERT PSW KEY places the PSW
key in a register; STORE THEN AND SYSTEM
MASK and STORE THEN OR SYSTEM MASK
store the leftmost byte of the PSW; and BRANCH
AND LINK loads the condition code, program mask,
and instruction address in a register, as well as the
instruction-length code, which in the BC mode is part
of the PSW.

A new or modified PSW becomes active (that is, the
information introduced into the current PSW assumes
control over the CPU) when an interruption or the
execution of an instruction is completed. The
interruption for program-event recording associated
with an instruction that changes the PSW occurs
under control of the PER mask that is effective at the
beginning of the operation.

Bits 0-7 of the PSW are collectively referred to as
the system mask.

Program-Status-Word Format in EC Mode

Program

0 0 0 O0|IO|EX Key Elm|w|P Mask

0o0|CC

00000COO0O

0 8 12 16 18 20

24

31

00O00O0OOCDOTO Instruction Address

32 40

PSW Format in EC Mode

4-4 IBM 4300 Processors Principles of Operation

63

The following is a summary of the functions of the
PSW fields in the EC mode.

PER Mask (R): Bit 1 controls whether the CPU is
enabled for interruption by program events associated
with program-event recording (PER). When the bit is
Zero, no program event can cause an interruption.
When the bit is one, interruptions are permitted
subject to the PER-event-mask bits in control
register 9.

I/0 Mask (I0): Bit 6 controls whether the CPU is
enabled for I/0 interruptions. When the bit is zero,
an I/0 interruption cannot occur. When the bit is
one, I/0 interruptions are subject to the channel-
mask bits in control register 2: when a channel-mask
bit is zero, the associated channel cannot cause an
I/0 interruption; when the channel-mask bit is one,
an interruption condition at the channel can cause an
interruption.

External Mask (EX): Bit 7 controls whether the CPU
is enabled for interruption by conditions included in
the external class. When the bit is zero, an external
interruption cannot occur. When the bit is one, an
external interruption is subject to the corresponding
external subclass-mask bits in control register 0.

PSW Key: Bits 8-11 form the access key for storage
references by the CPU. This PSW key is matched
with a storage key whenever information is stored, or
whenever information is fetched from a location that
is protected against fetching.

EC Meode (E): Bit 12, which controls the format of
the PSW and the mode of operation of the CPU, is
one in the extended-control (EC) mode.

Machine-Check Mask (M): Bit 13 controls whether
the CPU is enabled for interruption by machine-
check conditions. When the bit is zero, a machine-

check interruption cannot occur. When the bit is one,
machine-check interruptions due to system damage
and instruction-processing damage are permitted, but
interruptions due to other machine-check-subclass
conditions are subject to the subclass-mask bits in
control register 14.

Wait State (W): When bit 14 is one, the CPU is in
the wait state. When bit 14 is zero, the CPU is not in
the wait state.

Problem State (P): When bit 15 is one, the CPU is in
the problem state. When bit 15 is zero, the CPU is
in the supervisor state.

Condition Code (CC): Bits 18 and 19 are the two
bits of the condition code.

Program Mask: Bits 20-23 are the four
program-mask bits. Each bit is associated with a
program exception, as follows:

Program
Mask Bit Program Exception

20 Fixed-point overflow
21 Decimal overflow

22 Exponent underfiow
23 Significance

When the mask bit is one, the exception resuits in
an interruption. When the mask bit is zero, no
interruption occurs. The significance-mask bit also
determines the manner in which floating-point
addition and subtraction are completed.

Instruction Address: Bits 40-63 form the instruction
address. This address designates the location of the
leftmost byte of the next instruction.

Bit positions 0, 2-5, 16, 17, and 24-39 are
unassigned and must contain zeros. A specification
exception is recognized when these bit positions do
not contain zeros.

Chapter 4. Control 4-5

Program-Status-Word Format in BC Mode

Cham;;elsMasks 10 lex Key elm{w|r Interruption Code
0 6 8 12 16 31
ILC | CC Program instruction Address
Mask
32 34 36 40 63

PSW Format in BC Mode

The following is a summary of the functions of the
PSW fields in the BC mode:

Channel Masks 0-5: Bits 0-5 control whether the
CPU is enabled for I/0 interruptions from channels
0-5, respectively. When a bit is zero, the associated
channel cannot cause an I/O interruption. When the
bit is one, an interruption condition at the channel
can cause an I/O interruption.

I/0 Mask (I0): Bit 6 controls whether the CPU is
enabled for 1/0O interruptions from channels 6 and
higher. When the bit is zero, these channels cannot
cause I/0 interruptions. When the bit is one, I/0O
interruptions are subject to the channel-mask bits of
the corresponding channels in control register 2:
when a channel-mask bit is zero, the associated
channel cannot cause an I/O interruption; when the
channel-mask bit is one, an interruption condition at
the channel can cause an interruption.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions
included in the external class. When the bit is zero,
an external interruption cannot occur. When the bit is
one, an external interruption is subject to the
corresponding external subclass-mask bits in control
register 0.

PSW Key: Bits 8-11 form the access key for storage
references by the CPU. This PSW key is matched
with a storage key whenever information is stored, or
whenever information is fetched from a location that
is protected against fetching.

EC Mode (E): Bit 12, which controls the format of

the PSW and the mode of operation of the CPU, is
zero in the basic-control (BC) mode.

4-6 IBM 4300 Processors Principles of Operation

Machine-Check Mask (M): Bit 13 controls whether
the CPU is enabled for interruption by machine-
check conditions. When the bit is zero, a machine-
check interruption cannot occur. When the bit is one,
machine-check interruptions due to system damage
and instruction-processing damage are permitted, but
interruptions due to other machine-check-subclass
conditions are subject to the subclass-mask bits in
control register 14.

Wait State (W): When bit 14 is one, the CPU is in
the wait state. When bit 14 is zero, the CPU is not in
the wait state.

Problem State (P): When bit 15 is one, the CPU is
in the problem state. When bit 15 is zero, the CPU is
in the supervisor state.

Interruption Code: Bits 16-31 in the old PSW,
which is stored during a program, supervisor-call,
external, or I/O interruption, identify the cause of
the interruption. When a new PSW is introduced, the
contents of this field are ignored.

Instruction-Length Code (ILC): The code in bit
positions 32 and 33 indicates the length of the last-
interpreted instruction when a program or
supervisor-call interruption occurs or when BRANCH
AND LINK is executed. When a new PSW is
introduced, the contents of this field are ignored.

Condition Code (CC): Bits 34 and 35 are the two
bits of the condition code.

Pragram Mask: Bits 36-39 are the four program-
mask bits. Each bit is associated with a program
exception, as follows:

Program

Mask Bit Program Exception
36 Fixed-point overflow
37 Decimal overflow
38 Exponent underfiow
39 Significance

When the mask bit is one, the exception results in
an interruption. When the mask bit is zero, no
interruption occurs. The significance-mask bit also
determines the manner in which floating-point
addition and subtraction are completed.

Instruction Address: Bits 40-63 form the instruction
address. This address designates the location of the
leftmost byte of the next instruction.

Control Registers

The control registers provide a means for maintaining
and manipulating control information that resides
outside the PSW.

The addressing structure provides for sixteen 32-bit
control registers. The contents of these registers are
part of the CPU state. The instruction LOAD
CONTROL loads control information from storage
into control registers, whereas STORE CONTROL
transfers information from control registers to
storage.

One or more specific bit positions in control
registers are assigned to each function requiring such
register space. The bits control the indicated
function.

STORE CONTROL returns the information placed
in the assigned register positions by LOAD
CONTROL or by initial program reset. Values
corresponding to unassigned register positions are
unpredictable.

When the registers are loaded, the information is
not checked for exceptions.

The definition of each assigned control-register
position appears elsewhere with the description of the
function with which the register position is
associated. The figure "Control-Register
Assignments" here is a summary that shows the
function with which each assigned field is associated
and the initial value of the field upon execution of
initial program reset.

Programming Note

To ensure that existing programs run if and when
new facilities using additional control-register
positions are installed, the programs should load only
zeros in unassigned control-register positions.
Although STORE CONTROL may provide zeros in
bit positions corresponding to unassigned register
positions, the program should not depend on such
ZEeros.

Chapter 4. Control 4-7

CR Bits Name of Field Associated With Initial Value
0] Block-multiptexing control Block-multiplexing channels 0
0 1 SSM-suppression controf SET SYSTEM MASK 0
0 20 Clock-comparator mask Clock comparator 0
0 21 CPU-timer mask CPU timer 0
(] 24 Interval-timer mask Interval timer 1
V] 25 Interrupt-key mask Interrupt key 1
] 26 External-signal mask External signal 1
2 0-31 Channel masks Channels 1
8 16-31 Monitor masks MONITOR CALL 0
9 0 Successful-branching-event mask Program-event recording 0
9 1 Instruction-fetching-event mask Program-event recording 0
9 2 Storage-alteration-event mask Program-event recording 0
9 3 GR-alteration-event mask Program-event recording 0
9 16-31 PER! general-register masks Program-event recording 0

10 8-31 PER starting address Program-event recording 0

1 8-31 PER ending address Program-event recording 0

14 0 (Not used) Machine-check handling 1

14 4 Recovery-report mask Machine-check handling 0

14 5 Degradation-report mask Machinecheck handling 0

14 6 External-damage-report mask Machine check handling 1

14 7 Warning mask Machine-check handling 0

Explanation:

The fields not listed are unassigned. The initial value of unassigned register postions is unpredictable.

1peER means program-event recording.

Control-Register Assignments

Monitoring

Monitoring provides the capability for passing control
to a monitoring program when selected indicators are
reached in the monitored program. The indicators
are MONITOR CALL instructions implanted in the
monitored program. When executed, these instruc-
tions cause a program interruption for monitoring to
take place, provided an interruption is allowed for the
monitor class specified by the instruction. Along
with the interruption, the monitor-class number and a
monitor code are stored for subsequent use by the
monitoring program.

Monitoring includes the instruction MONITOR
.CALL, which designates one of 16 monitoring
classes, together with a set of 16 monitor masks in a
control register. One mask bit is associated with each
class. The execution of the instruction causes a

4-8 IBM 4300 Processors Principles of Operation

program interruption when the monitor-mask bit for
the class specified in the instruction is one.
Monitoring is available in both the EC and BC
modes.
The monitor-mask bits are in bit positions 16-31 of
control register 8.

Control Register 8

Monitor Masks

The mask bits, bits 16-31, correspond to monitor
classes 0-15, respectively. Any number of monitor-
mask bits may be on at any one time; together they

16 31

specify the classes of monitor events that are
monitored at that time. The mask bits are initialized
to zero.

When a MONITOR CALL instruction is interpreted
for execution and the corresponding monitor-mask bit
is one, a program interruption for monitoring occurs.
The cause of the interruption is identified by setting
bit 9 of the interruption code to one, and by the
information stored at locations 148-149 and
156-159. The format of the information stored at
these locations is the same in the EC and BC modes
and is as follows:

Locations 148-149

Monitor

00000000 | Class No.

0 8 15

Locations 156-159

00000000 Monitor Code

The contents of bit positions 8-15 of MONITOR
CALL are stored at location 149 and constitute the
monitor-class number. The address specified by the
B; and D, fields of the instruction forms the
monitor code, which is stored at locations 157-159.
Zeros are stored at locations 148 and 156.

Program-Event Recording

The purpose of the program-event recording (PER)
facility is to assist in debugging programs. It permits
the program to be alerted to the following PER
events:
* Successful execution of a branch instruction
« Fetching of an instruction from designated storage
locations ,
o Alteration of the contents of designated storage
locations
» Alteration of the contents of designated general
registers
The program can selectively specify one or more of
the above PER events to be monitored. The
information concerning a PER event is provided to
the program by means of a program interruption, with

the cause of the interruption being identified in the
interruption code. PER is only available in the EC
mode.

Control-Register Allocation

The information for controlling program-event
recording resides in control registers 9, 10, and 11
and consists of the following fields:

Contgol Register 9

EM General-Register Masks

0 4 16 31

Control Register 10

Starting Address

0 8 31

Control Register 11

Ending Address

0 8 31

PER-Event Masks (EM): Bits 0-3 of control register
9 specify which events are monitored. The bits are
assigned as follows:

Bit 0: Successful-branching event

Bit 1: Instruction-fetching event

Bit 2: Storage-alteration event

Bit 3: General-register-alteration event

Bits 0-3, when ones, specify that the corresponding
events are monitored. When the bit is zero, the event
is not monitored.

PER General-Register Masks: Bits 16-31 of control
register 9 specify which general registers are
monitored for alteration of their contents. The 16
bits, in the order of ascending bit numbers,
correspond one for one with the 16 registers, in the
order of ascending addresses. When a bit is one, the
associated register is monitored for alteration; if zero,
the register is not monitored.

Chapter 4. Control 4-9

PER Starting Address: Bits 8-31 of control register
10 form an address that designates the beginning of
the monitored storage area.

PER Ending Address: Bits 8-31 of control register
11 form an address that designates the end of the
monitored storage area.

Programming Note

Models may operate at reduced performance while
the CPU is enabled for PER events. In order to
ensure that CPU performance is not degraded
because of the operation of the
program-event-recording facility, programs that do
not use program-event recording should disable
program-event recording by setting the PER mask in
the EC-mode PSW to zero. No degradation due to
program-event recording occurs in the BC mode or
when the PER mask in the EC-mode PSW is zero.
Disabling of program-event recording in the EC mode
by means of the masks in control register 9 does not
necessarily prevent performance degradation due to
the facility.

Operation

Program-event recording (PER) is under control of
bit 1 of the EC-mode PSW, the PER mask. When
the mask is zero, no PER event can cause an
interruption. When the mask is one, a monitored
event, as specified by the contents of control registers
9, 10, and 11, causes a program interruption. In BC
mode, program-event recording is disabled.

An interruption due to a PER event is taken after
the execution of the instruction responsible for the
event. The occurrence of the event does not affect
the execution of the instruction, which may be either
completed, terminated, suppressed, or nullified.

When the CPU is disabled for a particular PER
event at the time it occurs, either by the mask in the
PSW or by the masks in control register 9, the event
is not recognized.

A change to the PER mask in the PSW or to the
PER control fields in control registers 9, 10, and 11
affects program-event recording starting with the
execution of the immediately following instruction. If
the CPU is enabled for some PER event but an
instruction causes the CPU to be disabled for that
particular event, the event causes a PER condition to
be recognized if it occurs during the execution of the
instruction.

When LOAD PSW or SUPERVISOR CALL causes
a PER condition and at the same time changes CPU

4-10 IBM 4300 Processors Principles of Operation

operation from the EC mode to the BC mode, the
PER interruption is taken with the old PSW
specifying the BC mode and with the interruption
code stored in the old PSW. The additional
information identifying the PER condition is stored in
its regular format at locations 150-155.

Program-event recording applies to emulation
instructions in the following way. Emulation
instructions indicate all events that have occurred and
may additionally indicate events that did not occur
and were not called for in the instruction, provided
monitoring was enabled for the type of event by the
PER mask in the PSW and the PER-event masks, bits
0-3 in control register 9. In such cases, the contents
of the remaining positions in control registers 9, 10,
and 11 may be ignored. Thus, for example, an
emulation instruction may cause general-register
alteration to be indicated even though no general
registers are altered and even though bits 16-31 of
control register 9 are all zeros.

Identification of Cause

A program interruption for PER is identified by
setting bit 8 of the interruption code to one and by
the information placed in storage locations 150-155.
The format of the information stored at locations
150-155 is as follows:

Locations 150-151

PC 000000000000

0 4 15

Locations 152-155

00000000 ‘PER Address

0 8 31

The event causing a PER interruption is identified
by a one in bit positions 0-3 of location 150, the PER
code (PC), with the rest of the bits in the code set to
zeros. The bit position in the PER code for a
particular event is the same as the bit position for
that event in the PER event-mask field.

The PER address at locations 153-155 is the
address of the instruction causing the event. When
the instruction is executed by means of EXECUTE,
the address of the location containing the EXECUTE
instruction is placed in the PER-address ficld. In

either case, the address of the instruction to be
executed next is placed in the PSW. Zeros are stored
in bit positions 4-7 of location 150 and at locations
151 and 152.

Priority of Indication

When a PER interruption occurs and more than one
designated PER event has been recognized, all
recognized PER events are concurrently indicated in
the PER code. Additionally, if another program
interruption condition concurrently exists, the
interruption code for a program interruption indicates
both the PER condition and the other condition.

Except as listed below, a PER event does not cause
premature interruption of the interruptible
instruction, and the PER condition is held pending
until the completion of the instruction.

+ When the execution of an interruptible instruction
is due to be interrupted by an 1/0, external, or
repressible machine-check condition, an
interruption for a pending PER condition occurs
first, and the I/0, external, or machine-check
interruption is subsequently subject to the control
of mask bits in the new PSW.

o Similarly, when the CPU is placed in the stopped
state during the execution of an interruptible
instruction, an interruption for a pending PER
condition occurs before the stopped state is
entered. '

o When any program exception is encountered, the
pending PER condition is indicated concurrently.

e Depending on the model, in certain situations, a
PER condition may cause the execution of an
interruptible instruction to be interrupted without
an associated asynchronous condition or program
exception.

In the case of an instruction-fetching event for

SUPERVISOR CALL, the PER interruption occurs

‘immediately after the supervisor-call interruption.

Programming Notes

1. In the following cases, an instruction can both
cause a PER interruption and change the value of
bits controlling the occurrence of a PER
interruption for that particular event. In these
cases the original values of the control bits
determine whether a PER interruption occurs.

a. The instructions LOAD PSW, SET SYSTEM
MASK, STORE THEN AND SYSTEM
MASK, and SUPERVISOR CALL can cause
an instruction-fetching event and disable the
CPU for PER interruptions. Additionally,

STORE THEN AND SYSTEM MASK can
cause storage alteration to be indicated. The
old program PSW associated with the PER
interruption may indicate that the CPU was
disabled for the interruption.

b. The instruction LOAD CONTROL may cause
an instruction-fetching event and change the
value of the PER-event masks in control
register 9 or the addresses in control registers
10 and 11 controlling indication of the
instruction-fetching event.

2. No instructions can both change the values of
general-register-alteration masks and cause a
general-register-alteration event to be recognized.

3. When a PER interruption occurs during the
execution of an interruptible instruction, the ILC
indicates the length of that instruction or
EXECUTE, as appropriate. When a PER
interruption occurs as a result of LOAD PSW or
SUPERVISOR CALL, the ILC indicates the
length of these instructions or EXECUTE, as
appropriate, unless a concurrent specification
exception on LOAD PSW calls for an ILC of 0.

4. When a PER interruption is caused by branching,
the PER address identifies the branch instruction
(or EXECUTE, as appropriate), whereas the old
PSW points to the next instruction to be
executed. When the interruption occurs during
the execution of an interruptible instruction, the
PER address and the instruction address in the
old PSW are the same.

Storage-Area Designation
Two of the PER events—instruction fetching and

. storage alteration—involve the designation of an area

in storage. The storage area monitored for the
references starts at the location designated by the
starting address in control register 10 and extends up
to and including the location designated by the
ending address in control register 11. The area
extends to the right of the starting address.

The set of locations designated for monitoring
purposes wraps around at location 16777215; that is,
location O is considered to follow location 16777215.

. When the starting address is smaller than the ending

address, the area is contiguous. When the starting
address is larger than the ending address, the set of
locations designated for monitoring purposes includes
the area from the starting address to location
16777215 and the area from location 0 to, and
including, the ending address. When the starting

Chapter 4. Control 4-11

address is equal to the ending address, only the
location designated by that address is monitored.

The monitoring of storage alteration and instruction
fetching is performed by comparing all 24 bits of the
monitored address with the starting and ending
addresses.

PER Events

Successful Branching

Execution of a successful branch operation causes a
program-event interruption if bit 0 of the
PER-event-mask field is one and the PER mask in
the PSW is one.
A successful branch occurs whenever one of the
following instructions causes control to be passed to
- the instruction designated by the branch address:

BRANCH ON CONDITION

BRANCH AND LINK

BRANCH ON COUNT

BRANCH ON INDEX HIGH

BRANCH ON INDEX LOW OR EQUAL

The branch event is also indicated by an emulation
instruction when the emulation instruction itself
causes a branch. That is, the branch event is
indicated when the location of the next instruction
executed by the CPU after leaving emulation mode
does not immediately follow the location of the
emulation instruction.

The event is indicated by setting bit 0 of the PER
code to one.

Instruction Fetching

Fetching the first byte of an instruction from the
storage area designated by the contents of control
registers 10 and 11 causes a program-event
interruption if bit 1 of the PER-event-mask field is
one and the PER mask in the PSW is one.

A PER event for instruction fetching is recognized
whenever the CPU executes an instruction whose
initial byte is located within the monitored area.
When the instruction is executed by means of
EXECUTE, a PER event is recognized when the first
byte of the EXECUTE instruction or the target
instruction or both is located in the monitored area.

The event is indicated by setting bit 1 of the PER
code to one.

4-12 IBM 4300 Processors Principles of Operation

Sterage Alteration

Storing of data by the CPU in the storage area
designated by the contents of control registers 10 and
11 causes a program-event interruption if bit 2 of the
PER-event-mask field is one and the PER mask in
the PSW is one.

The contents of storage are considered to have been
altered whenever the CPU executes an instruction
that causes a whole operand or part of it to be stored
within the monitored area of storage. Alteration is
considered to take place whenever storing is
considered to take place for purposes of mdlcatmg
pmtem e»xcept:m,(&ee the- secnem "Recognit

] tions,'") Storin gconstxtmes alteration for
pmg:ram—-eveﬁt-recordmg purposes-eveén i the value
stored is the same as the original value

Implied locations that are referred to by the CPU in
the process of interval-timer updating, interruptions,
and execution of I/0 instructions, including the
interval-timer, PSW, and CSW locations, are not
monitored. These locations, however, are monitored
when information is stored there explicitly by an
instruction. Similarly, monitoring does not apply to
storing of data by a channel.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered to
alter the second-operand location only when storing
actually occurs.

The instruction STORE CHARACTERS UNDER
MASK is not considered to alter the storage location
when the mask is zero.

The event is indicated by setting bit 2 of the PER
code to one.

General-Register Alteration

Alteration of the contents of a general register causes
a program-event interruption if bit 3 of the
PER-event-mask field is one, the alteration mask
corresponding to that general register is one, and the
PER mask in the PSW is one.

The contents of a general register are considered to
have been altered whenever a new value is placed in
the register. Recognition of the event is not
contingent on the new value being different from the
previous one. The execution of an RR-format
arithmetic or movement instruction is considered to
fetch the contents of the register, perform the
indicated operation, if any, and then replace the
value in the register. The register can be designated
implicitly, such as in TRANSLATE AND TEST and
EDIT AND MARK, or explicitly by an RR, RX, or

{

RS instruction, including BRANCH AND LINK,
BRANCH ON COUNT, BRANCH ON INDEX
HIGH, and BRANCH ON INDEX LOW OR
EQUAL.

The instructions EDIT AND MARK and
TRANSLATE AND TEST are considered to have
altered the contents of general register 1 only when
these instructions have caused information to be
placed in the register.

The instructions MOVE LONG and COMPARE
LOGICAL LONG are always considered to alter the
contents of the four registers specifying the two
operands, including the cases where the padding byte
is used, when both operands have zero length, or
when condition code 3 is set for MOVE LONG.

The instruction INSERT CHARACTERS UNDER
MASK is not considered to alter the general register
when the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered to
alter the general register, or general-register pair,
designated by Ry, only when the contents are
actually replaced, that is, when the first and second
operands are not equal.

The event is indicated by setting bit 3 of the PER
code to one.

Programming Note

The following are some examples of general-register

alteration:

1. Register-to-register load instructions are
considered to alter the register contents even
when both operand addresses designate the same
register.

2. Addition or subtraction of zero and multiplication
or division by one are considered to constitute
alteration. '

3. Logical and fixed-point shift operations are
considered to alter the register contents even for
shift amounts of zero.

4. The branching instructions BRANCH ON
INDEX HIGH and BRANCH ON INDEX LOW
OR EQUAL are considered to alter the first
operand even when zero is added to its value.

Indication of Events Concurrently with
Other Interruption Conditions

The following rules govern the indication of PER
events caused by an instruction that has also caused a
program exception or the monitor event to be
indicated, or that causes a supervisor-call
interruption.

1. The indication of an instruction-fetching event
does not depend on whether the execution of the
instruction was completed, terminated,
suppressed, or nullified. The event, however, is
not indicated when an access exception prohibits
access to the first byte of the instruction. When
the first halfword of the instruction is accessible
but an access exception applies to the second or
third halfword of the instruction, it is
unpredictable whether the instruction-fetching
event is indicated.

2. When the operation is completed, the event is
indicated regardless of whether any program
exception or the monitoring event is recognized.

3. Successful branching, storage alteration, and
general-register alteration are not indicated for an
operation or, in case the instruction is
interruptible, for a unit of operation that is
suppressed or nullified.

4. When the execution of the instruction is
terminated, general-register or storage alteration
is indicated whenever the event has occurred, and
a model may indicate the event if the event
would have occurred had the execution of the
instruction been completed, even if altering the
contents of the result field is contingent on
operand values.

5. When LOAD PSW or SUPERVISOR CALL
causes a PER condition and at the same time
introduces a new PSW with the type of
PSW-format error that is recognized immediately
after the PSW becomes active, the interruption
code identifies both the PER condition and the
specification exception. When these instructions
introduce a PSW-format error of the type that is
recognized as part of the execution of the
following instruction, the PSW is stored as the old
PSW without the specification exception being
recognized.

The indication of PER events concurrently with
other program interruption conditions is summarized
in the figure "Indication of PER Events."

Chapter 4. Control 4-13

PER Event

Type of Instruction Storage GR

Exception Ending Branch Fetch Alteration Alteration
Operation S - X1 - -
Privileged operation s - x! - -
Execute S - x1 - -
Protection

Instruction S - -1 - -

Operand Sor T - X X+ X+
Addressing

Instruction S - -1 - -

Operand Sor T - X X+ X+
Specification

Odd instruction address S - - - -

Invalid PSW format C - X - -

Other S - X - -
Data

Invalid sign S - X - -

Other T - X X+ X+
Fixed-point overflow C - X - X
Fixed-point divide

Division S - X - -

Conversion [} - X - X
Decimal overflow [+ - X X -
Decimal divide S - X - -
Exponent overfiow Cc - X - -
Exponent underflow (o] - X - -
Significance C - X - -
Floating-point divide S - X - -
Special operation S - X - -
Page access

Instruction address N - 1 - -

Operand address N - X x2 x?
Page state S - X - -
Page transition S - X - -
Monitor event C - X - -

Explanation:

C The operation or, in the case of the interruptible instructions, the unit of operation is completed.

N The operation or, in the case of the interruptible instructions, the unit of operation is nullified. The instruction
address in the old PSW has not been updated.

S The operation or, in the case of the interruptible instructions, the unit of operation is suppressed.

The execution of the instruction is terminated.

X The event is indicated with the exception if the event has occurred; that is, the contents of the monitored storage
location or general register were altered, or an attempt was made to execute an instruction whose first byte is
located in the monitored area. ’

+ A model is permitted, but not required, to indicate the event if the event would have occurred had the operation
been completed but did not take place because the execution of the instruction was terminated.

— The event is not indicated.

-

1When an access exception applies to the second or third halfword of the instruction but the first halfword is
accessible, it is unpredictable whether the instruction-fetching event is indicated.

2This condition may occur in the case of the interruptible instructions when the event is recognized in the unit of
operation that is completed and the exception causes the next unit of operation to be suppressed or nullified.

Indication of PER Events

4-14 IBM 4300 Processors Principles of Operation

Programming Notes

1.

The execution of the interruptible instructions
MOVE LONG (MVCL) and COMPARE
LOGICAL LONG (CLCL) can cause events for
general-register alteration and instruction
fetching. Additionally, MVCL can cause the
storage-alteration event.

Since the execution of MVCL and CLCL can
be interrupted, a program event may be indicated
more than once. It may be necessary, therefore,
for a program to remove the redundant event
indications from the PER data. The following
rules govern the indication of the applicable
events during execution of these two instructions:
a. The instruction-fetching event is indicated

whenever the instruction is fetched for
execution, regardless of whether it is the
initial execution or a resumption.

b. The general-register-alteration event is
indicated on the initial execution and on each
resumption and does not depend on whether
or not the register actually is changed.

c. The storage-alteration event is indicated only
when data has been stored in the monitored
area by the portion of the operation starting
‘with the last initiation and ending with the
last byte transferred before the interruption.
No special indication is provided on
premature interruptions as to whether the
event will occur again upon the resumption of
the operation. When the storage area
designates a single byte location, a
storage-alteration event can be recognized
only once in the execution of MOVE LONG.

2. The following is an outline of the general action 2

program must take to delete the redundant entries’

in the PER data for MOVE LONG and

COMPARE LOGICAL LONG so that only one

entry for each complete execution of the

instruction is obtained:

a. Check to see if the PER address is equal to
the instruction address in the old PSW and if
the last instruction executed was MVCL or
CLCL.

b. If both conditions are met, delete
instruction-fetching and register-alteration
events. :

c. If both conditions are met, and the event is
storage alteration, delete the event if the
current destination-operand address is within
the monitored area and the count for the
destination operand is not zero.

'Timing

Time-of-Day Clock

The time-of-day (TOD) clock provides a

high-resolution measure of real time that is also
suitable for the indication of both calendar date and
time of day. The cycle of the clock is approximately
143 years.

Format

.The time-of-day clock is a binary counter with the

format shown in the following illustration. The bit
positions of the clock are numbered O to 63,
corresponding to the bit positions of a 64-bit
unsigned binary integer. Time is measured by
incrementing the value of the counter.

F—— 1 microsecond

/L

{4

V.

) 7 , 51 63

Chapter 4. Control 4-15

In the basic form, the time-of-day clock is
incremented at a rate corresponding to adding a one
in bit position 51 every microsecond. In models
having a higher or lower resolution of the clock, a
different bit position is incremented at such a
frequency that the rate of advancing the clock is the
same as if a one were added in bit position 51 every
microsecond. The resolution of the clock is such that
the actual incrementing rate is comparable to the
instruction-execution rate of the model.

The bit positions of the clock that are always
provided are the leftmost positions up to and
including the actually incremented bit position.
Additional bit positions may be provided to the
immediate right of the incremented position; the
value they contain is unpredictable. Any remaining
bit positions at the extreme right of the doubleword
which are not provided are considered to contain
Zeros.

When incrementing of the clock causes a carry to be
propagated out of bit position 0, the carry is ignored,
and counting continues. The program is not alerted
because no interruption condition is generated asa
result of the overflow.

The operation of the clock is not affected or
inhibited by any normal activity or event in the
system. The clock runs independently of the CPU .
states, that is, regardless of whether the CPU is in the
wait or stopped state, or in the instruction-step or
other test mode (test indicator on). Its operation is
not affected by resets, initial program loading, or an
IML operation. The clock does not run when the
CPU power is off.

States

The following states are distinguished for the
time-of-day clock: set, not set, error, and
not-operational. The state determines the condition
code set by the instruction STORE CLOCK. The
clock is incremented, and is said to be running, when
it is in either the set or not-set state.

The clock enters the not-set state, and the value of
the clock is set to zero, during a power-on reset. The
clock is incremented from zero at the completion of
power-on reset. When the clock is in the not-set
state, STORE CLOCK causes the current value of
the running clock to be stored and condition code 1
to be set.

SET CLOCK causes the clock to enter the set state
from the not-set, set, or error state. The clock is
incremented from the newly set clock value beginning
with the first stepping pulse after the clock enters the

4-16 IBM 4300 Processors Principles of Operation

set state. When the clock is in the set state, STORE
CLOCK causes the current value of the running
clock to be stored and condition code 0 to be set.

The clock enters the error state when a malfunction
is detected that is likely to have affected the validity
of the clock value. A timing-facility-damage
machine-check interruption condition is generated
whenever the clock enters the error state. When
STORE CLOCK is executed with the clock in the
error state, condition code 2 is set, and a value of all
zeros is stored.

The clock is in the not-operational state when
disabled. It depends on the model whether the clock
can be placed in this state. A timing-facility-damage
machine-check-interruption condition is generated
when the clock enters the not-operational state.
When the clock is in the not-operational state,
STORE CLOCK causes condition code 3 to be set
and a value of all zeros to be stored.

Setting and Inspecting the Value

The clock can be inspected by means of the
instruction STORE CLOCK, which causes the
current 64-bit clock value to be placed in storage.
The execution of STORE CLOCK is interlocked so
that successive executions do not provide the same
clock value if the clock is running. This unique value
may be obtained from additional bits to the right of
the bit which is actually incremented; the additional
bits are not stored when the clock is in the
not-operational state. Zeros are stored for the
low-order bits not provided by the clock.

The bit positions which are updated by the clock
can be set to a specific value by means of the SET
CLOCK instruction. SET CLOCK causes the value
of the clock to be changed only when the operator
activates the TOD-clock key to permit changing the
value of the clock.

Programming Notes

1. Bit position 31 of the clock is incremented every
1.048576 seconds; hence, for timing applications
involving human responses, reference to the
high-order clock word may provide sufficient
resolution.

2. Communication between systems is facilitated by
establishing a standard time origin, or standard
epoch, which is the calendar date and time to
which a clock value of zero corresponds.
Januvary 1, 1900, 0 AM Greenwich Mean Time
(GMT) is recommended as the standard epoch
for the clock.

A program using the clock value as a time-of-day
and calendar indication must be consistent with
the programming support under which the
program is to run. If the programming support
uses the standard epoch, bit O of the clock
remains one through the years 1972-2041.
Ordinarily, testing the high-order bit for a one is
sufficient to determine if the clock value is in the
standard epoch.

In converting to or from the current date or
time, the programming support assumes each day
to be 86,400 seconds. It does not take into
account "leap seconds' inserted or deleted
because of time-correction standards.

Because of the limited accuracy of manually
setting the clock value, the low-order bit positions
of the clock, expressing fractions of a second, are
normally not valid as indications of the time of
day. However, they permit elapsed-time
measurements of high resolution.

The following chart shows the time interval
between instants at which various bit positions of
the time-of-day clock are stepped. This time
value may also be considered as the weighted
time value that the bit, when one, represents.

TOD-Clock Stepping Interval

Bit Position Days Hours Minutes Seconds
51 0.000 001
47 0.000 016
43 0.000 256
39 0.004 096
35 : ~ 0.065 536
31 1.048 576
27 16.777 216
23 4 28.435 456
19 1 1 34.967 296
15 19 5 19.476 736
1 12 17 25 11.627 776
7 203 14 43 6.044 416
3 3257 19 29 36.710 656

6. The following chart shows the clock setting at the
start of various years, when the recommended
standard epoch is used. The clock settings,
expressed in hexadecimal notation, correspond to
0 AM Greenwich Mean Time on January 1 of
each year.

Year Clock Setting (Hex)

1900 0000 0000 0000 0000

1976 8853
1980 8F80

BAFO B400 0000
9FD3 2200 0000

1984 96AD 84BS5 9000 0000
1988 9DDA 6997 FEOO 0000

1992 A507
1996 AC34 336C

4E7A 6C00 0000
DACGO 0000

2000 B361 183F 4800 0000

7. The stepping value of time-of-day-clock bit
position 63, if implemented, is 2-12 microseconds,
or approximately 244 picoseconds. This value is
called a clock unit.

The following chart shows various time
intervals in clock units expressed in hexadecimal
notation.

Interval Clock Units (Hex)

1 microsecond 1000

1 millisecond 3E 8000

1 second F424 0000

1 minute 39 3870 0000

1 hour D69 3A40 0000

1 day 1 41DD 7600 0000

365 days 1CA E8C1 3E00 0000

366 days 1CC 2A9E B400 0000

1,461 days’ 72C E4E2 6E00 0000

1Number of days in four years, including a leap year.

Chapter 4. Control 4-17

Clock Comparator

The clock comparator provides a means of causing an
interruption when the time-of-day clock has passed a
value specified by the program.
The clock comparator has the same format as the
-time-of-day clock. The clock comparator consists of
at least bits 0-47. Higher resolution is obtained when
more than 48 bits are provided. The bits in positions
provided in the clock comparator are compared with
the corresponding bits of the time-of-day clock.
When the resolution of the time-of-day clock is less
than that of the clock comparator, the contents of the
clock comparator are compared with the clock value
as this value would be stored by STORE CLOCK.
The values of the clock comparator and the
time-of-day clock are equal when all compared bit
positions are equal. When the values are unequal,
the condition is determined by the first unequal pair
of bits in a left-to-right comparison of
correspondingly numbered bit positions: the zero bit
indicates the lesser value and the one bit the greater
value.
The clock comparator causes an external
interruption with the interruption code 1004 (hex). A
request for a clock-comparator interruption exists
whenever either of the following conditions occurs:
1. The time-of-day clock is running and the value of
the clock comparator is less than the value in the
compared portion of the time-of-day clock.

2. The time-of-day clock is in the error or
not-operational state.

A request for a clock-comparator interruption does
not remain pending when the value of the clock
comparator is made equal to or greater than that of
the time-of-day clock or when the value of the
time-of-day c¢lock is made less than the
clock-comparator value. The latter may occur as a
result of the time-of-day clock either being set or
wrapping to zero.

The clock comparator can be inspected by means of
the instruction STORE CLOCK COMPARATOR
and can be set to a specific value by means of the
SET CLOCK COMPARATOR instruction.

The contents of the clock comparator are initialized
to zero by initial program reset.

4-18 IBM 4300 Processors Principles of Operation

Programming Notes

1. An interruption request for the clock comparator
persists as long as the clock-comparator value is
less than that of the time-of-day clock or as long
as the time-of-day clock is in the error or
not-operational state. Therefore, one of the
following actions must be taken after an external
interruption for the clock comparator has
occurred and before the CPU is again enabled for
external interruptions: the value of the clock
comparator has to be replaced, the time-of-day
clock has to be set, or the clock-comparator
submask has to be set to zero. Otherwise, loops
of external interruptions are formed.

2. The instruction STORE CLOCK may store a
value which is greater than that in the clock
comparator, even though the CPU is enabled for
the clock-comparator interruption. This is
because the time-of-day clock may be
incremented one or more times between the
instants when instruction execution is begun and
when the clock value is accessed. In this
situation, the interruption occurs when the
execution of STORE CLOCK is completed.

CPU Timer

The CPU timer provides a means for measuring
elapsed CPU time and for causing an interruption
when a prespecified amount of time has elapsed.

The CPU timer is a binary counter with a format
which is the same as that of the time-of-day clock,
except that bit 0 is considered a sign. In the basic
form, the CPU timer is decremented at a rate
corresponding to subtracting a one in bit position 51
every microsecond. In models having a higher or
lower resolution, a different bit position is
decremented at such a frequency that the rate of
reducing the CPU timer is the same as if a one were
subtracted in bit position 51 every microsecond.

The CPU timer requests an external interruption
with the interruption code 1005 (hex) whenever the
value in the CPU timer is negative (bit 0 of the CPU
timer is one). The request does not remain pending
when the CPU-timer value is made positive.

When both the CPU timer and the time-of-day
clock are running, the stepping rates are synchronized
such that both are stepped at the same rate.
Normally, decrementing the CPU timer is not
affected by concurrent I/O activity. However, the
CPU timer may stop during extreme I/O activity and
other similar interference situations. In such cases,
the time recorded by the CPU timer provides a more

accurate measure of the CPU time used by the
program than that which would have been recorded
had the CPU timer continued to step.

The CPU timer is decremented when the CPU is
executing instructions, during the wait state, and
during initial program loading, but it is not
decremented when the CPU is in the stopped state.
When the manual rate control is set to instruction
step, the CPU timer is decremented only during the
time when the CPU is actually performing a unit of
operation. Depending on the model, the CPU timer
may or may not be decremented when the
time-of-day clock is in the error or not-operational
state or when the CPU is in the check-stop state.

The CPU timer can be inspected by means of the
instruction STORE CPU TIMER and can be set to a
specific value by means of the SET CPU TIMER
instruction.

The contents of the CPU timer are initialized to
zero by initial program reset.

Programming Notes

1. The CPU timer, in association with a program,
may be used both to measure CPU-execution time
and to signal the end of a time interval on the
CPU.

2. The time measured for the execution of a
sequence of instructions may depend on the
effects of such things as I/0 interference, page
faults, and instruction retry. Hence, repeated
measurements of the same sequence on the same
installation may differ.

3. The fact that a CPU-timer interruption does not
remain pending when the CPU timer is set to a
positive value eliminates the problem of an
undesired interruption. This would occur if,
between the time when the old value is stored
and a new value is set, the CPU is disabled for
CPU-timer interruptions and the CPU timer value
goes from positive to negative.

4. The fact that CPU-timer interruptions are
requested whenever the CPU timer is negative
rather than just when the CPU timer goes from
positive to negative eliminates the requirement
for testing a value to ensure that it is positive
before setting the CPU timer to that value.

As an example, a program being timed by the
CPU timer is interrupted for a cause other than
the CPU timer, external interruptions are
disallowed by the new PSW, and the CPU-timer
value is then saved by STORE CPU TIMER.
This value could be negative if the CPU timer

went from positive to negative since the
interruption. Subsequently, when the program
being timed is to continue, the CPU timer may be
set to the saved value by SET CPU TIMER. A
CPU-timer interruption will occur immediately
after external interruptions are again enabled if
the saved value was negative.

The persistence of the CPU-timer-interruption
request means, however, that after an external
interruption for the CPU timer has occurred,
either the value of the CPU timer has to be
replaced or the CPU-timer submask has to be set
to zero before the CPU is again enabled for
external interruptions. Otherwise, loops of
external interruptions are formed.

5. The instruction STORE CPU TIMER may store a
negative value even though the CPU is enabled
for the interruption. This is because the
CPU-timer value may be decremented one or
more times between the instants when instruction
execution is begun and when the CPU timer is
accessed. In this situation, the interruption
occurs when the execution of STORE CPU
TIMER is completed.

Interval Timer

The interval timer is a binary counter that occupies a
word at storage location 80 and has the following
format:

0 24 31

The interval timer is treated as a 32-bit signed
binary integer. In the basic form, the contents of the
interval timer are reduced by one in bit position 23
every 1/300 of a second. Higher resolution of timing
may be obtained in some models by counting with
higher frequency in one of the positions 24 through
31. In each case, the frequency is adjusted to cause
decrementing in bit position 23 at the rate of 300
times per second. The cycle of the interval timer is
approximately 15.5 hours.

The interval timer causes an external interruption,
with bit 8 of the interruption code set to one and bits
0-7 set to zeros. Bits 9-15 of the interruption code
are zeros unless set to ones for another condition that
is concurrently indicated.

A request for an interval-timer interruption is
generated whenever the interval-timer value is

Chapter 4. Control 4-19

decremented from a positive or zero number to a
negative number. The request is preserved and
remains pending in the CPU until it is cleared by an
interval-timer interruption or a program reset. The
overflow occurring as the interval-timer value is
decremented from a large negative number to a large
positive number is ignored.

The interval timer is not necessarily synchronized
with the time-of-day clock.

The interval-timer contents are updated at the
appropriate frequency whenever other machine
activity permits. The updating occurs only between
instruction executions, except that the interval timer
may be updated during the execution of an
interruptible instruction, such as MOVE LONG. An
updated interval-timer value is normally available at
the end of each instruction execution. When the
execution of an instruction or other machine activity
causes updating to be delayed by more than one
period, the contents of the interval timer may be
reduced by more than one unit in a single updating
cycle. Interval-timer updating may be omitted when
I/0 data transmission approaches the limit of storage
capability, or when a channel sharing CPU equipment
and operating in burst mode causes CPU activity to
be locked out. The program is not alerted when
omission of updating causes the real-time count to be
lost.

The value of the interval timer is accessible by
fetching the word at location 80 as an operand,
provided the location is not protected against
fetching. It may be changed at any time by storing a
word at location 80. When location 80 is protected,
any attempt by the program to change the value of
the interval timer causes a program interruption for
protection exception.

When the contents of the interval timer are fetched
by a channel or are used as the source of an
instruction, the result is unpredictable. Similarly,
storing by the channel at location 80 causes the
contents of the interval timer to be unpredictable.

The interval timer is not decremented when the
interval-timer control is set to disable. The interval
timer is also not decremented when the CPU is not in
the operating state or when the rate control is set to
instruction step.

420 IBM 4300 Processors Principles of Operation

Programming Notes

1. The value of the interval timer may be changed
without losing the real-time count by storing the
new value at locations 84-87 and then shifting
bytes 80-87 to locations 76-83 by means of the
instruction MOVE (MVC). Thus, in a single
operation, the new interval-timer value is placed
at location 80, and the old value is made
available at location 76.

If any means other than the instruction MOVE
(MVC) are used to interrogate and then replace
the value of the interval timer, including MOVE
LONG or two separate instructions, the program
may lose a time increment when an updating
cycle occurs between fetching and storing.

2. When the value of the interval timer is to be
recorded on an I/0 device, the program should
first store the interval-timer value in a temporary
storage location to which the 1/O operation
subsequently refers. When the channel fetches
the interval-timer value directly from location 80,
the value obtained is unpredictable.

Externally Initiated Functions

Resets

Four reset functions are provided:
+ Program reset

o Initial program reset

¢ Clear reset

« Power-on reset

Program reset provides a means of clearing
equipment-check indications and any resultant
unpredictability in the CPU and I/0O state with the
least amount of information destroyed. In particular,
it is used to clear check conditions when the machine
state is to be preserved for analysis or resumption of
operation.

Initial program reset provides the functions of
program reset together with initialization of the
current PSW, CPU timer, clock comparator, and
control registers.

Clear reset causes initial program reset to be
performed and, additionally, clears or initializes all
storage locations and the remaining registers with the
exception of the time-of-day clock. Such clearing is
useful in debugging programs and in ensuring user
privacy. Clearing does not affect external storage,
such as direct-access storage devices used by the
control program to hold the contents of
unaddressable pages.

Power-on reset combines the functions of clear
reset with initializing the time-of-day clock and
selecting storage size.

Program reset and clear reset are initiated manually
using the operator facilities (see Chapter 13,
"Operator Facilities"). Initial program reset is part
of the initial-program-loading function. Power-on
reset is performed as part of turning power on. The
reset actions are tabulated in the figure ''Summary of
Reset Actions."

Program Reset

Program reset causes the following actions:

1. The execution of the current instruction or other
processing sequence, such as an interruption, is
terminated, and all program-interruption and
supervisor-call-interruption conditions are
cleared.

2. Any pending external-interruption conditions are

cleared.

3. Any pending machine-check-interruption
conditions, error indications, and check-stop state
are cleared.

4. Any buffers containing prefetched instructions or
operands, or results due to be stored, are cleared.

5. The CPU is placed in the stopped state after
actions 1-4 have been completed.

6. I/0 system reset is performed in each channel.

7. Any ongoing machine-save function is canceled,
and partially saved information is invalidated.

Register and storage contents remain unchanged by
program reset. However, if a register or storage
location is being accessed at the time the
program-reset operation is performed, the subsequent
contents of the register or location are unpredictable.

Chapter 4. Control 4-21

Reset Function

Initial
Program Program Clear Power-On

Area Affected Reset Reset Reset Reset
CPU state S S S S
Channels R R R R
PSW U c C c
CPU timer U C C C
Clock comparator U C C C
Time-of-day clock ut u? u?! T
Control registers U N N N
General registers U U C C
Floating-point registers U U C C
Capacity counts U U N N
Page descriptions U U C C
Storage U U P P
Machine save H H i |

Explanation:

C The contents are cleared to zero and validated.

H Any ongoing machine-save function is halted, and any partially altered save information is invalidated.

I The contents are invalidated.

N The contents are initialized.

P The first n storage pages are cleared and made addressable, where n is the lesser of the available-frame-capacity
and page-capacity counts. Any remaining pages are left disconnected.

R 1/0 system reset is performed in the channels, and |/O-interruption conditions are cleared. As part of this
reset, system reset is signaled to the I/O control units and devices configured to each channel.

S The CPU is reset, terminating current operations, after which the CPU is in the stopped state.

T The TOD clock is initialized to zero and validated, and it enters the not-set state.

U The contents remain unchanged by the reset.

1Access to the TOD clock by means of STORE CLOCK at the time a reset function is performed does not affect

the value of the TOD clock.

Summary of Reset Actions

As part of the I/0 system reset performed in each
channel (see the section "I/O System Reset" in
Chapter 12, "Input/Output Operations"), pending
1/O-interruption conditions are cleared, and system
reset is signaled to all control units and devices
configured to the channel. The effect of system reset
on I/0 control units and devices and the resultant
control-unit and device state are described in the
appropriate publication on the control unit or device.
A system reset, in general, resets only those functions

4-22 IBM 4300 Processors Principles of Operation

in a shared control unit or device that are associated
with the particular CPU signaling the reset.

Program reset is performed when the
system-reset-normal key is activated. It is also part
of the initial-program-reset function.

Initial Program Reset

Initial program reset combines the program-reset

functions with the following actions:

1. The contents of the current PSW, CPU timer,
and clock comparator are set to zero.

2. All assigned control-register positions are set to
their initial values.

These clearing and initializing functions include
validation.

Clearing the current PSW to zero causes the PSW
to assume the BC-mode format. The
instruction-length code and interruption code in the
PSW are unpredictable, because these values are not
retained when a new PSW is introduced.

Initial program reset is part of the clear-reset
function. It is also part of the initial-program-loading
function when the load-normal or load-clear key is
activated.

Clear Reset

Clear reset combines the initial-program-reset
function with an initializing function which causes
the following actions:

1. The general and floating-point registers are set to

Zero.

2. The storage key of every storage page is set to
Zero.

3. The page bits of every storage page are set to
Zeros.

4. All page frames that had been made temporarily
unavailable by DECONFIGURE PAGE
instructions are made available. (This excludes

- frames made permanently unavailable by
maintenance intervention.)

5. The page-capacity, existing-frame-capacity,
available-frame-capacity, and free-frame-capacity
counts are initialized.

6. Let n be the lesser of AFCC, the current
available-frame-capacity count, and PCC, the
page-capacity count. Then each of n page frames
is assigned to one of the first n storage pages,
namely those with page addresses 0 to n minus
one. These pages are cleared to zero bytes and
have their page states set to addressable. Any
remaining pages have their page states set to
disconnected.

7. Any previously saved machine-save information is
invalidated.

Validation is included in setting registers and
capacity counts and in clearing storage and page
descriptions.

Clear reset is performed when the
system-reset-clear key is activated. Clear reset is also
part of the power-on-reset function, and part of the
initial-program-loading function when performed
upon activating the load-clear key.

Programming Notes

1. For the program-reset operation not to affect the
contents of fields that are to be left unchanged,
the CPU must not be executing instructions and
must be disabled for all interruptions at the time
of the reset. Except for the operation of the
time-of-day clock, CPU timer, and interval timer,
and for the possibility of taking a machine-check
interruption, all CPU activity can be quiesced by
placing the CPU in the wait state and by
disabling it for I/O and external interruptions.
To avoid the possibility of causing a program
reset at the time the timing facilities are being
updated or a machine-check interruption occurs,
the CPU must be in the stopped state.

2. Program reset, initial program reset, and clear
reset do not affect the value and state of the
time-of-day clock.

3. Clear reset causes all bit positions of the interval
timer to be cleared to zeros.

4. Program reset and initial program reset leave
machine-save information unchanged if no
machine save is being performed at the time of
the reset.

5. The conditions under which the CPU enters the
check-stop state are model-dependent and include
malfunctions that preclude the completion of the
current operation. Hence, if program reset or
initial program reset is executed while the CPU is
in the check-stop state, the contents of registers,
the CPU state, and the storage location accessed
at the time of the error may still be in error after
the check-stop state is cleared by these resets. In
such a case, a clear reset is required in order to
clear the error.

Power-On Reset

Power-on reset causes the following actions:

1. The clear-reset function is performed.

2. The value of the time-of-day clock is set to zero,
and the clock enters the not-set state.

Power-on reset is part of the power-on sequence of
the machine. The power-on sequence is not complete
until the clear-reset function has been performed
successfully and the time-of-day clock has entered
the not-set state.

Chapter 4. Control 4-23

Initial Program Loading

Initial program loading (IPL) is provided to initiate
processing when the contents of storage or of the
PSW are not suitable for processing.

Initial program loading is initiated manually by
designating an input device with the
load-unit-address controls and subsequently
activating the load-normal or load-clear key. The
load-normal key causes an initial-program-reset
operation to be performed, and the load-clear key
causes a clear-reset operation to be performed. The
CPU enters the load state. Subsequently, a read
operation is initiated from the selected input device.
The CPU does not necessarily enter the stopped state
during the execution of the reset operation. The load
indicator is on while the CPU is in the load state.

The read operation is performed as if a START I/0
instruction were executed that specified the channel,
subchannel, and I/O device designated by the
load-unit-address controls. The operation uses an
implied channel-address word (CAW) containing a
subchannel key of zero, and a
channel-command-word (CCW) address of 0, but the
CAW location in storage, location 72, is not accessed.
The load-unit-address controls provide the 12
rightmost bits of the I/O address; zeros are implied
for the leftmost bits.

Although the location of the first CCW to be
executed is specified by the CCW address as 0, the
first CCW actually executed is an implied CCW,
containing, in effect, a read command with the
modifier bits set to zeros, a data address of 0, a byte
count of 24, the chain-command flag set to one, the
SLI flag set to one, the chain-data flag set to zero,
the skip flag set to zero, and the PCI flag set to zero.
The CCW fetched, as a result of command chaining,
from storage location 8 or 16, as well as any
subsequent CCW in the IPL sequence, is interpreted
the same as a CCW in any I/O operation, except that
any PCI flags that are specified in CCWs used for
the IPL sequence are ignored.

When the I/0 device provides channel-end status
for the last operation of the IPL. chain and no
exceptional conditions are detected in the operation,
a new PSW is obtained from storage locations 0-7.
When this PSW specifies the EC mode, the 1/0
address that was used for the IPL operation is stored
at locations 186-187, and zeros are stored at location
185; when the BC mode is specified, the 1/0O address
is stored at locations 2-3. The CPU leaves the load
state and enters the operating state, with CPU
operation proceeding under the control of the new

4-24 IBM 4300 Processors Principles of Operation

PSW, provided the rate control is set to process; if
the rate control is set to instruction step, the CPU
enters the stopped state after the new PSW has been
obtained.

‘When channel-end status for the IPL operation is
presented, either separate from or along with
device-end status, no I/O-interruption condition is
generated. Similarly, any PCI flags specified by the
program in the CCWs used for the IPL. sequence are
ignored. If the device-end status for the IPL
operation is provided separately after channel-end
status, it causes an I/O interruption condition to be
generated.

If the IPL I/0O operation or the PSW loading is not
completed satisfactorily, the CPU idles in the load
state, and the load indicator remains on. This occurs
when the device designated by the load-unit-address
controls is not operational, when the device or
channel signals any condition other than channel end,
device end, or status modifier during or at the
completion of the IPL I/0 operation, or when the
PSW loaded from location O has a PSW-format error
that is recognized during the loading procedure. The
address of the 1/0 device used in the IPL operation
is not stored. The contents of storage locations 0-7
are unpredictable, but the contents of other storage
locations remain unchanged.

When fewer than eight bytes are read into locations
0-7, the PSW fetched from location O at the
conclusion of the IPL. operation is unpredictable.

Programming Notes

1. The information read and placed at locations
8-15 and 16-23 may be used as CCWs for
reading additional information during the IPL
sequence: the CCW at location 8 may specify
reading additional CCWs elsewhere in storage,
and the CCW at location 16 may specify the
transfer-in-channel command, causing transfer to
these CCWs.

The status-modifier bit has its normal effect
during the IPL operation, causing the channel to
fetch and chain to the CCW whose address is 16
higher than that of the current CCW. This
applies also to the initial chaining that occurs
after completion of the read operation specified
by the implicit CCW.

The PSW that is loaded at the completion of
the IPL procedure may be provided by the first
eight bytes of the IPL I/O operation or may be
placed at locations 0-7 by a subsequent CCW.

2. When the PSW in location O has bit 14 set to
one, the CPU is placed in the wait state after the
IPL procedure is completed; at that point, the
load and manual indicators are off, and the wait
indicator is on.

3. - Activating the load-normal key permits an IPL
program to be loaded with a minimum
disturbance of storage contents. This function
may be useful in debugging. When the power is
turned on or the load-clear key is activated, the
IPL program starts with a cleared machine in a
known state, except that information on external
storage remains unchanged.

Machine Save

The machine-save operation saves the current CPU
status and the status and contents of storage page 0
for subsequent retrieval by programming. The
operation is initiated manually by the machine-save
key (see Chapter 13, "Operator Facilities").
Machine save causes the following actions:

1. The current contents of all CPU registers and the
status of page O are saved in internal storage.
The format of the saved information is not
defined. The figure "Machine Status, Retrieval
Format" describes the machine-status information
in the 256-byte format in which it is moved to
addressable storage by a subsequent RETRIEVE
STATUS AND PAGE instruction.

2. The current contents of page 0, that is, the 2,048
bytes at addresses 0-2047, are saved in internal
storage.

The register contents and the status and contents of
page O remain unchanged.

When a machine-save operation has been
successfully completed, the save indicator is turned
on.

Byte
Offset Bits w
0-7 CPU timer®
8-15 Clock comparatorl
16-23 Program-status word
24-31 Time-of-day clock®
32-63 Floating-point registers 0, 2, 4, 6
64-127 General registers 0-15
128-191 Control registers 0-15
192-199 cpu ip?
200-203 Page-capacity count?
204-207 Existing-frame-capacity count?
208-211 Available-frame-capacity count
212-215 Free-frame-capacity cou nt2
216 0 Zero
1-3 Page bits of page 0
4 Zero
5 Reference bit of page 0
6 Change bit of page O
7 Zero
217 0-3 Access-control bits of page O
4 Fetch-protection bit of page O
5-7 Zeros
218-219 Frame index? of page 0
220-255 Zeros
Explanation:

1 The formats of these fields are the same as those produced by
STORE CPU TIMER, STORE CLOCK COMPARATOR, STORE
CLOCK, and STORE CPU ID, respectively.

’The capacity counts and the frame index are right-aligned with
leftmost bits of zeros.

Machine Status, Retrieval Format

Chapter 4. Control 4-25

A machine save replaces the information saved by
the previous machine save.

When a clear-reset operation is performed, any
previously saved information becomes invalid.
Subsequent execution of the RETRIEVE STATUS
AND PAGE instruction returns condition code 3
until another machine-save operation is successfully
performed.

A reset operation occurring while a machine save is
in progress halts the machine-save operation. If an
incomplete machine save partially alters previously
saved information, the saved information is indicated
to be invalid, and subsequent execution of
RETRIEVE STATUS AND PAGE returns condition
code 3 until the next successful machine-save
operation. Invalid machine saves cannot be
retrieved.

The CPU must be in the stopped state before a
machine-save operation can be initiated. If an error
is encountered during the operation, the saved
information becomes invalid, the CPU enters the
check-stop state, and the save indicator is not turned
on.

426 IBM 4300 Processors Principles of Operation

Programming Notes

1.

Machine save may be used as part of a
machine-dump procedure when the normal
supervisor program is not functioning properly,
such as after a hard wait (wait state with
interruptions disabled). By preserving the
complete machine status and page 0, machine
save permits loading a dump program, which can
preserve additional pages if necessary. The dump
program can then merge the saved information
with the undisturbed pages to create a complete
image of the machine at the time of the machine
save. The machine should not be cleared before
loading the dump program.

When the supervisor program is still functioning,
it is less disruptive to use the supervisor to invoke
a dump program without a machine save. An
intermediate option is the restart function.

The format of the byte at offset 216 corresponds
to the byte inserted by the instruction INSERT
PAGE BITS.

Unassigned bits in the retrieval format of the
machine status are stored as zeros. The program
should not depend on such zeros, however, to
ensure that existing programs run if new facilities
using these bits are defined.

Chapter 5. Program Execution

Contents

Instructions 5-1
Operands 5-1
Instruction Format 5-2
Register Operands 5-3
Immediate Operands 5-3
Storage Operands 5-3
Operand-Address Generation 5-4
Instruction Execution 5-4
Sequential Instruction Execution 5-4
Branching 5-4
Interruptions 5-5
Sequence of Storage References 5-5
Instruction Fetch 5-6

Normally, operation of the CPU is controlled by
instructions taken in sequence. A change in the
sequential operation may be caused by branching,
LOAD PSW, interruptions, or manual intervention.

Instructions
Each instruction consists of two major parts:

1. An operation code (op code), which specifies the

operation to be performed, and
2. The designation of the operands that participate

Operands

Operands can be grouped in three classes: operands
located in registers, immediate operands, and
operands in storage. Operands may be either
explicitly or implicitly designated.

Register operands can be located in general,
floating-point, or control registers, with the type of
register identified by the op code. The register
containing the operand is specified by identifying the
register in a four-bit field, called the R field, in the
instruction. For some instructions, an operand is
located in an implicitly designated register, the
register being implied by the op code.

Immediate operands are contained within the
instruction, and the eight-bit field containing the
immediate operand is called the I field.

Operands in storage may either have an implied
length, be specified by a bit mask, or, in other cases,
_ be specified by a four-bit or eight-bit length
specification, called the L field, in the instruction.

Page-Description Accesses 5-6

Storage-Operand References 5-7
Storage-Operand Fetch References 5-7
Storage-Operand Store References 5-7
Storage-Operand Update References 5-7

Storage-Operand Consistency 5-8

Relation Between Operand Accesses 5-8

Other Storage References 5-9

Serialization 5-9
CPU Serialization 5-9
Channel Serialization 5-10

The addresses of operands in storage are specified by

means of a format that uses the contents of a general

register as part of the address. This makes it possible

to:

1. Specify a complete address by using an
abbreviated notation

2. Perform address manipulation using instructions
which employ general registers for operands

3. Modify addresses by program means without
alteration of the instruction stream

4. Operate independently of the location of data
areas by directly using addresses received from
other programs

The address used to refer to storage either is
contained in a register designated by the R field in
the instruction or is calculated from a base address,
index, and displacement, designated by the B, X, and
D fields, respectively, in the instruction.

For purposes of describing the execution of
instructions, operands are designated as first and
second operands and, in some cases, third operands.

In general, two operands participate in an
instruction execution, and the result replaces the first
operand. An exception is instructions with "store" in
the instruction name, other than STORE THEN AND
SYSTEM MASK and STORE THEN OR SYSTEM
MASK, where the result replaces the second operand.
Except for storing the final result, the contents of all
registers and storage locations participating in the
addressing or execution part of an operation remain
unchanged.

Chapter 5. Program Execution 5-1

Instruction Format

An instruction is one, two, or three halfwords in
length and must be located in storage on a halfword
integral boundary. Each instruction is in one of six
basic formats: RR, RX, RS, SI, S, and SS, with two
variations of SS. (See the figure '"Basic Instruction
Formats.')

Some instructions contain fields that vary slightly
from the basic format, and in some instructions the
operation performed does not follow the general rules
stated in this section. All of these exceptions are
explicitly identified in the individual instruction
descriptions.

The format names indicate, in general terms, the
classes of operands which participate in the
operation:

+ RR denotes a register-and-register operation.

+« RX denotes a register-and-indexed-storage
operation.

» RS denotes a register-and-storage operation.

« SI denotes a storage-and-immediate operation.

e S denotes an operation using an implied operand
and storage.

« SS denotes a storage-and-storage operation.

52 IBM 4300 Processors Principles of Operation

RR Format
Op Code R1 Ry
0 8 12 15
RX Format
Op Code Ry X By D,
0 8 12 16 20 31
RS Format
Op Code Ry R;3 :7) Dy
0 8 12 16 20 31
SI Format
Op Code Iz By D4
0 8 16 20 31
S Format
Op Code B2 Dy
0 16 20 31
SS Format
I’I, Ill,
Op Code L B1 Dy B, Dy
Vg J L
I 77
0 8 16 20 32 36 47
/7 /L
7/ 7/
Op Code L1 Ly B1 D1 | By Dy
/t 4
] 8 12 16 20 32 36 47

Basic Instruction Formats

The first byte or, in the S format, the first two bytes
of an instruction contain the op code. For some
instructions in the S format, all or a portion of the
second byte is ignored.

The first two bits of the first or only byte of the op
code specify the length and format of the instruction,
as follows:

Bit Positions Instruction Instruction
{0-1) Length Format
00 One halfword RR
01 Two halfwords RX
10 Two halfwords RS/SI/S
11 Three halfwords SS

In the format illustration for each individual
instruction description, the op-code field shows the
op code in hexadecimal representation. The
hexadecimal representation uses one graphic for a
four-bit code, and therefore two graphics for an
eight-bit byte. The graphics 0-9 are used for the
codes 0000-1001; the graphics A-F are used for
codes 1010-1111.

The remaining fields in the format illustration for
each instruction are designated by code names,
consisting of a letter and possibly a subscript number.
The subscript number denotes the operand to which
the field applies.

Register Operands

In the RR, RX, and RS formats, the contents of the
register designated by the R; field are called the first
operand. In the RR format, the R, field designates
the register containing the second operand, and the
same register may be designated for the first and
second operand. In the RS format, the use of the R3
field depends on the instruction.

The R field designates a general register in the
general instructions and a floating-point register in
the floating-point instructions. In the instructions
LOAD CONTROL and STORE CONTROL the R
field designates a control register.

Unless otherwise indicated in the individual
instruction description, the register operand is one
register in length (32 bits for a general register or a
control register and 64 bits for a floating-point
register), and the second operand is the same length
as the first.

Immediate Operands

In the SI format, the contents of the eight-bit
immediate-data field, the I, field of the instruction,
are used directly as the second operand. The B; and
D4 fields designate the first operand, which is one
byte in length.

Storage Operands

In the SI and SS formats, the contents of the general
register designated by the B; field are added to the
contents of the D, field to form the first-operand
address. In the S, RS, and SS formats, the contents
of the general register designated by the B, field are
added to the contents of the D, field to form the
second-operand address. In the RX format, the
contents of the general registers designated by the
X, and B, fields are added to the contents of the

D, field to form the second-operand address.

In the SS format, with two length fields given, L,
specifies the number of additional operand bytes to
the right of the byte designated by the first-operand
address. Therefore, the length in bytes of the first
operand is 1-16, corresponding to a length code in
L, of 0-15. Similarly, L, specifies the number of
additional operand bytes to the right of the location
designated by the second-operand address. Results
replace the first operand, and are never stored
outside the field specified by the address and length.
If the first operand is longer than the second, the
second operand is extended on the left with zeros up
to the length of the first operand. This extension
does not modify the second operand in storage.

In the SS format with a single, eight-bit length field,
L specifies the number of additional operand bytes to
the right of the byte designated by the first-operand
address. Therefore, the length in bytes of the first
operand is 1-256, corresponding to a length code in L
of 0-255. Storage results replace the first operand
and are never stored outside the field specified by the
address and length. In this format, the second
operand has the same length as the first operand,
except for the following instructions: EDIT, EDIT
AND MARK, TRANSLATE, and TRANSLATE
AND TEST. RETRIEVE STATUS AND PAGE does
not use the L field, the operand lengths being fixed.

Chapter 5. Program Execution 5-3

Operand-Address Generation

An operand address that refers to storage either is
contained in a register designated by an R field in the
instruction or is calculated from the sum of three
binary numbers: base address, index, and
displacement.

The base address is a 24-bit number contained in a
general register specifed by the program in a four-bit
field, called the B field, in the instruction. Base
addresses can be used as a means of independently
addressing each program and data area. In
array-type calculations, it can specify the location of
an array, and, in record-type processing, it can
identify the record. The base address provides for
addressing the entire storage. The base address may
also be used for indexing purposes.

The index is a 24-bit number contained in a general
register designated by the program in a four-bit field,
called the X field, in the instruction. It is included
only in the address specified by the RX instruction
format. The RX format instructions permit double
indexing; that is, the index can be used to provide the
address of an element within an array.

The displacement is a 12-bit number contained in a
field, called the D field, in the instruction. The
displacement provides for relative addressing of up to
4,095 bytes beyond the location designated by the
base address. In array-type calculations, the
displacement can be used to specify one of many
items associated with an element. In the processing
of records, the displacement can be used to identify
items within a record.

In forming the address, the base address and index
are treated as 24-bit unsigned binary integers. The
displacement is similarly treated as a 12-bit unsigned
binary integer, and 12 high-order zeros are appended.
The three are added as 24-bit binary numbers,
ignoring overflow. The sum is always 24 bits long.
The bits of the generated address are numbered 8-31,
corresponding to the numbering of the base-address
and index bits in the general register.

A zero in any of the Bj, B;, or X, fields indicates
the absence of the corresponding address component.
For the absent component, a zero is used in forming
the address, regardless of the contents of general
register 0. A displacement of zero has no special
significance.

An instruction can designate the same general
register both for address computation and as the
location of an operand. Address computation is
completed prior to the execution of the operation.

5-4 IBM 4300 Processors Principles of Operation

Unless otherwise indicated in the individual
instruction definition, the computed operand address
designates an operand in storage. When a storage
operand is designated, the address designates the
leftmost byte of the operand. For branching
instructions, the second-operand address is used as
the branch address. For shifting instructions, the
second-operand address is not used as an address but
specifies the shift amount.

Instruction Execution

The program-status word (PSW), described in
Chapter 4, "Control," contains information required
for proper program execution. The PSW is used to
control instruction sequencing and to hold and
indicate the status of the machine in relation to the
program currently being executed. The active or
controlling PSW is called the current PSW.

Sequential Instruction Execution

In program execution, instructions are normally
executed sequentially, one at a time, left to right in
storage. An instruction is fetched from the location
designated by the instruction address in the current
PSW. The instruction address is then increased by
the number of bytes in the instruction in order to
address the next instruction in sequence. The
instruction is then executed, and the same steps are
repeated using the new value of the instruction
address.

Branching

The normal sequential execution of instructions may
be changed by the use of the branching instructions
in order to perform subroutine linkage,
decision-making, and loop control. A branch
instruction affects instruction sequencing by
introducing a new instruction address into the current
PSW.

Subroutine linkage is provided by the BRANCH
AND LINK instructions, which permit not only the
introduction of a new instruction address but also the
preservation of the return address and associated
information.

Facilities for decision making are provided by the
BRANCH ON CONDITION instruction. This
instruction inspects a two-bit condition code that
reflects the result of a majority of the arithmetic,
logical, and 1/O operations. Each of these operations
can set the code in any one of four states, and the
instruction BRANCH ON CONDITION can specify
any selection of these four states as the criterion for

branching. For example, the condition code reflects
such conditions as nonzero, first operand high, equal,
overflow, channel busy, and zero. Once set, the
condition code remains unchanged until modified by
an instruction that causes a different condition code
to be set.

The two bits of the condition code provide for four
possible condition-code settings: 0, 1, 2, and 3. The
specific meaning of any setting depends on the
operation that sets the condition code.

Loop control can be performed by the use of
BRANCH ON CONDITION to test the outcome of
address arithmetic and counting operations. For
some particularly frequent combinations of arithmetic
and tests, the instructions BRANCH ON COUNT,
BRANCH ON INDEX HIGH, and BRANCH ON
INDEX LOW are provided. These branches, being
specialized, provide increased performance for these
tasks.

Interruptions

Interruptions permit the CPU to change state as a
result of conditions external to the system, in
input/output (I/0O) devices, or in the CPU itself. Six
classes of interruption conditions are possible:
machine check, supervisor call, program, external,
1/0, and restart.

Each class has two related PSWs, called old and
new, in permanently assigned storage locations. In
all classes, an interruption involves storing
information identifying the cause of the interruption,
storing the current PSW in its old position, and
making the PSW at the new position the current
PSW.

The old PSW holds all necessary CPU status
information existing at the time of the interruption.
If, at the conclusion of the program invoked by the
interruption, there is an instruction to make the old
PSW the current PSW, the CPU is restored to the
state prior to the interruption, and the interrupted
program continues.

Sequence of Storage References

Conceptually, the CPU processes instructions one at
a time, with the execution of one instruction
preceding the execution of the following instruction.
The execution of the instruction specified by a
successful branch follows the execution of the
branch. Similarly, an interruption takes place
between instructions or, for interruptible instructions,
between units of operation of such instructions.

The sequence of events implied by the processing
just described is sometimes called the conceptual
sequence.

Each operation appears to the program to be
performed sequentially, with one instruction being
fetched after the preceding operation is completed
and before the execution of the current operation is
begun, even though, as observed by the CPU itself,
storage-implementation characteristics and overlap of
instruction execution with storage accessing may
cause actual processing to be different. The results
generated are those that would have been obtained
had the operations been performed in the conceptual
sequence. Thus, it is possible to modify an
instruction in storage by the immediately preceding
instruction.

In simple models in which operations are not
overlapped, the conceptual and actual sequences are
essentially the same. However, in more complex
machines, overlapped operation, buffering of
operands and results, and execution times which are
comparable to the propagation delays between units
can cause the actual sequence to differ considerably
from the conceptual sequence. In these machines,
special circuitry is employed to detect dependencies
between operations and ensure that the results
obtained are those that would have been obtained if
the operations had been performed in the conceptual
sequence. However, channels may, unless otherwise
constrained, observe a sequence that differs from the
conceptual sequence.

It can normally be assumed that the execution of
each instruction occurs as an indivisible event.
However, in actual operation, the execution of an
instruction consists of a series of discrete steps.
Depending on the instruction, operands may be
fetched and stored in a piecemeal fashion, and some
delay may occur between fetching operands and
storing results. As a consequence, a channel may be
able to observe intermediate, or partially completed,
results.

When the program on the CPU interacts with a
program on a channel, the programs may have to take
into consideration that a single operation may
consist of a series of storage references, that a
storage reference may in turn consist of a series of
accesses, and that the conceptual and actual
sequences of these accesses may differ. Storage
references associated with instruction execution are
of the following types: instruction fetches and
storage-operand references. For the purposes of the

Chapter 5. Program Execution 5-5

following discussion, page-description accesses are
also considered to be storage references.

Instruction Fetch

Instruction fetching consists in fetching the one, two,
or three halfwords specified by the instruction
address in the current PSW. The immediate field of
an instruction is accessed as part of an instruction
fetch. If, however, an instruction specifies a storage
operand at the location occupied by the instruction
itself, the location is accessed both as an instruction
and as a storage operand. The fetch of the target
instruction of EXECUTE is considered to be an
instruction fetch.

The bytes of an instruction may be fetched
piecemeal and are not necessarily accessed in a
left-to-right direction. The instruction may be
fetched multiple times for a single execution; for
example, it may be fetched for testing the
addressability of operands or for inspection of PER
events, and it may be refetched for actual execution.

Instructions are not necessarily fetched in the
sequence in which they are conceptually executed
and are not necessarily fetched for each time they are
executed. In particular, the fetching of an instruction
may precede the storage-operand references for an
instruction that is conceptually earlier. The
instruction fetch occurs prior to all storage-operand
references for all instructions that are conceptually
later.

There is no limit established as to the number of
instructions which may be prefetched, and multiple
copies may be fetched of the contents of a single
storage location. As a result, the instruction executed
is not necessarily the most recently fetched copy.
Storing caused by channels does not necessarily
change the copy of prefetched instructions.

However, if a store that is conceptually earlier occurs
on the CPU and modifies the location from which the
instruction is subsequently fetched, the updated
information is obtained.

All copies of prefetched instructions are discarded
by a serializing operation and as the CPU enters the
operating state.

Programming Note

When a channel modifies an instruction, it is possible
for the CPU to recognize the changes to some but
not all modified bit positions of the instruction.

5-6 IBM 4300 Processors Principles of Operation

Page-Description Accesses

References to the page description are handled as

follows:

1. Whenever a reference to storage is made and
protection checking applies to the reference, the
four access-control bits and the fetch-protection
bit of the storage key associated with the storage
location must appear to be inspected concurrently
with the reference to the storage location.

2. When storing is performed, the change bit is set
in the associated storage key concurrently with
the store operation.

3. The instruction SET STORAGE KEY causes the
four access-control bits, the fetch-protection bit,
and the change bit to be set concurrently. The
instruction also modifies the reference bit. The
access to the access-control bits, the
fetch-protection bit, and the change bit for SET
STORAGE KEY follows the sequence rules for
storage-operand store references, and is a
single-access reference.

4. The instruction INSERT STORAGE KEY
inspects but does not modify the storage key.

5. The instruction SET PAGE BITS provides a
consistent image of the change bit. The
instruction modifies both the reference and
change bits, and the three programmable page
bits. The page bits are only accessible by the
CPU. The access to the change bit follows the
sequence rules for storage-operand update
references, with the following exception: if the
change bit is being set to zero, no storing in the
associated storage page by a channel is permitted
between the fetching of the change bit and the
setting of the change bit to zero.

6. The instruction INSERT PAGE BITS inspects but
does not modify the reference, change, and page
bits. The page bits are only accessible by the
CPU.

7. The instruction RESET REFERENCE BIT
modifies only the reference bit. The access to the
storage key for RESET REFERENCE BIT
follows the sequence rules for storage-operand
update references. All bits of the storage key
other than the reference bit remain unchanged.

8. Whenever a reference to storage is made and
page-state checking applies to the reference, the
page state and frame index associated with the
storage location must appear to be inspected
concurrently with the reference to the storage
location.

9. The instruction CONNECT PAGE causes the
page state and frame index to be set concurrently
in the page description, with the access to the
page state and frame index following the
sequence rules for storage-operand store
references.

10. During the execution of the instructions
DECONFIGURE PAGE and DISCONNECT
PAGE, the accesses to set the reference bit and
the change bit to zeros occur concurrently with or
after the access to set the page state to
disconnected.

11. The instructions MAKE ADDRESSABLE and
MAKE UNADDRESSABLE modify only the
page state.

12. The instruction LOAD FRAME INDEX inspects
but does not modify the page state and frame
index. The page state and frame index may only
be modified explicitly by other instructions.

The record of references provided by the reference
bit is not necessarily accurate, and the handling of
the reference bit is not subject to the concurrency
rules. However, in the majority of situations,
reference recording approximately coincides with the
storage reference.

In certain situations, the change bit may be set
when no storing has actually taken place.

Storage-Operand References

A storage-operand reference is the fetching or storing
of the explicit operand or operands in the storage
locations specified by the instruction.

During the execution of an instruction, all, or a
portion, of the storage operands for that instruction
may be fetched, intermediate results may be
maintained for subsequent modification, and final
results may be temporarily held prior to placing them
in storage. Stores caused by channels do not
necessarily affect these intermediate results.
Storage-operand references are of three
types: fetches, stores, and updates.

Storage-Operand Fetch References

When the bytes of a storage operand participate in
the instruction execution only as a source, the
reference to the location is called a storage-operand
fetch reference. A fetch reference is identified in
individual instruction definitions by indicating that
the access exception is for fetch.

All bits within a single byte of a fetch reference are
accessed concurrently. When an operand consists of

more than one byte, the bytes may be fetched
piecemeal a byte at a time from storage. Unless
otherwise specified, the bytes are not necessarily
fetched in any particular order.

Storage-Operand Store References

When the bytes of a storage operand participate in
the instruction execution only as a destination, to the
extent of being replaced by the result, the reference
to the location is called a storage-operand store
reference. A store reference is identified in
individual instruction definitions by indicating that
the access exception is for store.

All bits within a single byte of a store reference are
accessed concurrently. When an operand consists of
more than one byte, the bytes may be stored
piecemeal a byte at a time into storage. Unless
otherwise specified, the bytes are not necessarily

.stored in any particular order.

The CPU may delay storing results into storage.
There is no defined limit on the length of time that
results may remain pending before they are stored.

This delay does not affect the order in which results
are placed in storage. The results of one instruction
are placed in storage after the results of all preceding
instructions have been placed in storage and before
any results of the succeeding instructions are stored
as observed by channels. The results of any one
instruction are stored in the order specified for that
instruction. _

The CPU does not fetch operands from a storage
location until all information destined for that
location by the CPU has been stored. Prefetched
instructions may seem to be updated before the
information appears in storage.

The stores are necessarily completed only as a result
of a serializing operation and before the CPU enters
the stopped state.

Storage-Operand Update References

In some instructions, the storage-operand location
participates both as a source and as a destination. In
these cases, the reference to the location consists first
of a fetch and subsequently of a store. The
combination of the two accesses is referred to as an
update reference. Instructions.such as MOVE
ZONES, TRANSLATE, OR (OI), and ADD
DECIMAL cause an update to the first-operand
location. No special interlock is provided between
the fetch and store, and accesses by channels are
permitted. An update reference is identified in the
individual instruction definition by indicating that the

Chapter 5. Program Execution 5-7

access exception is for both fetch and store. The
fetch and store accesses associated with an update
reference are not necessarily contiguous, and it is
possible for a channel to make one or more
interleaved accesses to the same location. The
interleaved accesses can be either fetches or stores.

Storage-Operand Consistency

A fetch reference is said to be a single-access
reference if the a value is fetched in a single access to
each byte of the data field. In the case of
overlapping operands, the location may be accessed
once for each operand. A store-type reference is said
to be a single-access reference if a single store access
occurs to each byte location within the data field.

An update reference is said to be single-access if both

the fetch and store accesses are each single-access.

Except for the following cases, storage-operand
references are single-access references.

1. Instructions which operate on decimal data. The
storage references associated with the following
instructions are not necessarily single-access
references: the decimal instructions and the
instructions CONVERT TO BINARY,
CONVERT TO DECIMAL, MOVE WITH
OFFSET, PACK, and UNPACK.

2. Page-access exceptions.

a. When a storage operand in which there is
storing crosses a page boundary and a
page-access exception is recognized, the
storage-operand store references to the part
of the operand which does not cause the
page-access exception are not necessarily
single-access references.

b. In an instruction involving two storage
operands (for example, an SS-format
instruction or MOVE LONG) for which there
is storing in a storage operand, the
storage-operand store references for one
operand are not necessarily single-access
references when a page-access exception is
recognized for the other operand.

When a storage-operand store reference to a
location is not a single-access reference, the contents
placed at a byte location are not necessarily the same
for each store access; thus, intermediate results in a
single-byte location may be observed by channels.

5-8 IBM 4300 Processors Principles of Operation

Programming Notes

1. When multiple fetch accesses are made to a single
byte that is being changed by a channel, the
result is not necessarily limited to that which
could be obtained by fetching the bits
individually. For example, the process used in
MULTIPLY DECIMAL may consist of repetitive
additions and subtractions each of which causes
the second operand to be fetched from storage.

2. When CPU instructions are used to modify
storage locations being accessed by a channel
simultaneously, multiple store accesses to a single
byte by the CPU may result in intermediate
values being observed by a channel. To avoid
these intermediate values (especially when
modifying a CCW chain), only instructions
making single-access references should be used.
Either one storage page should be operated on at
a time or preliminary testing should be performed
to ensure that all required pages are addressable.
The instructions which operate on decimal data
should not be used.

Relation Between Operand Accesses

Storage-operand fetches associated with one
instruction execution must appear to precede all
storage-operand references for conceptually
subsequent instructions. A storage-operand store
specified by one instruction must appear to precede
all storage-operand stores specified by conceptually
subsequent instructions, but it does not necessarily
precede storage-operand fetches specified by
conceptually subsequent instructions. However, a
storage-operand store must precede a conceptually
subsequent storage-operand fetch from the same
main-storage location.

When an instruction has two storage operands both
of which cause fetch references, it is unpredictable
which operand is fetched first, or how much of one
operand is fetched before the other operand is
fetched. When the two operands overlap, the
common locations may be fetched independently for
each operand.

When an instruction has two storage operands the
first of which causes a store and the second a fetch
reference, it is unpredictable how much of the second
operand is fetched before the results are stored. In
the case of destructively overlapping operands, the
portion of the second operand which is common to
the first is not necessarily fetched from storage.

When an instruction has two storage operands the
first of which causes an update reference and the

second a fetch reference, it is unpredictable which
operand is fetched first, or how much of one operand
is fetched before the other operand is fetched.
Similarly, it is unpredictable how much of the result is
processed before it is returned to storage. In the case
of destructively overlapping operands, the portion of
the second operand which is common to the first is
not necessarily fetched from storage.

Programming Note

The independent fetching of a single location for
each of two operands may affect the program
execution in the following situation.

When the same storage location is designated by
two operand addresses of an instruction, and a
channel causes the contents of the location to change
during execution of the instruction, the old and new
values of the location may be used simultaneously.
For example, comparison of a field to itself may yield
a result other than equal, or EXCLUSIVE-ORing of
a field to itself may yield a result other than zero.

Other Storage References

Updating of the interval timer occurs after
storage-operand references for the conceptually
previous instruction and before storage-operand
references for the conceptually subsequent
instruction. Interval-timer updates can also occur
within an interruptible instruction between units of
operation.

The interruption codes not stored within the old
PSW are not necessarily single-access stores. The
external and SVC interruption-code stores occur
between the conceptually previous and conceptually
- subsequent operations. The program
interruption-code store accesses may precede the
storage-operand references associated with the
instruction which results in the program interruption.

The CSW and I/O-communications-area stores
occur within the conceptual limits of the interruption
or I/0 instruction with which they are associated.

Serialization

The order of functions performed by a CPU is
normally independent of the functions performed by
channels. Similarly, the order of functions performed
by a channel is normally independent of the functions
performed by other channels and by the CPU.
However, at certain points in its execution,
serialization of the CPU occurs. Serialization also
occurs at certain points for channels.

CPU Serialization

All interruptions and the execution of certain
instructions cause serialization of CPU operation. A
serialization operation consists in completing all
conceptually prior storage accesses by the CPU, as
observed by channels, before the conceptually
following storage accesses occur. Serialization affects
the order of all CPU accesses to storage and to the
page descriptions.

Serialization is performed by all interruptions and
by the execution of the following instructions:

1. The general instructions BRANCH ON
CONDITION (BCR) with the R; and R, field
containing 15 and zero, respectively, and
COMPARE AND SWAP, COMPARE DOUBLE
AND SWAP, STORE CLOCK, SUPERVISOR
CALL, and TEST AND SET.

2. LOAD PSW.

3. All I/O instructions.

The sequence of events associated with a serializing
operation is as follows:

» All conceptually previous storage accesses by the
CPU are completed, as observed by channels. This
includes all conceptually previous stores and
changes to page descriptions.

+ The normal function associated with the serializing
operation is performed. In the case of instruction
execution, operands are fetched, and the storing of
results is completed. The exceptions are LOAD
PSW, in which the operand may be fetched before
previous stores have been completed, and
interruptions, in which the interruption code and
associated fields may be stored prior to the
serialization. The fetching of the serializing
instruction occurs before the execution of the
instruction and may precede the execution of
previous instructions, but may not precede the
completion of the previous serializing operation.

In the case of an interruption, the old PSW, the
interruption code, and other information, if any,
are stored, and the new PSW is fetched.

+ Finally, instruction fetch and operand accesses for
conceptually subsequent operations may begin.

A serializing function affects the order of storage
accesses that are under the control of the CPU. It
does not affect the order of storage accesses under
the control of a channel.

Chapter 5. Program Execution 5-9

Programming Notes

1.

When a serializing operation takes place,
channels observe instruction and operand
fetching and result storing to take place in the
order established by the serializing operation.
Storing by a channel into a location from which
a serializing instruction is fetched does not
necessarily affect the execution of the serializing
instruction unless a serializing operation has been
performed after the storing and before the
execution of the serializing instruction.
For programs that are intended to run also on
multiprocessing configurations of System/370, it
should be noted that the serializing operations
affect the order of CPU accesses to storage and
to the storage key, as observed by other CPUs as
well as by channels. Therefore, serializing
instructions should be inserted wherever it is
necessary to control the interaction of programs
that may run concurrently on different CPUs.

5-10 IBM 4300 Processors Principles of Operation

Channel Serialization

Serialization of a channel occurs as follows:

1. For a single channel program, all storage accesses
and page-description accesses by the channel
follow the execution of START I/O or START
1/0 FAST RELEASE, as observed by the CPU
and other channels. This includes all accesses for
the CAW, CCWs, and data.

2. For the last CCW of a chain, all storage accesses
and page-description accesses are completed, as
observed by the CPU and other channels, before
the interruption condition indicating channel end
is presented to the CPU.

3. If a CCW in the chain contains a PCI bit which
is one, all storage accesses and page-description
accesses due to CCWs preceding it in the chain
are completed, as observed by the CPU and other
channels, before the PCI condition is presented to
the CPU.

The serialization of a channel does not affect the
order of storage accesses or page-description accesses
caused by a program in the CPU or another channel.
It also does not affect the order of storage accesses or
page-description accesses caused by other channel
programs on the same channel.

Chapter 6. Interruptions

Contents

Interruption Action 6-1
Source Identification 6-2
Enabling and Disabling 6-4
Instruction-Length Code 6-4
Zero ILC 6-5
ILC on Instruction-Fetch Exceptions 6-5
Exceptions Associated with the PSW 6-6
Early Exception Recognition 6-6
Late Exception Recoguition 6-6
Types of Instruction Ending 6-6
Interruptible Instructions 6-7
Point of Interruption 6-7
Ending of Interruptible Instructions 6-7
Machine-Check Interruption 6-8
Supervisor-Call Interruption 6-8
Program Interruption 6-8
Program-Interruption Conditions 6-9
Addressing Exception 6-9
Data Exception 6-9
Decimal-Divide Exception 6-10
Decimal-Overflow Exception 6-10
Execute Exception 6-10
Exponent-Overflow Exception 6-10
Exponent-Underflow Exception 6-10
Fixed-Point-Divide Exception 6-10
Fixed-Point-Overflow Exception 6-11

The interruption facility permits the CPU to change
its state as a result of conditions external to the
machine, within the machine, or within the CPU
itself. To permit fast response to conditions of high
priority and immediate recognition of the type of
condition, interruption conditions are grouped into six
classes: machine check, supervisor call, program,
external, input/output, and restart.

Interruption Action

An interruption consists in storing the current PSW
as an old PSW, storing further detail information
identifying the cause of the interruption, and fetching
a new PSW. Processing resumes as specified by the
new PSW,

The old PSW stored on an interruption normally
contains the address of the instruction that would
have been executed next had the interruption not
occurred, thus permitting resumption of the

Floating-Point-Divide Exception 6-11
Monitor Event 6-11
Operation Exception 6-11
Page-Access Exception 6-11
Page-State Exception 6-12
Page-Transition Exception 6-12
PER Event 6-12
Privileged-Operation Exception 6-12
Protection Exception 6-12
Significance Exception 6-13
Special-Operation Exception 6-13
Specification Exception 6-13
Recognition of Access Exceptions 6-13
Nontransparent Nullification 6-16
Multiple Program-Interruption Conditions 6-17
External Interruption 6-19
Clock Comparator 6-19
CPU Timer 6-19
External Signal 6-20
Interrupt Key 6-20
Interval Timer 6-20
Input/Output Interruption 6-20
Restart Interruption 6-21
Priority of Interruptions 6-21

interrupted program. For program and supervisor-call
interruptions, the information stored also contains a
code that identifies the length of the last-executed
instruction, thus permitting the program to respond to
the cause of the interruption. In the case of some
program conditions for which the normal response is
reexecution of the instruction causing the
interruption, the instruction address directly identifies
the instruction last executed.

Except for restart, an interruption can take place
only when the CPU is in the operating state. The
restart interruption can occur with the CPU in either
the stopped or operating state.

The details of source identification, location
determination, and instruction execution are
explained in later sections and are summarized in the
figure "'Interruption Action."

Chapter 6. Interruptions 6-1

Source Identification

The six classes of interruptions (machine check,
supervisor call, program, external, I/0, and restart)
are distinguished by the storage locations at which
the old PSW is stored and from which the new PSW
is fetched. For most classes, the causes are further
identified by an interruption code and, for some
classes, by additional information placed in
permanently assigned storage locations during the
interruption. (See also the section "Assigned Storage
Locations' in Chapter 3, "Storage.") For
supervisor-call, program, external, and I/0
interruptions, the interruption code comprises 16 bits.

For machine-check interruptions, the interruption
code comprises 64 bits and is stored at locations
232-239. Additional information for identifying the
cause of the interruption and for recovering the state
of the machine may be provided by the contents of
the machine-check save areas. (See Chapter 11,
"Machine-Check Handling.")

For supervisor-call interruptions, in the EC mode,
the interruption code is stored at locations 138-139,
and the instruction-length code is stored in bit
positions 5 and 6 of location 137. In the BC mode,

the interruption code and instruction-length code are
placed in the old PSW.

For program interruptions, in the EC mode, the
interruption code is stored at locations 142-143, and
the instruction-length code is stored in bit positions 5
and 6 of location 141. In the BC mode, the
interruption code and instruction-length code are
placed in the old PSW. Further information may be
provided in the form of the access-exception address,
monitor-class number, monitor code, PER code, and
PER address, which are stored at locations 144-159.

For external interruptions, in the EC mode, the
interruption code is stored at locations 134-135. In
the BC mode, the interruption code is placed in the
old PSW.

For I/0 interruptions, in the EC mode, the
interruption code, which contains the I/O address, is
stored at locations 186-187. In the BC mode, the
interruption code is placed in the old PSW.
Additional information is provided by the contents of
the channel-status word (CSW) stored at location 64.
Further information may be provided by the limited
channel logout stored at location 176.

Mask Bits in

Control Registers Execution of Instruction

PSW Mask
Bits

Source ldentification Interruption Code BC EC
Machine check Locations 232-2391

(old PSW 48, new PSW 112)
Exigent condition 13 13
Repressible condition 13 13
Supervisor call

(old PSW 32, new PSW 96)
Instruction bits 00000000 ssssssss
Program

(old PSW 40, new PSW 104)
Operation 00000000 pO000001
Privileged operation 00000000 p0000010
Execute 00000000 p0O00011
Protection 00000000 p0000100
Addressing 00000000 p0000101
Specification 00000000 p0000110
Data 00000000 pOO00111
Fixed-point overflow 00000000 p0001000 36 20
Fixed-point divide 00000000 p0001001
Decimal overfiow 00000000 p0001010 37 21
Decimal divide 00000000 p0001011
Exponent overflow 00000000 p0O001100
Exponent underflow 00000000 p0O001101 38 22

00000000
00000000

p0001110 39 23
p0001111

Significance
Floating-point divide

Interruption Action (Part 1 of 2)

6-2 IBM 4300 Processors Principles of Operation

Register Bit ILC Set Identified by Old PSW
b3 terminated
14 a7 unaffected’
1,2 completed
1,2,3 suppressed
1,2 suppressed
2 suppressed
1,2,3 suppressed or terminated
1,2,3 suppressed or terminated
0,1,2,3 suppressed or completed
2,3 suppressed or terminated
1,2 completed
1,2 suppressed or completed
2,3 completed
2,3 suppressed
1,2 completed
1,2 completed
1.2 completed
1.2 suppressed

PSW Mask Mask Bits in

Bits Control Registers Execution of instruction

Source ldentification Interruption Code “BC EC Register Bit 1LC Set Identified by Old PSW
Special operation 00000000 p0010011 0 1 2 suppressed
Page access 00000000 p0011000 1,2,3 nullified
Page state 00000000 p0011010 2 suppressed
Page transition 00000000 p0011011 2 suppressed
Monitor event 00000000 p1000000 8 16+ 2 completed
PER event 00000000 1nOnnnnn? * 1 9 0-3 0,1,2,3 completed®
External

(old PSW 24, new PSW 88)
Interval timer 00000000 1eeeeeee 7 7 0 24 X unaffected
Interrupt key 00000000 e1leeeeee 7 7 0 25 X unaffected
External signal 2 00000000 eeleeeee 7 7 0 26 X unaffected
External signal 3 00000000 eeeleeee 7 7 0 26 x unaffected
External signal 4 00000000 eeeeleee 7 7 0 26 X unaffected
External signal 5 00000000 eeeeelee 7 7 0 26 X unaffected
External signal 6 00000000 eeeeeele 7 7 0 26 X unaffected
External signal 7 00000000 eeeeceel 7 7 0 26 X unaffected
Clock comparator 00010000 00000100 7 7 0 20 X unaffected
CPU timer 00010000 00000101 7 7 0 21 X unaffected
Input/output

(old PSW 56, new PSW 120)
Channel O 00000000 cjddcldddd4 0 6 2 05 X unaffected
Channel 1 00000001 ddt:lddddd4 1 6 2 15 X unaffected
Channel 2 00000010 dd(:lddddd4 2 6 2 25 X unaffected
Channet 3 00000011 dddddddd4 3 6 2 3° X unaffected
Channel 4 00000100 dddddddd® 4 6 2 4° x unaffected
Channel 5 00000101 dddddddd4 5 6 2 55 X unaffected
Channel 6 and up ccececcce dddddddd4 6 6 2 6+ X unaffected
Restart

{old PSW 8, new PSW 0}
Restart key 00000000 000000006 X unaffected

Explanation:
1A model-dependent machine-check-interruption code of 64 bits is stored at locations 232-239.

?When the interruption code indicates a PER event, an I1LC of 0 may be stored only when bits 8-15 of the interruption code are
10000110 (PER, specification). '

3The unit of operation is completed, unless a program exception concurrently indicated has caused the unit of operation to be
nullified, suppressed, or terminated.

%In the EC mode, the 1/O address is stored at locations 186-187.
SEor channels 0-5, channel masks in control register 2 have no effect in the BC mode.
®Bits 16-31 in the old PSW in the BC mode are set to zeros. No interruption code is provided in the EC mode.

7For a repressible machine-check-interruption condition, the effect of the condition is identified by the validity bits in the machine-
check-interruption code. The instruction has been unaffected only if all the associated validity bits are ones.

+

Pius the following bits in the control register.

In the BC mode, program-event recording is disabled.

Channel-address bits. '

Device-address bits.

If one, the bit indicates another concurrent external-interruption condition.

A possible nonzero code, indicating another concurrent program-interruption condition.
If one, the bit indicates a concurrent program-event interruption condition.

Bits of the | field of SUPERVISOR CALL.

Unpredictable in the BC mode; not stored in the EC mode.

*

X » o 50 Q0

Interruption Action (Part 2 of 2)

Chapter 6. Interruptions 6-3

For restart interruptions, in the EC mode, no
interruption code is stored. In the BC mode, an
interruption code of zero is placed in the old PSW.

Enabling and Disabling

By means of mask bits in the current PSW and in
control registers, the CPU may be enabled or disabled
for all I/0, external, and machine-check
interruptions and for some program interruptions.
When a mask bit is one, the CPU is enabled for the
corresponding class of interruptions, and these
interruptions can take place.

When a mask bit is zero, the CPU is disabled for
the corresponding interruptions. The conditions that
cause 1/0 or external interruptions remain pending.
Machine-check-interruption conditions remain
pending or cause the CPU to enter the check-stop
state. The disallowed program-interruption
conditions are ignored, except that some causes are
indicated also by the setting of the condition code.

Program interruptions for which mask bits are not
provided, as well as the supervisor-call and restart
interruptions, are always taken.

The mask bits may allow or disallow all
interruptions within the class, or they may selectively
allow or disallow interruptions for particular causes.
This control may be provided by mask bits in the
PSW that are assigned to particular causes, such as
the bits assigned to the four maskable
program-interruption conditions. Alternatively, there
may be a hierarchy of masks, where a mask bit in the
PSW controls all interruptions within a type, and
mask bits in a control register provide more detailed
control over the sources.

When the mask bit is one, the CPU is enabled for
the corresponding interruptions. When the mask bit
is zero, these interruptions are disallowed.
Interruptions that are controlled by a hierarchy of
masks are allowed only when all controlling mask bits
are ones.

Programming Notes

1. Mask bits in the PSW provide a means of
disallowing all maskable interruptions; thus,
subsequent interruptions can be disallowed by the
new PSW introduced by an interruption.
Furthermore, the mask bits can be used to
establish a hierarchy of interruption priorities,
where a condition in one class can interrupt the
program handling a condition in another class but
not vice versa. To prevent an interruption-
handling routine from being interrupted before

6-4 IBM 4300 Processors Principles of Operation

the necessary housekeeping steps are performed,
the new PSW must disable the CPU for further
interruptions within the same class or within a
class of lower priority.

2. Since the mask bits in control registers are not
changed as part of the interruption procedure,
these masks cannot be used to prevent an
interruption immediately after a previous
interruption in the same class. The mask bits in
control registers provide a means for selectively
enabling the CPU for some sources and disabling
it for others within the same class.

Instruction-Length Code

The instruction-length code (ILC) occupies two bit
positions and provides the length of the last
instruction executed: It permits identifying the
instruction causing the interruption when the
instruction address in the old PSW designates the
next sequential instruction. The ILC is provided also
by the BRANCH AND LINK instructions.

When the old PSW specifies the EC mode, the ILC
for supervisor-call and program interruptions is stored
in bit positions 5 and 6 of the bytes at locations 137
and 141, respectively. For machine-check, external,
1/0, and restart interruptions, the ILC is not stored
since it cannot be related to the length of the
last-executed instruction.

When the old PSW specifies the BC mode, the ILC
is stored in bit positions 32 and 33 of that PSW. The
II.C is meaningful, however, only after a program or
supervisor-call interruption. For 1/0, external,
machine-check, and restart interruptions, the ILC
does not indicate the length of the last-executed
instruction and is unpredictable. Similarly, the IL.C is
unpredictable in the PSW stored during execution of
the machine-save function and when the PSW is
displayed.

For supervisor-call and program interruptions, a
nonzero instruction-length code identifies in
halfwords the length of the instruction that was last
executed. Whenever an instruction is executed by
means of EXECUTE, instruction-length code 2 is set
to indicate the length of EXECUTE and not that of
the target instruction.

The value of a nonzero instruction-length code is
related to the leftmost two bits of the instruction.
The value is not contingent on whether the operation
code is assigned or on whether the instruction is
installed. The following table summarizes the
meaning of the instruction-length code:

ILC Instruction

Decimal Binary Bits 0-1 Instruction Length

0 00 Not available

1 01 00 One halfword

2 10 01 Two halfwords

2 10 10 Two halfwords

3 1 11 Three halfwords
Zero ILC

Instruction-length code 0, after a program
interruption, indicates that the location of the
instruction causing the interruption is not made
available to the program.

An ILC of 0 occurs only when a specification
exception is recognized that is due to a PSW-format
error, other than one due to an odd instruction
address, and the invalid PSW has been introduced by
LLOAD PSW or an interruption. (See the section
"Exceptions Associated with the PSW" later in this
chapter.) In the case of LOAD PSW, the address of
the instruction has been replaced by the instruction
address of the new PSW. When the invalid PSW is
introduced by an interruption, the PSW-format error
cannot be attributed to an instruction.

In the case of LOAD PSW and the supervisor-call
interruption, a PER event may be indicated
concurrently with a specification exception having an
ILC of 0.

ILC on Instruction-Fetch Exceptions

When a program interruption occurs because of an

exception that prohibits access to the instruction, the

instruction-length code cannot be set on the basis of
the first two bits of the instruction. As far as the
significance of the ILC for this case is concerned, the
following two situations are distinguished:

1. When an odd instruction address causes a
specification exception to be recognized or when
an addressing or protection exception is
encountered on fetching an instruction, the ILC
is arbitrarily set to 1, 2, or 3, indicating the
multiple of 2 by which the instruction address has
been incremented. By reducing the instruction
address in the old PSW by the number of
halfword locations indicated in the
instruction-length code, the address originally
appearing in the PSW may be obtained.

2. When a page-access exception is recognized while
fetching an instruction, including the target

instruction of EXECUTE, the ILC is arbitrarily
set to 1, 2, or 3. In this case the operation is
nullified, and the instruction address is not
incremented.

The ILC is not necessarily related to the first two
bits of the instruction when the first halfword of an
instruction can be fetched but an access exception is
recognized on fetching the second or third halfword.
The ILC may be arbitrarily set to 1, 2, or 3 in these
cases. The instruction address is or is not updated, as
described in situations 1 and 2 above.

When any exceptions other than page access are
encountered on fetching the target instruction of
EXECUTE, the ILC is 2.

Programming Notes

1. A nonzero instruction-length code for a program
interruption indicates the number of halfword
locations by which the instruction address in the
old PSW must be reduced to obtain the address of
the last instruction executed, unless one of the
following situations exists:

a. The interruption is caused by a page-access
exception.

b. An interruption for a PER event occurs
before the execution of an interruptibie
instruction is ended.

c. The interruption is caused by a PER event
due to LOAD PSW or a branch or linkage
instruction, including SUPERVISOR CALL.

d. The interruption is caused by an access
exception encountered in fetching an
instruction, and the instruction address has
been introduced into the PSW by a means
other than sequential operation (by a branch
instruction, LOAD PSW, or an interruption).

e. The interruption is caused by a specification
exception because of an odd instruction
address.

For situations a and b above, a unit of
operation is nullified, and the instruction
designated by the instruction address is the
same as the last one executed. These two are
the only cases where the instruction address
in the old PSW identifies the instruction
causing the exception.

For situations c, d, and e, the address of the
last instruction executed has been replaced in
the old PSW and cannot be calculated using
the one appearing in the old PSW.

2. When a PER event is indicated, bit 8 in the
interruption code is one, the PER address in the

Chapter 6. Interruptions 6-5

word at location 152 identifies the location of the
instruction causing the interruption, and the
instruction-length code (IL.C) is redundant.
Similarly, the ILC is redundant when the
operation is nullified, since in this case the
instruction address in the PSW is not
incremented. If the ILC value is required in this
case, it can be derived from the operation code of
the instruction identified by the old PSW.

Exceptions Associated with the PSW

Exceptions associated with erroneous information in
the current PSW may be recognized when the
information is introduced into the PSW, or as part of
the execution of the next instruction. Errors in the
PSW which are specification-exception conditions are
called PSW-format errors.

Early Exception Recognition

A program interruption for a specification exception
occurs immediately after the PSW becomes active if a
one is introduced in an unassigned bit position of an
EC-mode PSW (that is, bit positions 0, 2-5, 16, 17,
24-39).

The interruption takes place regardless of whether
the wait state is specified. If the invalid PSW causes
the CPU to become enabled for a pending 1/0,
external, or machine-check interruption, the program
interruption is taken instead, and the pending
interruption is subject to the mask bits of the new
PSW introduced by the program interruption.

When the execution of LOAD PSW or an
interruption introduces a PSW with one of the above
error conditions, the instruction-length code is set to
0, and the newly introduced PSW, except for the
interruption code and the instruction-length code in
the BC mode, is stored unmodified as the old PSW.
When one of the above conditions is introduced by
execution of SET SYSTEM MASK or STORE THEN
OR SYSTEM MASK, the instruction-length code is
set to 2, and the instruction address is updated by
two halfword locations. The PSW containing the
invalid value introduced into the system-mask field is
stored as the old PSW.

When a PSW with one of the above error conditions
is introduced during initial program loading, the
loading sequence is not completed, and the load
indicator remains on.

6-6 IBM 4300 Processors Principles of Operation

Late Exception Recognition

For the following conditions, the exception is
recognized as part of the execution of the next
instruction:

« A specification exception is recognized due to an
odd instruction address in the PSW (PSW bit 63 is
one).

o An access (protection, addressing, or page-access)
exception is associated with the location designated
by the instruction address or with the location of
the second or third halfword of the instruction
starting at the designated address.

The instruction-length code and instruction address
stored in the program old PSW under these
conditions are discussed in the section "ILC on
Instruction-Fetch Exceptions' in this chapter.

If the invalid PSW causes the CPU to be enabled
for a pending I/0, external, or machine-check
interruption, the corresponding interruption occurs,
and the PSW invalidity is not recognized. Similarly,
the specification or access exception is not recognized
in a PSW specifying the wait state.

Programming Notes

1. The execution of LOAD PSW, SET SYSTEM
MASK, STORE THEN AND SYSTEM MASK,
and STORE THEN OR SYSTEM MASK is
suppressed on a protection or addressing
exception, and hence the program old PSW
provides information concerning the program
causing the exception.

2. When the first halfword of an instruction can be
fetched but an access exception is recognized on
fetching the second or third haifword, the
instruction-length code is not necessarily related
to the operation code.

3. If the new PSW introduced by an interruption
contains a PSW-format error, a string of
interruptions occurs. (See the section "Priority of
Interruptions' in this chapter.)

Types of Instruction Ending

Instruction execution is said to end in one of four
ways: completion, nullification, suppression, and
termination.

Completion of instruction execution provides results
as called for in the definition of the instruction.
When an interruption occurs after the completion of
the execution of an instruction, the instruction
address in the old PSW designates the next
instruction to be executed.

Suppression of instruction execution causes the
instruction to be executed as if it specified "no
operation." The contents of any result fields,
including the condition code, are not chaniged. The
instruction address in the old PSW on an interruption
after suppression designates the next sequential
instruction. ;

Nullification has the same effect as suppression,
except that when an interruption occurs after the
execution of an instruction has been nullified, the
instruction address in the old PSW designates the
instruction whose execution was nullified instead of
the next sequential instruction.

Termination of instruction execution causes the
contents of any fields due to be changed by the
instruction to be unpredictable. The operation may
have replaced all, part, or none of the contents of the
designated result fields and may have changed the
condition code if such change was called for by the
instruction. Unless the interruption is caused by a
machine-check condition, the validity of the
instruction address in the PSW, the interruption code,
and the instruction-length code are not affected; and
the state or the operation of the machine has not
been affected in any other way. The instruction
address in the old PSW on an interruption after

termination designates the next sequential instruction.

Interruptible Instructions

Point of Interruption

An interruption is permitted between operations; that
is, an interruption can occur after the performance of
one operation and before the start of a subsequent
operation. The entire execution of an instruction is
one operation.

For the following instructions, referred to as
interruptible instructions, an interruption is permitted
after a partial execution of the instruction:

COMPARE LOGICAL LONG
MOVE LONG

The execution of an interruptible instruction is
considered to consist of a number of units of
operation, and an interruption is permitted between
units of operation. The amount of data processed in
a unit of operation depends on the particular
instruction and may depend on the particular
condition that causes the execution of the instruction
to be interrupted.

Whenever points of interruption that include those
occurring within the execution of an interruptible

instruction are discussed, the term "unit of
operation" is used. For a noninterruptible
instruction, the entire execution consists in effect, of
one unit of operation.

Ending of Interruptible Instructions

The execution of an interruptible instruction is
completed when all units of operation associated with
that instruction are completed. When an interruption
occurs after completion, nullification, or suppression
of a unit of operation, all prior units of operation
have been completed.

On completion of a unit of operation other than the
last one and on nullification of any unit of operation,
the instruction address in the old PSW designates the
interrupted instruction, and the operand parameters
are adjusted such that the execution of the
interrupted instruction is resumed from the point of
interruption when the old PSW stored on the
interruption is made the current PSW. It depends on
the instruction how the operand parameters are
adjusted.

When a unit of operation is suppressed, the
instruction address in the old PSW designates the
next sequential instruction. The operand parameters,
however, are adjusted so as to indicate the extent to
which instruction execution has been completed. If
the instruction is reexecuted after the conditions
causing the suppression have been removed, the
execution is resumed from the point of interruption.
As in the case of completion and nullification, it
depends on the instruction how the operand
parameters are adjusted.

When a unit of operation of an interruptible
instruction is terminated, the contents, in general, of
any fields due to be changed by the instruction are
unpredictable. On an interruption, the instruction
address in the old PSW designates the next sequential
instruction.

Programming Notes

1. Any interruption, other than supervisor call and
some program interruptions, can occur after a
partial execution of an interruptible instruction.
In particular, interruptions for machine-check,
external, and I/O conditions and for access
exceptions and PER events can occur between
units of operation.

2. The amount of data processed in a unit of
operation of an interruptible instruction depends
on the model and may depend on the type of
condition which causes the execution of the

Chapter 6. Interruptions 6-7

instruction to be interrupted or stopped. Thus,
when an interruption occurs at the end of the
current unit of operation, the length of-the unit
of operation may be different for different types
of interruptions. Also, when the stop function is
requested during the execution of an interruptible
instruction, the CPU enters the stopped state at
the completion of the execution of the current
unit of operation. Similarly, in the instruction-
step mode, only a single unit of operation is
performed, but the unit of operation for the
various cases of stopping may be different.

Machine-Check Interruption

The machine-check interruption is a means for
reporting to the program the occurrence of equipment
malfunctions. Information is provided to assist the
program in determining the location of the fault and
extent of the damage.

A machine-check interruption causes the old PSW
to be stored at location 48 and a new PSW to be
fetched from location 112. When the old PSW
specifies the BC mode, the contents of the
interruption-code and instruction-length-code fields
in the old PSW are unpredictable. In the EC mode,
the instruction-length code is not stored.

The cause and severity of the malfunction are
identified by a 64-bit machine-check-interruption
code stored at locations 232-239. Further
information identifying the cause of the interruption
and the location of the fault may be stored at
locations 216-511.]

The interruption action and the storing of the
associated information are under the control of PSW
bit 13 and bits in control register 14. See Chapter 11,
"Machine-Check Handling," for more detailed
information.

Supervisor-Call Interruption

The supervisor-call interruption occurs when the
instruction SUPERVISOR CALL is executed. The
CPU cannot be disabled for the interruption, and the
interruption occurs immediately upon the execution
of the instruction.

The supervisor-call interruption causes the old PSW
to be stored at location 32 and a new PSW to be
fetched from location 96.

The contents of bit positions 8-15 of SUPERVISOR
CALL are placed in the low-order byte of the
interruption code. The high-order byte of the
interruption code is set to zero. The
instruction-length code is 1, unless the instruction

6-8 IBM 4300 Processors Principles of Operation

was executed by means of EXECUTE, in which case
the code is 2.

When the old PSW specifies the EC mode, the
interruption code is placed at locations 138-139, the
instruction-length code is placed in bit positions 5
and 6 of the byte at location 137, with the other bits
set to zeros, and zeros are stored at location 136.
When the old PSW specifies the BC mode, the
interruption code and instruction-length code appear
in the old PSW.

Program Interruption

Exceptions resulting from execution of the program,
including the improper specification or use of
instructions and data, or from the detection of a PER
event or monitor event, generate a program
interruption.

A program interruption causes the old PSW to be
stored at location 40 and a new PSW to be fetched
from location 104.

The cause of the interruption is identified by the
interruption code. When the old PSW specifies the
EC mode, the interruption code is placed at locations
142-143, the instruction-length code is placed in bit
positions 5 and 6 of the byte at location 141 with the
rest of the bits set to zeros, and zeros are stored at
location 140. When the old PSW specifies the BC
mode, the interruption code and the
instruction-length code are placed in the old PSW.
For some causes, additional information identifying
the reason for the interruption is stored at locations
144-159 in both the EC and BC modes.

Except for the PER-event condition, the condition
causing the interruption is identified by a coded value
placed in the rightmost seven bit positions of the
interruption code. Only one condition at a time can
be indicated. Bits 0-7 of the interruption code are
set to zeros. :

The PER-event condition is indicated by setting bit
8 of the interruption code to one, with bits 0-7 set to
zeros. When this is the only condition, bits 9-15 are
also set to zeros. When a PER-event condition is
indicated concurrently with another condition, bit 8 is
one, and the coded value for the other condition
appears in bit positions 9-15. v

A program interruption can occur only when the
corresponding mask bit, if any, is one. The program
mask in the PSW permits masking four of the
exceptions, bit 1 in control register 0 controls
whether SET SYSTEM MASK causes a special-
operation exception, bits 16-31 in control register 8
permit masking interruption conditions due to

monitor events, and, in the EC mode, masks are
provided for controlling interruptions due to PER
events. When the mask bit is zero, the condition is
ignored; the condition does not remain pending.

Programming Notes

1. When the new PSW for a program interruption
has a format error or causes an exception to be
recognized in the process of instruction fetching,
a string of program interruptions takes place. See
the section "Priority of Interruptions"” in this
chapter for a description of how such strings are
terminated. '

2. Some of the conditions indicated as program
exceptions may be recognized also by an I/0
operation, in which case the exception is
indicated in the channel-status word.

Program-Interruption Conditions

The following is a detailed description of each
program-interruption condition.

Addressing Exception

An addressing exception is recognized when the CPU
causes a reference to a virtual-storage location that is
not provided. A storage location is not provided
when the page address, bits 8-20 of the storage
address, equals or exceeds the page-capacity count.
An address designating a storage location that is not
provided is referred to as invalid.

The execution of the instruction is suppressed when
the location of the instruction, including the location
of the target instruction of EXECUTE, is not
provided. Except for some specific instructions whose
execution is suppressed, the operation is terminated
when an operand location is not provided. For
termination, changes may occur only to result fields,
which include the condition code, registers, and any
storage locations that are provided and that are
designated to be changed by the instruction.
Therefore, if an instruction is due to change only the
contents of a field in storage, and every byte of the
field is in a location that is not provided, the
operation is suppressed.

The instructions whose execution is always
suppressed are LOAD PSW, SET CLOCK
COMPARATOR, SET CPU TIMER, SET SYSTEM
MASK, STORE CLOCK COMPARATOR, STORE
CPU ID, STORE CPU TIMER, STORE THEN AND
SYSTEM MASK, and STORE THEN OR SYSTEM
MASK.

When part of an operand location is provided and
part is not, storing may be performed in the part that
is provided.

When the address of any halfword of an instruction
is invalid, the instruction-length code (ILC) is 1, 2,
or 3, indicating the multiple of 2 by which the
instruction address has been incremented. It is
unpredictable whether the ILC is 1, 2, or 3.

In all cases of addressing exceptions not associated
with instruction fetching, the IL.C is 1, 2, or 3,
designating the length of the instruction that caused
the reference. When an addressing exception is
associated with fetching the target of EXECUTE, the
ILCis 2.

Data Exception

A data exception is recognized when:

1. The sign or digit codes of operands in the decimal
instructions (described in Chapter 8, "'Decimal
Instructions'') or in CONVERT TO BINARY are
invalid.

2. The operand fields in ADD DECIMAL,
COMPARE DECIMAL, DIVIDE DECIMAL,
MULTIPLY DECIMAL, and SUBTRACT
DECIMAL overlap in a way other than with
coincident rightmost bytes; or operand fields in
ZERO AND ADD overlap, and the rightmost
byte of the second operand is to the right of the
rightmost byte of the first operand.

3. The multiplicand in MULTIPLY DECIMAL has
an insufficient number of high-order zeros.

For all instruction other than EDIT and EDIT AND
MARK, the action taken for a data exception
depends on whether a sign code is invalid. The
operation is suppressed when a sign code is invalid,
regardless of whether any other condition causing the
exception exists; when no sign code is invalid, the
operation is terminated. When the operation is
terminated, the contents of the sign position in the
rightmost byte of the result field either remain
unchanged or are set to the preferred sign code; the
contents of the remainder of the result field are
unpredictable.

In the case of EDIT and EDIT AND MARK, an
invalid sign code is not recognized; the operation is
terminated on a data exception for an invalid digit
code.

The instruction-length code is 2 or 3.

Chapter 6. Interruptions 6-9

Programming Notes

1. The definition for data exception permits
termination when no sign code is invalid. On
some models, valid digit codes may be placed in
the result location even if the original contents
were invalid. Thus it is possible, after getting a
data exception, for all fields to appear valid.

2. When, on a program interruption for data
exception, the program finds that a sign code is
invalid, the operation has been suppressed if the
following two conditions are met:

a. The invalid sign of the source field is not
located in the numerical portion of the result
field.

b. The sign code appears in a position specified
by the instruction to be checked for valid
sign. (This condition excludes the first
operand of ZERO AND ADD and both
operands of EDIT and EDIT AND MARK.)

An invalid sign code for the rightmost byte
of the result field is not generated when the
operation is terminated. However, an invalid
second-operand sign code is not necessarily
preserved when it appears in the numerical
portion of the result field.

Decimal-Divide Exception

A decimal-divide exception is recognized when in
decimal division the divisor is zero or the quotient
exceeds the specified data-field size.

The decimal-divide exception can be indicated only
if the digit or digits used in establishing the exception
are valid.

The operation is suppressed.

The instruction-length code is 2 or 3.

Decimal-Overflow Exception

A decimal-overflow exception is recognized when one
or more significant high-order digits are lost because
the destination field in a decimal operation is too
small to contain the result.

The interruption may be disallowed by PSW bit 21
in the EC mode and by PSW bit 37 in the BC mode.

The operation is completed. The result is obtained
by ignoring the overflow information, and condition
code 3 is set.

The instruction-length code is 2 or 3.

6-10 IBM 4300 Processors Principles of Operation

Execute Exception

The execute exception is recognized when the target
instruction of EXECUTE is another EXECUTE.
The operation is suppressed.
The instruction-length code is 2.

Exponent-Overflow Exception

An exponent-overflow exception is recognized when
the result characteristic in floating-point addition,
subtraction, multiplication, or division exceeds 127
and the result fraction is not zero.

The operation is completed. The fraction is
normalized, and the sign and fraction of the result
remain correct. The result characteristic is made 128
smaller than the correct characteristic.

The instruction-length code is 1 or 2.

Exponent-Underflow Exception

An exponent-underflow exception is recognized when
the result characteristic in floating-point addition,
subtraction, multiplication, halving, or division is less
than zero and the result fraction is not zero.

The interruption may be disallowed in the EC mode
by PSW bit 22, and in the BC mode by PSW bit 38.

The operation is completed. The exponent-
underflow mask also affects the result of the
operation. When the mask bit is zero, the sign,
characteristic, and fraction are set to zero, making
the result a true zero. When the mask bit is one, the
fraction is normalized, the characteristic is made 128
larger than the correct characteristic, and the sign
and fraction remain correct.

The instruction-length code is 1 or 2.

Fixed~Point-Divide Exception

A fixed-point-divide exception is recognized when in
fixed-point division the divisor is zero or the quotient
exceeds the register size, or when the result of
CONVERT TO BINARY exceeds 31 bits.

In the case of division, the operation is suppressed.
Execution of CONVERT TO BINARY is completed
by ignoring the high-order bits that cannot be placed
in the register.

The instruction-length code is 1 or 2.

Fixed-Point-Overflow Exception

A fixed-point-overflow exception is recognized when
an overflow occurs during signed binary arithmetic or
left-shift operations.

The interruption may be disallowed in the EC mode
by PSW bit 20, and in the BC mode by PSW bit 36.

The operation is completed. The result is obtained
by ignoring the overflow information, and condition
code 3 is set.

The instruction-length code is 1 or 2.

Floating-Point-Divide Exception

A floating-point-divide exception is recognized when
a floating-point division by a number with a zero
fraction is attempted.

The operation is suppressed.

The instruction-length code is 1 or 2.

Monitor Event

A monitor event is recognized when MONITOR
CALL is executed and the mask bit in control
register 8 corresponding to the class specified by
instruction bits 12-15 is one.

The operation is completed.

As part of the interruption, information identifying
the event is stored at locations 148-149 and
156-159. See the section "Monitoring" in Chapter 4,
"Control," for a detailed description of the
interruption condition.

The instruction-length code is 2.

Operation Exception

- An operation exception is recognized when the CPU
encounters an instruction which has an invalid
operation code.

For the purpose of checking the operation code of
an instruction, the operation code is defined as
follows:

1. When the first eight bits of an instruction have
the hexadecimal value B2, the first 16 bits form
the operation code. '

2. In all other cases, the first eight bits alone form
the operation code.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

Programming Notes

1. In the case of I/0O instructions with the values
9C, 9D, and 9E in bit positions 0-7, the value of
bit 15 is used to distinguish between two
instructions. Bits 8-14, however, are not checked
for zeros, and these operation codes never cause
an operation exception to be recognized.

To ensure that presently written programs run
if and when the operation codes 9C, 9D, and 9E
are extended further to provide for new
functions, only zeros should be placed in bit
positions 8-14. Similarly, zeros should be placed
in bit positions 8-15 in the instruction with the
operation code 9F. In accordance with these
recommendations, the operation codes for seven
of the I/0 instructions are shown as 9C00, 9CO01,
9D00, 9D01, 9E00, 9E01, and 9F00.

2. The operation code 00, with a two-byte
instruction format, and the set of sixteen 16-bit
operation codes B2EO to B2EF, with a four-byte
instruction format, are allocated for use by the
program when an indication of invalid operation
is required. It is improbable that these operation
codes will ever be assigned to an instruction
implemented in the CPU.

3. Some models may offer instructions not described
in this publication, such as those provided for
‘emulation. Consequently, operation codes not
described in this publication do not necessarily
cause an operation exception to be recognized.
Furthermore, these instructions may cause modes
of operation to be set up or otherwise alter the
machine so as to affect the execution of
subsequent instructions. In order to avoid the
possibility of accidentally causing such operation,
an instruction with an operation code not
described in this publication should be issued only
when the specific function associated with the
operation code is desired.

Page-Access Exception

A page-access exception is recognized when storage
is addressed either explicitly or implicitly by the CPU
and the addressed storage location is in a page that is
in the connected or disconnected state.

The exception is recognized as part of the execution
of the instruction when an attempt is made to access
either the instruction or operand location. However,
page-access exceptions are not recognized for the
page operands of the instructions CLEAR PAGE,
CONNECT PAGE, DECONFIGURE PAGE,

Chapter 6. Interruptions 6-11

DISCONNECT PAGE, MAKE ADDRESSABLE,
and MAKE UNADDRESSABLE.

The unit of operation is nullified, except for the
possible effects on storage described in the section
"Nontransparent Nullification" in this chapter.

The address of the storage location causing the
exception is stored at locations 145-147, and zeros
are stored at location 144. The low-order 11 bits of
the address stored are unpredictable.

When the exception occurs during a reference to an
operand location, the instruction-length code (ILC) is
1, 2, or 3 and indicates the length of the instruction
causing the exception. When the exception occurs
during fetching of an instruction, the ILC is 1, 2, or
3, the value being unpredictable.

Page-State Exception

A page-state exception is recognized when the target
page of the CLEAR PAGE instruction is in the
disconnected state.

The operation is suppressed.

The instruction-length code is 2 or 3.

Page-Transition Exception

A page-transition exception can only be recognized
for instructions that cause a page-state transition.
These instructions are CONNECT PAGE,
DECONFIGURE PAGE, DISCONNECT PAGE,
MAKE ADDRESSABLE, and MAKE
UNADDRESSABLE.

The exception is recognized as part of the execution
of the instruction when attempting to perform an
invalid page-state transition. For the definition of an
invalid page-state transition, see the section "Page
States' in Chapter 3, ''Storage."

The operation is suppressed.

The instruction-length code is 2.

PERI Event

A PER event is recognized when program-event
recording (PER) is specified by the contents of

control registers 9-11 and one or more of these

events occur.

In the EC mode, the interruption may be disallowed
by PSW bit 1. In the BC mode, program-event
recording is disabled.

The unit of operation is completed, unless another
concurrently indicated condition has caused the unit
of operation to be nullified, suppressed, or
terminated.

As part of the interruption, information identifying
the event is stored at locations 150-155. See the

6-12 IBM 4300 Processors Principles of Operation

section '"Program-Event Recording” in Chapter 4,
"Control," for a detailed description of the
interruption condition.

The instruction-length code is 0, 1, 2, or 3. Code 0
can be set only if a specification exception is
indicated concurrently.

Privileged-Operation Exception
A privileged-operation exception is recognized when
the CPU encounters a privileged instruction in the
problem state.

The operation is suppressed.

The instruction-length code is 1 or 2.

Protection Exception

A protection exception is recognized when the CPU
attempts to access a storage location that is protected
against the type of reference by the storage key.

The execution of the instruction is suppressed when
the location of the instruction, including the location
of the target instruction of EXECUTE, is protected
against fetching. Except for some specific
instructions whose execution is suppressed, the
operation is terminated when a protection exception
is encountered during a reference to an operand
location. Changes may occur only to result fields. In
this context, the term "result field" includes
condition code, registers, and storage locations, if
any, which are designated to be changed by the
instruction. However, no change is made to a storage
location when a reference to that location causes a
protection exception. Therefore, if an instruction is
due to change only the contents of a field in storage,
and every byte of that field would cause a protection
exception, the operation is suppressed.

The instructions whose execution is always
suppressed are: LOAD PSW, SET CLOCK
COMPARATOR, SET CPU TIMER, SET SYSTEM
MASK, STORE CLOCK COMPARATOR, STORE
CPU ID, STORE CPU TIMER, STORE THEN AND
SYSTEM MASK, and STORE THEN OR SYSTEM
MASK.

On fetching, the protected information is not loaded
into a register or moved to another storage location.
When a part of an operand location is protected
against storing and part is not, storing may be
performed in the unprotected part. The contents of a
protected location remain unchanged.

For a protected operand location, the instruction-
length code is 1, 2, or 3, designating the length of
the instruction that caused the reference.

When the location of any part of the instruction is
protected against fetching, the ILC is 1, 2, or 3,
indicating the multiple of 2 by which the instruction
address has been incremented. It is unpredictable
whether the ILC is 1, 2, or 3.

Significance Exception

A significance exception is recognized when the
result fraction in floating-point addition or
subtraction is zero.

The interruption may be disallowed in the EC mode
by PSW bit 23, and in the BC mode by PSW bit 39.

The operation is completed. The significance mask
also affects the result of the operation. When the
mask bit is zero, the operation is completed by
replacing the result with a true zero. When the mask
bit is one, the operation is completed without further
change to the characteristic and sign of the result.

The instruction-length code is 1 or 2.

Special-Operation Exception

A special-operation exception is recognized when a
SET SYSTEM MASK instruction is encountered in
the supervisor state and the SSM-control bit, bit 1 of
control register 0, is one.

The execution of SET SYSTEM MASK is
suppressed.

The instruction-length code is 2.

Specification Exception

A specification exception is recognized for the

following causes:

1. An odd instruction address is introduced into the
PSW.

2. An operand address does not designate an
integral boundary in an instruction requiring such
integral-boundary designation.

3. The storage address in SET STORAGE KEY or
INSERT STORAGE KEY does not have zeros in
the four low-order bit positions.

4. An odd-numbered general register is designated
by an R field of an instruction that requires an
even-numbered register designation.

5. A floating-point register other than 0, 2, 4, or 6
is specified for a short or long operand, or a
floating-point register other than 0 or 4 is
specified for an extended operand.

6. The multiplier or divisor in decimal arithmetic
exceeds 15 digits and sign.

7. The length of the first-operand field is less than
or equal to the length of the second-operand field
in decimal multiplication or division.

8. Bit positions 8-11 of MONITOR CALL do not
contain zeros.

9. A one is introduced into an unassigned bit
position of the EC-mode PSW (bit positions O,
2-5, 16-17, 24-39).

10. Page 0 is designated to become connected or
disconnected.

The execution of the instruction identified by the
old PSW is suppressed. However, for cause 9, the
operation that produces the invalid PSW is
completed, and an interruption occurs immediately
thereafter.

When the instruction address is odd (cause 1), the
instruction-length code (ILC) is 1, 2, or 3, indicating
the multiple of 2 by which the instruction address has
been incremented. It is unpredictable whether the
ILCis 1, 2, or 3.

For causes 2-8 and 10, the ILC is 1, 2, or 3,
designating the length of the instruction causing the
reference. '

When the exception is recognized because of
cause 9, and the invalid bit value has been
introduced by LOAD PSW or an interruption, the
ILC is 0. When the exception due to cause 9 is
introduced by SET SYSTEM MASK or STORE
THEN OR SYSTEM MASK, the ILC is 2.

See the section "Exceptions Associated with the
PSW" in this chapter for more details of when
specification exceptions associated with the PSW are
recognized.

Recognition of Access Exceptions

The addressing, page-access, and protection
exceptions are collectively referred to as access
exceptions.

An access exception due to fetching an instruction
is indicated when an instruction halfword cannot be
fetched without encountering the exception. The
exception is indicated as part of the execution of the
instruction.

Except for the specific cases described below, an
access exception due to a reference to an operand
location is indicated whenever a reference to a part
of the designated storage operand causes the
exception. The exception for a partially inaccessible
operand is recognized even if the operation could be
completed without the use of the inaccessible part of
the operand. The access exception is indicated as
part of the execution of the instruction making the
reference.

Whenever an access to an operand location can
cause an access exception to be recognized, the word

Chapter 6. Interruptions 6-13

"access" is included in the list of program exceptions
in the description of the instruction. This entry also
indicates which operand can cause the exception to
be recognized and whether the exception is
recognized on a fetch or store access to that operand
location. Additionally, each instruction can cause an
access exception to be recognized due to instruction
fetch.

The following are exceptions or special cases where

-the instruction does not explicitly specify the extent

of the storage operand or where the instruction

provides for completion of execution without the use
of the entire operand (the handling of these cases is
summarized in the figure "'Recognition of Access

Exceptions"'):

1. When the instructions COMPARE LOGICAL
(CLC or CL), COMPARE LOGICAL
CHARACTERS UNDER MASK (CLM) with a
nonzero mask, and COMPARE LOGICAL
LONG (CLCL) designate part of an operand in
an inaccessible location but the operation can be
completed by using the accessible operand parts,
it is unpredictable whether the access exception
for the inaccessible part is indicated.

2. Access exceptions are not indicated for that part
of the first operand (argument) of TRANSLATE
AND TEST (TRT) which is not used for the
completion of the operation.

3. Access exceptions are not indicated for that part
of the second operand (list) of TRANSLATE

6-14 IBM 4300 Processors Principles of Operation

(TR) and TRANSLATE AND TEST which is not
used for the completion of the operation.

Access exceptions are not indicated for that part
of the second operand (source) of EDIT (ED)
and EDIT AND MARK (EDMK) which is not
used for the completion of the operation.

When the instructions MOVE WITH OFFSET
(MVO), PACK, and UNPACK (UNPK)
designate part of the second operand in an
inaccessible location but the operation can be
completed by using the accessible operand parts,
it is unpredictable whether the access exception
for the inaccessible part is indicated.

Access exceptions are not indicated for that part
of the second operand (source) of MOVE LONG
(MVCL) which is not used for the completion of
the operation.

When the mask in INSERT CHARACTERS
UNDER MASK (ICM) and COMPARE
LOGICAL CHARACTERS UNDER MASK
(CLM) is zero, access exceptions are indicated
for the one byte designated by the
second-operand address.

When the mask in STORE CHARACTERS
UNDER MASK (STCM) is zero, access
exceptions are not indicated.

When the saved information is invalid, access
exceptions are not indicated for either operand of
RETRIEVE STATUS AND PAGE (RSP).

Is an access exception indicated for that part of the designated

Instruction operand which is not used for the completion of the operation ?

Instructions that can be completed without
the use of the entire designated or implied

operand:

CLC,CL Unpredictable
CLM (nonzero mask) Unpredictable
CLCL Unpredictable*
TRT (first operand) No

TR, TRT (second operand) No

ED, EDMK {second operand) No

RSP (invalid save) No

Instructions in which the second operand
may specify more data than can be processed
with the designated first operand:

PACK, UNPK, MVO Unpredictable
MVCL No

Special cases:

ICM, CLM (zero mask) Yes for one byte
STCM (zero mask) No
Explanation:
Unpredictable It is unpredictable whether the exception is indicated.
No The exception is not indicated.
Yes The exception is indicated.
* For CLCL, any addressing or page-access exception indicated is for the current

page or the following page of each operand.

Access exceptions include the following:

Addressing
Page access
Protection

Recognition of Access Exceptions

Chapter 6.

Interruptions

6-15

The execution of the interruptible instructions
CLCL and MVCL is initiated only when no
addressing or page-access exceptions for the initial
page of each operand exist, and the initiation may
additionally be contingent on the absence of
addressing or page-access exceptions for the
following page of each operand. After the execution
of the instruction has been initiated, an addressing or
page-access exception may be indicated as early as
when execution has progressed to the point where the
last accessible page of the operand preceding the
page causing the exception is being processed.

The extents of the operands that are actually used
in the operation may be established in a pretest for
operand accessibility at the beginning of the
execution of the instruction.

In the case of TR, ED, and EDMK, the initiation of
the execution is contingent only on the absence of
addressing or page-access exceptions for that part of
the second operand that is actually used for the
completion of the operation.

If the first operand of TR or either operand of ED
or EDMK is changed by an I/O operation, after the
initial pretest but before completion of execution, the
results are unpredictable. Furthermore, it is
unpredictable whether or not an interruption occurs
for an access exception that was not initially
applicable.

This case is an exception to the general rule that the
operation is nullified on page-access exceptions.
When, in this case, an interruption for page access
occurs, the instruction address in the old PSW points
to the instruction causing the exception even though
partial results have been stored.

Programming Note

An access exception is indicated as part of the
execution of the instruction with which the exception
is associated. In particular, the exception is not
recognized when the CPU has made an attempt to
fetch from the inaccessible location or otherwise has
detected the access exception, but a branch
instruction or an interruption changes the instruction
sequence such that the instruction is not executed.
The following are some specific storage references
where access exceptions, including storage protection
when applicable, are recognized even if the operation
could be completed without the use of the
inaccessible part of the operand:
1. Fetching the operand of TEST UNDER MASK
with a zero mask.

6-16 IBM 4300 Processors Principles of Operation

2. Fetching parts of operands of algebraic-compare
instructions (C and CH).

3. Fetching parts of operands of floating-point
instructions.

4. References to the first-operand location of
decimal instructions when the second operand in
addition and subtraction is zero or in
multiplication and division is one.

5. Storing the pattern character in an edit operation
when the pattern character remains unchanged.

6. Storing during SHIFT AND ROUND DECIMAL
when no shifting or rounding takes place.

7. Storing during move operations when the first-
and second-operand locations coincide.

8. Storing the first operand of OR (OI and OC)
when the corresponding second-operand byte is
zero, as well as the analogous cases for AND and
EXCLUSIVE OR.

9. Storing the first operand of TRANSLATE when
the argument and function bytes are the same.
With a nonzero mask in INSERT CHARACTERS

UNDER MASK, COMPARE LOGICAL

CHARACTERS UNDER MASK, and STORE

CHARACTERS UNDER MASK, access exceptions

are indicated only for the extent of the storage

operand designated by the mask. In MOVE LONG
or COMPARE LOGICAL LONG, no exceptions are
recognized for any operand having a length of zero.

Nontransparent Nullification

For page-access exceptions, the unit of operation is
nullified, except that, on some models, a channel may
observe the effects on storage described in the
following cases:

« When a storage operand for which there is a
store-type access crosses a page boundary and a
page-access exception is recognized, that part of
the operand which does not cause a page-access
exception may be changed to an intermediate value
and then changed back to the original value.

« In an instruction involving two storage operands
(for example, an SS-format instruction or MOVE
LONG) for which there is a store-type access to
an operand, that operand may change to an
intermediate value and then back to the original
value when a page-access exception is recognized
for the other operand.

Except for the instructions which operate on
decimal data, the intermediate value, if any, is always
equal to what would have been the final value if the
page-access exception had not occurred.

Programming Note

On some models, when CPU instructions are used to
modify storage locations simultaneously being
accessed by a channel, page-access exceptions may
result in intermediate values being observed by the
channel. To avoid getting these intermediate values
(especially when modifying a CCW chain), either one
storage page should be operated on at a time or
preliminary testing should be performed to ensure
that all required pages are addressable.

Multiple Program-Interruption Conditions

Except for PER events, only one program-
interruption condition is indicated with a program
interruption. The existence of one condition,
however, does not preclude the existence of other
conditions. When more than one program-
interruption condition exists, only the condition
having the highest priority is identified in the
interruption code.

When two conditions exist of the same priority, it is
unpredictable which is indicated. In particular, the
priority of access exceptions associated with the two
parts of an operand that crosses a page boundary is
unpredictable and is not necessarily related to the
sequence specified for the access of bytes within the
operand.

The type of ending which occurs (nullification,
suppression, or termination) is that which is defined
for the type of exception that is indicated in the
interruption code. However, if a condition is

indicated which permits termination, and another
condition also exists which would cause either
nullification or suppression, then the unit of operation
is suppressed.

The figure 'Priority of Program-Interruption
Conditions" lists the priorities of all program-
interruption conditions other than PER events. All
exceptions associated with references to storage for a
particular instruction halfword or a particular operand
byte are grouped as a single entry called "access."
The priorities of access exceptions for a single access
are, in descending order of priorities:

1. Addressing exception

2. Page-access exception

3. Protection exception due to an attempt to access
a protected instruction or operand location

The relative priorities of any two conditions can be
found by comparing the priority numbers within a
table from left to right until a mismatch is found. If
the first inequality is between numeric characters, the
two conditions are either mutually exclusive, or, if
both can occur, the condition with the smaller
number is indicated. If the first inequality is between
alphabetic characters, the two conditions are not
exclusive, and it is unpredictable which is indicated
when both occur.

The second instruction halfword is accessed only if
bits 0-1 of the instruction are not 00. The third
instruction halfword is accessed only if bits 0-1 of the
instruction are 11.

Chapter 6. Interruptions 6-17

1. Specification exception due to a one in an unassigned bit position of an EC-mode PSW.1

2. Specification exception due to an odd instruction address in the PSW.

3. Access exceptions for first halfword of EXECUTE.?

4. Access exceptions for second halfword of EXECUTE.2

5. Specification exception due to target instruction of EXECUTE not being specified on halfword boundary.2

6. Access exceptions for first instruction halfword.

7.A Access exception for second instruction halfword.3

7.B Access exception for third instruction halfword.3

7.C1 Operation exception.

7.C.2 Privileged-operation exception.

7.Cc3 Execute exception.

7.C4 Special-operation exception.

8.A Specification exception due to conditions other than those included in 1, 2 and 5 above.

8.B Access exceptions for any particular access to an operand in storage.4

8.C Data exceptionA5

8.D Decimal-divide excep‘tion.6

8.E Page-state exception.

9. Page-transition exception.

10. Fixed-point divide, floating-point divide, and conditions, other than PER events, which result in completion. These
conditions are mutually exclusive, or their priority is specified in the corresponding definitions.

Explanation:

Numbers indicate priority, with priority decreasing in ascending order of numbers; letters indicate no priority.

1A one may be introduced in an unassigned bit position of an
EC-mode PSW by a new PSW loaded as a result of an
interruption or by the instructions LOAD PSW, SET
SYSTEM MASK, and STORE THEN OR SYSTEM MASK.
The priority shown in the chart is that for a PSW error
introduced by an interruption and may also be considered
as the priority for a PSW error introduced by the previous
instruction. The error is introduced only if the instruction
encounters no other exceptions. If the recognition of this
exception is considered to be part of the execution of the
instruction introducing the error, then it is of lower priority
than all other exceptions for that instruction.

2
Priorities 3, 4, and 5 apply only to an EXECUTE instruc-
tion. Priorities 6-10 apply to instructions other than
EXECUTE, including the target instruction of EXECUTE.

3Separate accesses may occur for each halfword of an
instruction. The second instruction hatfword is accessed if
bits 0-1 of the instruction are not 00. The third instruction

halfword is accessed only if bits 0-1 of the instruction are 11.

Priority of Program-Interruption Conditions

6-18 IBM 4300 Processors Principles of Operation

4As in instruction fetching, separate accesses may occur for
each portion of an operand. Each of the accesses is of equal
priority. Addressing exceptions for INSERT STORAGE
KEY, RESET REFERENCE BIT, and SET STORAGE KEY
are also included in 8.B. For MOVE LONG and COM-
PARE LOGICAL LONG, an access exception for a parti-
cular operand can be indicated only if the R field for that
operand designates an even-numbered register. For instruc-
tions requiring that storage operands be specified on integral
boundaries, an access exception may be indicated for the
extent of the operand that would be implied if alignment
were not required.

5The exception can be indicated only if the sign, digit, or
digits responsible for the exception were fetched without
encountering an access exception.

5The exception can be indicated only if the sign, digit, or
digits responsible for the exception were fetched without
encountering an access exception, and only if the digit or
digits used in establishing the exception are valid.

External Interruption

The external interruption provides a means by which
the CPU responds to various signals originating either
from within or from outside of the machine.

An external interruption causes the old PSW to be
stored at location 24 and a new PSW to be fetched
from location 88.

The source of the interruption is identified in the
interruption code. When the old PSW specifies the
EC mode, the interruption code is stored at locations
134-135, and zeros are stored at locations 132-133.
When the old PSW specifies the BC mode, the
interruption code is placed in bit positions 16-31 of
the old PSW, and the instruction-length code is
unpredictable.

External-interruption conditions are of two types:
those for which an interruption request condition is
held pending, and those for which the condition
directly requests the interruption. Clock comparator
and CPU timer are conditions which directly request
external interruptions. If a condition which directly
requests an external interruption is removed before
the request is honored, the request does not remain
pending, and no interruption occurs. Conversely, the
request is not cleared by the interruption, and if the
condition persists, more than one interruption may
result from a single occurrence of the condition.

When several interruption requests for a single
source are generated before the interruption is taken,
and the interruption condition is of the type which is
held pending, only one request for that source is
preserved and remains pending.

An external interruption for a particular source can
occur only when the CPU is enabled for interruption
by that source. The external interruption occurs at
the completion ef a unit of operation. Whether the
CPU is enabled for external interruption is controlled
by the external mask, PSW bit 7, and external
submask bits in control register 0. Each source for
an éxternal interruption has a submask bit assigned to
it, and the source can cause an interruption only
when the external-mask bit is one and the
corresponding submask bit is one. The use of the
submask bits does not depend on whether the CPU is
in the EC or BC mode.

When the CPU becomes enabled for a pending
external-interruption condition, the interruption
occurs at the completion of the instruction execution
or interruption that causes the enabling.

More than one source may present a request for an
external interruption at the same time. When the
CPU becomes enabled for more that one concurrently

pending request, the interruption occurs for the
pending condition or conditions having the highest
priority.

The priorities for external-interruption requests in
descending order are as follows:

Interval timer, interrupt key, external signals 2-7
(indicated concurrently)

Clock comparator

CPU timer

Clock Comparator

An interruption request for the clock comparator
exists whenever either of the following conditions is
met:

1. The time-of-day clock is in the set or not-set
state, and the value of the clock comparator is
less than the value in the compared portion of the
time-of-day clock, both comparands being
considered unsigned binary integers

2. The time-of-day clock is in the error or not-
operational state.

If the condition responsible for the request is
removed before the request is honored, the request
does not remain pending, and no interruption occurs.
Conversely, the request is not cleared by the
interruption, and, if the condition persists, more than
one interruption may result from a single occurrence
of the condition.

The condition is indicated by an external-
interruption code of 1004 (hex).

The submask bit is in bit position 20 of control
register 0. This bit is initialized to zero.

CPU Timer

An interruption request for the CPU timer exists
whenever the CPU-timer value is negative (bit 0 of
the CPU timer is one). If the value is made positive
before the request is honored, the request does not
remain pending, and no interruption occurs.
Conversely, the request is not cleared by the
interruption, and if the condition persists, more than
one interruption may occur from a single occurrence
of the condition.

The condition is indicated by an external-
interruption code of 1005 (hex).

The submask bit is in bit position 21 of control
register 0. This bit is initialized to zero.

Chapter 6. Interruptions 6-19

External Signal

An interruption request for an external signal is
generated when a signal is received on one or more
of the signal-in lines. Up to six signal-in lines may
be connected, providing for external signal 2 through
external signal 7. The request is preserved and
remains pending in the CPU until it is cleared. The
pending request is cleared when it causes an
interruption and by program reset.

Facilities are provided for holding a separate
external-signal request pending for each of the six
lines.

External signals 2-7 are indicated by setting to one
interruption-code bits 10-15, respectively. Bits 0-7
are set to zeros, and any other bits in the rightmost
byte are made zeros unless set to ones for other
conditions that are concurrently indicated.

All external signals are subject to control by the
submask bit in bit position 26 of control register O.
This bit is initialized to one.

External signaling is independent of 1/O operations
and interruptions.

For a detailed description, see the IBM System/360
and System/370 Direct Control and External
Interruption Features—Original Equipment
Manufacturers’ Information, GA22-6845.

Programming Note

The pattern presented in bit positions 10-15 of the
interruption code depends on the pattern received
before the interruption is taken. Because of circuit
skew, all simultaneously generated external signals do
not necessarily arrive at the same time, and some may
not be included in the external interruption resulting
from the earliest signals. These late signals may
cause another interruption to be taken.

Interrupt Key

An interruption request for the interrupt key is
generated when the operator activates that key. The
request is preserved and remains pending until it is
cleared. The pending request is cleared when it
causes an interruption and by program reset. When
several requests are made before the interruption is
taken, only one interruption occurs.

When the interrupt key is activated while the CPU
is in the load state, it depends on the model whether
an interruption request is generated or the condition
is lost.

The condition is indicated by setting bit 9 in the
interruption code to one and by setting bits 0-7 to

6-20 IBM 4300 Processors Principles of Operation

zeros. Bits 8 and 10-15 are zeros unless set to ones
for another condition that is concurrently indicated.

The submask bit is in bit position 25 of control
register 0. This bit is initialized to one.

Interval Timer

An interruption request for the interval timer is
generated when the value of the interval timer is
decremented from a positive number or zero to a
negative number. The request is preserved and
remains pending in the CPU until it is cleared. The
pending request is cleared when it causes an
interruption and by program reset.

The condition is indicated by setting bit 8 in the
interruption code to one and by setting bits 0-7 to
zeros. Bits 9-15 are zeros unless set to ones for
another condition that is concurrently indicated.

The submask bit is in bit position 24 of control
register 0. This bit is initialized to one.

Input/Output Interruption

The input/output (I/O) interruption provides a
means by which a CPU responds to conditions in I/0
devices and channels.

A request for an I/O interruption may occur at any
time, and more than one request may occur at the
same time. The requests are preserved and remain
pending in channels or devices until accepted by the
CPU. The I/0 interruption occurs at the completion
of a unit of operation. Priority is established among
requests so that only one interruption request is
processed at a time. For more details, see the section
"Input/Output Interruptions" in Chapter 12,
"Input/Output Operations."

When the CPU becomes enabled for I/0
interruptions, and a channel has established priority
for an I/O-interruption condition, the interruption
occurs at the completion of the instruction execution
or interruption that causes the enabling.

An I/0 interruption causes the old PSW to be
stored at location 56, a channel-status word to be
stored at location 64, and a new PSW to be fetched
from location 120. Upon detection of equipment
errors, additional information may be stored in the
form of a limited channel logout at location 176.

When the old PSW specifies the EC mode, the I/0
address identifying the channel and device causing
the interruption is stored at locations 186-187, and
zeros are stored at location 185. When the old PSW
specifies the BC mode, the interruption code in PSW
bit positions 16-31 contains the I/O address, and the
instruction-length code in the PSW is unpredictable.

An I/0 interruption can occur only while the CPU
is enabled for interruption by the channel presenting
the request. Mask bits in the PSW and channel
masks in control register 2 determine whether the
CPU is enabled for interruption by a channel; the
method of control depends on whether the current
PSW specifies the EC or BC mode.

The channel-mask bits in control register 2 start at
bit position 0 and extend for as many contiguous bit
positions as the number of channels provided. The
assignment is such that a bit is assigned to the
channel whose address is equal to the position of the
bit in control register 2. Channel-mask bits for
installed channels are initialized to one by initial
program reset. The state of the channel-mask bits for
unavailable channels is unpredictable.

When the current PSW specifies the EC mode, each
channel is controlled by the 1/0O-mask bit, PSW bit 6,
and the corresponding channel-mask bit in control
register 2; the channel can cause an interruption only
when the I/O-mask bit is one and the corresponding
channel-mask bit is one.

When the current PSW specifies the BC mode, in-
terruptions from channels 6 and up are controlled by
the I/0O-mask bit, PSW bit 6, in conjunction with the
corresponding channel-mask bit: the channel can
cause an interruption only when the I/O-mask bit is
one and the corresponding channel-mask bit is one.
Interruptions from channels 0-5 are controlled by
channel-mask bits 0-5 in the PSW; an interruption
can occur only when the mask bit corresponding to
the channel is one. In the BC mode, bits 0-5 in
control register 2 do not participate in controlling
1/0 interruptions; they are, however, preserved in
the control register if the corresponding channels are
installed.

Restart Interruption

The restart interruption provides a means for the
operator to invoke the execution of a program. The
CPU cannot be disabled for this interruption.

A restart interruption causes the old PSW to be
stored at location 8 and a new PSW, specifying the
start of the program to be executed, to be fetched
from location 0. The instruction-length and
interruption codes are not stored in the EC mode. In
the BC mode, the instruction-length code in the PSW
is unpredictable, and zeros are stored in the
interruption-code field.

If the CPU is in the operating state, the exchange
of the PSWs occurs at the completion of the current
unit of operation and after all pending interruption

conditions for which the CPU is enabled have been
taken. If the CPU is in the stopped state, the CPU
enters the operating state and exchanges the PSWs
without first taking any pending interruptions.

The restart interruption is initiated by activating the
restart key.

When the rate control is set to instruction step, it is
unpredictable whether restart causes a unit of
operation or additional interruptions to be performed
after the PSWs have been exchanged.

Programming Note

In order to perform restart when the CPU is in the
check-stop state, the CPU has to be reset. This can
be accomplished by means of program reset, which
does not clear the contents of registers, including the
control registers, but causes the channels to be reset.

Priority of Interruptions

During the execution of an instruction, several
interruption-causing events may occur simultaneously.
The instruction may give rise to a program
interruption, a request for an external interruption
may be received, equipment malfunctioning may be
detected, an I/O-interruption request may be made,
and the restart key may be activated. Instead of the
program interruption, a supervisor-call interruption
might occur; or both can occur if the program-event-
recording facility is enabled. Simultaneous interrup-
tion requests are honored in a predetermined order.

An exigent machine-check condition has the highest
priority. When it occurs, the current operation is
terminated or nullified. Program and supervisor-call
interruptions that would have occurred as a result of
the current operation may be eliminated. Any
pending repressible machine-check conditions may be
indicated with the exigent machine-check
interruption. Every reasonable attempt is made to
limit the side effects of an exigent machine-check
condition, and, normally, requests for I/O and
external interruptions remain unaffected.

In the absence of an exigent machine-check
condition, requests for interruption existing
concurrently at the end of a unit of operation are
honored, in descending order of priority, as follows:

Supervisor call

Program

Repressible machine-check
External

Input/output

Restart

Chapter 6. Interruptions 6-21

The processing of multiple simultaneous
interruption requests consists in storing the old PSW
and fetching the new PSW belonging to the
interruption first taken. This new PSW is
subsequently stored without the execution of any
instructions, and the new PSW assocjated with the
next interruption is fetched. Storing and fetching
continues until no more interruptions are to be
serviced. The priority is reevaluated after the new
PSW is loaded. Each evaluation is performed taking
into consideration any additional interruptions which
may have become pending. Additionally, external
and I/0 interruptions, as well as machine-check
interruptions due to repressible conditions, are taken
only if the current PSW at the instant of evaluation
indicates that the CPU is interruptible for the cause.

Instruction execution is resumed using the last-
fetched PSW. The order of executing interruption
subroutines is therefore the reverse of the order in
which the PSWs are fetched.

If the new PSW for a program interruption has an
odd instruction address or causes an access exception
to be recognized, another program interruption
occurs. Since this second interruption introduces the
same unacceptable PSW, a string of interruptions is
established. These program exceptions are
recognized as part of the execution of the following
instruction, and the string may be broken by an 1/0,
external, or restart interruption or the stop function.

If the new PSW for a program interruption contains
a one in an unassigned bit position of an EC-mode
PSW, another program interruption occurs. This
condition is of higher priority than restart, I/0,

6-22 IBM 4300 Processors Principles of Operation

external, or repressible machine-check conditions, or
the stop function, and program reset has to be used
to break the string of interruptions.

A string of interruptions for other interruption
classes can also exist if the new PSW is enabled for
the interruption just taken. These include machine-
check interruptions, external interruptions, and I/O
interruptions due to PCI conditions generated
because of CCWs which form a loop. Furthermore, a
string of interruptions involving more than one
interruption class can exist. For example, assume
that the CPU timer is negative and the CPU-timer
subclass mask is one. If the external new PSW has a
one in an unassigned bit position in the EC mode,
and the program new PSW is enabled for external
interruptions, then a string of interruptions occurs,
alternating between external and program. Even
more complex strings of interruptions are possible.
As long as more interruptions must be serviced, the
string of interruptions cannot be broken by employing
the stop function; program reset is required.

Interruptions for all requests for which the CPU is
enabled are taken before the CPU is placed in the
stopped state. When the CPU is in the stopped state,
restart has a higher priority than pending 1/0,
external, or repressible machine-check conditions.

Programming Note

The order in which concurrent interruption requests
are honored can be changed to some extent by
masking.

Chapter 7. General Instructions

Contents

Data Format 7-1
Binary-Integer Representation 7-2
Signed and Unsigned Binary Arithmetic 7-3
Signed and Logical Comparison 7-3
Instructions =~ 7-4
ADD 7-7
ADD HALFWORD- 7-7
ADD LOGICAL = 7-7
AND 7-7
BRANCH AND LINK ~ 7-8
BRANCH ON CONDITION 7-9
BRANCH ON COUNT 7-10
BRANCH ON INDEX HIGH 7-10
BRANCH ON INDEX LOW OR EQUAL 7-10
COMPARE 7-11
COMPARE AND SWAP 7-11
COMPARE DOUBLE AND SWAP 7-1]
COMPARE HALFWORD = 713
COMPARE LOGICAL 7-13
COMPARE LOGICAL.CHARACTERS
UNDER MASK ° 7-13 v
COMPARE LOGICAL LONG . 7-14
CONVERT TO BINARY 7-15
CONVERT TO DECIMAL 7-16
DIVIDE . 7-16
EXCLUSIVE OR :'7-17
EXECUTE 7-17
INSERT CHARACTER :7-18
INSERT CHARACTERS UNDER MASK 718
LOAD. " 7-19
LOAD ADDRESS 7-19
LOAD AND TEST : 7-19
LOAD COMPLEMENT 7-20
LOAD HALFWORD 7-20
LOAD MULTIPLE 7-20
LOAD NEGATIVE 7-21
LOAD POSITIVE 7-21

This chapter includes all the unprivileged instructions
described in this publication, other than. the decimal
and floating-point instructions.

MONITOR CALL 7-21
MOVE 722

MOVE INVERSE = 7-22

MOVE LONG © 7-23

MOVE NUMERICS 7-25

MOVE WITH OFFSET 7-25

MOVE ZONES 7-26

MULTIPLY 7-26

MULTIPLY HALFWORD 7-27

OR 727

PACK . 7-28

SET PROGRAM MASK 7-28

SHIFT LEFT DQUBLE 729

SHIFT LEFT DOUBLE LOGICAL . 7-29
SHIFT LEFT SINGLE. 7-30 -

SHIFT LEFT SINGLE LOGICAL .. - 7-30
SHIFT RIGHT DOUBLE . 7-30

SHIFT RIGHT DOUBLE LOGICAL - 7-31
SHIFT RIGHT SINGLE -~ 7-31 _
SHIFT RIGHT SINGLE LOGICAL. .7-32
STORE - 7-32°

STORE CHARACTER = 7-32

STORE CHARACTERS UNDER MASK - 7-32
STORE CLOCK . 7-33

STORE HALFWORD 7-33
STORE:MULTIPLE = 7-33

SUBTRACT ~ 7-34

SUBTRACT HALFWORD ~ 7-34
SUBTRACT LOGICAL 7-34
SUPERVISOR CALL 7-35

TEST AND SET = 7-35

TEST UNDER MASK - 7-36
TRANSLATE = 7-36

TRANSLATE AND TEST 7-37
UNPACK - 7-38

Data Format

The-general instructions treat data as being of four
types: signed binary integers, unsigned binary
integers, unstructured logical data, and decimal data.

Data is treated as decimal by the conversion, packing,

and unpacking instructions. Decimal data is
described in Chapter 8, "Decimal Instructions."
Data resides in general registers or in storage or is

Chapter 7. General Instructions 7-1

introduced from the instruction stream.

In a storage-to-storage operation the operand fields
may be defined in such a way that they overlap. The
effect of this overlap depends upon the operation.
When the operands remain unchanged, as in
COMPARE or TRANSLATE AND TEST,
overlapping does not affect the execution of the
operation. For instructions such as MOVE and
TRANSLATE, one operand is replaced by new data,
and the execution of the operation may be affected
by the amount of overlap and the manner in which
data is fetched or stored. For purposes of evaluating
the effect of overlapped operands, data is considered
to be handled one eight-bit byte at a time. All
overlapping fields are considered valid.

Binary-Integer Representation

Binary integers are treated as signed or unsigned.

In an unsigned binary integer, all bits are used to
express the absolute value of the number. When two
unsigned binary integers of different lengths are
added, the shorter number is considered to be
extended with high-order zeros.

For signed binary integers, the leftmost bit
represents the sign, which is followed by the numeric
field. Positive numbers are represented in true binary
notation with the sign bit set to zero. Negative
numbers are represented in two’s-complement binary
notation with a one in the sign-bit position.

Specifically, a negative number is represented by
the two’s complement of the positive number of the
same absolute value. The two’s complement of a
number is obtained by inverting each bit of the
number, including the sign, and adding a one in the
low-order bit position.

This type of number representation can be
considered the low-order portion of an infinitely long
representation of the number. When the number is
positive, all bits to the left of the most significant bit
of the number are zeros. When the number is
negative, all these bits are ones. Therefore, when a
signed operand must be extended with high-order
bits, the extension is achieved by setting these bits
equal to the sign bit of the operand.

The notation for signed binary integers does not
include a negative zero. It has a number range in
which the set of negative numbers is one larger than
the set of positive numbers. The maximum positive
number consists of a sign bit of zero followed by all
ones, whereas the maximum negative number (the
negative number with the greatest absolute value)

7-2 IBM 4300 Processors Principles of Operation

consists of a sign bit of one followed by all zeros.
The number zero consists of all-zero bits.

A signed binary integer of either sign, except for
zero and for the maximum negative number, is
changed to the number with opposite sign by forming
its two’s complement. This operation of
complementing a number-is equivalent to subtracting
the number from zero. The complement of zero is
zero.

The complement of the maximum negative number
cannot be represented in the same number of bits.
When an operation, such as a subtraction of the
maximum negative number from zero, attempts to
produce the complement of the maximum negative
number, the result is the maximum negative number,
and a fixed-point-overflow exception is recognized.
An overflow does not result, however, when the
maximum negative number is complemented as an
intermediate result but the final result is within the
representable range. An example of this case is a
subtraction of the maximum negative number from
minus one. The product of two maximum negative
numbers is representable as a double-length positive
number.

In discussions of signed binary integers in this
publication, a signed binary integer includes the sign
bit. Thus, the expression ''32-bit signed binary
integer' denotes an integer with 31 numeric bits and
a sign bit, and the expression "64-bit signed binary
integer' denotes an integer with 63 numeric bits and
a sign bit.

In some operations, the result is achieved by the use
of the one’s complement of the number. The one’s
complement of a number is obtained by inverting
each bit of the number.

In an arithmetic operation, a carry out of the
numeric field of a signed binary integer changes the
sign. However, in algebraic left-shifting the sign bit
does not change even if significant high-order bits are
shifted out.

Programming Notes

1. An alternate way of forming the two’s
complement of a signed binary integer is to invert
all bits to the left of the rightmost one bit,
leaving the rightmost one bit and all zero bits to
the right of it unchanged.

2. The numeric bits of a signed binary integer may
be considered to represent a positive value, with
the sign representing a value of either zero or the
maximum negative number.

Signed and Unsigned Binary Arithmetic

Addition of signed binary integers is performed by
adding all bits of each operand, including the sign
bits. When one of the operands is shorter, the
shorter operand is extended on the left to the length
of the longer operand by propagating the sign-bit
value. If the carry out of the sign-bit position and
the carry out of the high-order numeric bit position
disagree, an overflow occurs. The sign bit is not
changed after the overflow.

Subtraction is performed by adding the one’s
complement of the second operand and a low-order
one to the first operand.

Signed addition and subtraction produce an
overflow when the result is outside the range of
representation for signed binary integers.
Specifically, for ADD and SUBTRACT, which
operate on 32-bit signed binary integers, there is an
overflow when the proper result would be greater
than or equal to +231 or less than —231. The actual
result placed in the general register after an overflow
differs from the proper result by 232, An overflow
causes a program interruption for fixed-point
overflow if it is allowed.

Addition of unsigned binary integers is performed
by adding all bits of each operand. When one of the
operands is shorter, the shorter operand is extended
on the left with zeros. Unsigned binary arithmetic is
used in address arithmetic for adding the X, B, and D
fields. It is also used to obtain the addresses of the
function bytes in the instructions TRANSLATE and
TRANSLATE AND TEST. Furthermore, unsigned
binary arithmetic is used on 32-bit unsigned binary
integers by the instructions ADD LOGICAL and
SUBTRACT LOGICAL. Given the same two
operands, ADD and ADD LOGICAL produce the
same 32-bit result. The instructions differ only in the
interpretation of this result. ADD interprets the
result as a signed binary integer and inspects it for
sign, magnitude, and overflow to set the condition
code accordingly. ADD LOGICAL interprets the
result as an unsigned binary integer and sets the
condition code according to whether the result is zero
and whether there was a carry out of the high-order
bit position. Such a carry is not necessarily
considered an overflow, and no program interruption
can occur for ADD LOGICAL.

SUBTRACT LOGICAL differs from ADD
LOGICAL in that the one’s complement of the
second operand and a low-order one are added to the
first operand.

Programming Notes

1. Logical addition and subtraction may be used to
program multiple-precision arithmetic. Thus, for
multiple-precision binary-integer addition, ADD
LOGICAL is used to add the corresponding
lower-order parts of the operands. If the
condition code indicates a carry, a one is added
to the first operand of the next higher pair of
integers before adding the second operand. If the
integers are signed, the ADD instruction is used
on the highest-order parts after propagating any
carry. The condition code then indicates any
overflow or the proper sign and magnitude of the
entire result; an overflow is also indicated by a
fixed-point-overflow interruption if it is allowed.
If the integers are unsigned, ADD LOGICAL is
used throughout.

2. Another use for ADD LOGICAL is to increment
values representing binary counters, which are
allowed to wrap around from all ones to all zeros
without necessarily indicating overflow.

Signed and Logical Comparison

Comparison operations determine whether two
operands are equal or not and, for most operations,
which of two unequal operands is the greater (high).
Signed-binary comparison operations are provided
which treat the operands as signed binary integers,
and logical comparison operations are provided which
treat the operands as unsigned binary integers or as
unstructured data.

The instructions COMPARE and COMPARE
HALFWORD are signed-binary comparison
operations. These instructions are equivalent to
SUBTRACT and SUBTRACT HALFWORD without
replacing either operand, the resulting difference
being used only to set the condition code. The
operations permit comparison of numbers of opposite
sign which differ by 232 or more. Thus, unlike
SUBTRACT, COMPARE can cause no overflow.

Logical comparison is performed by a left-to-right,
bit-by-bit comparison of the two operands. The
operands are equal when all their bits are equal.
When the operands are unequal, the condition is
determined by the first unequal pair of bits in a left-
to-right comparison of corresponding bit
positions: the zero bit indicates the low operand and
the one bit the high operand. Since the remaining bit
positions do not change the comparison, it is not
necessary to continue comparing unequal operands
beyond the first unequal bit pair.

Chapter 7. General Instructions 7-3

Instructions

The general instructions and their mnemonics,
formats, and operation codes are listed in the
following table. The table also indicates when the:
condition code is set and the exceptional conditions.
in operand designations, data, or results that cause a
program interruption.

A detailed definition of instruction formats, operand .

designation and length, and address generation is
contained in the section "Instructions" in Chapter 5,
"Program Execution." Exceptions to the general
rules stated in that section are explicitly identified in-
the individual instruction descriptions.

Several instruction descriptions in this chapter . .
contain references to other CPUs, even though the

7-4 IBM 4300 Processors Principles of Operation

4300 Processors make no provision for
multiprocessing, so as to permit the writing of

problem-state programs that are compatible with

multiprocessing configurations of System/370 (see
the section "Problem-State: Compatibility" in Chapter
1, "Introductjon")

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic operand
designations for the assembler language are shown
with each instruction. For LOAD AND TEST, for

.example, LTR is the mnemonic and R4 R the

‘operand designation.

Name : Mnemonic Characteristics Code

ADD AR " RR C IF R 1A
ADD A RX C A IF R bA
ADD HALFWORD AH RX C A IF R 4A
ADD LOGICAL ALR RR C R 1E
ADD LOGICAL AL RX C A R 5E
AND NR RR C R 14
AND N RX C A R 54
AND (character) NC SS (o] A ST D4
AND (immediate) Nt Si C A ST 94
BRANCH AND LINK BALR RR B R 05
BRANCH AND LINK BAL RX B R 45
BRANCH ON CONDITION BCR RR $1 B 07
BRANCH ON CONDITION BC RX B 47
BRANCH ON COUNT BCTR RR B R 06
BRANCH ON COUNT BCT RX B R 46
BRANCH ON INDEX HIGH BXH RS B R 86
BRANCH ON INDEX LOW OR BXLE RS B R 87
EQUAL
COMPARE CR RR C 19
COMPARE c RX C A 59
COMPARE AND SWAP cs RS C A sP $ R ST BA
COMPARE DOUBLE AND SWAP CDS RS C A SpP R ST BB
COMPARE HALFWORD CH RX C A 49
COMPARE LOGICAL CLR RR C 15
COMPARE LOGICAL cL RX C A 55
COMPARE LOGICAL (character) CLC §§ C A D5
COMPARE LOGICAL (immediate) CLI Si C A 95
COMPARE LOGICAL CHAR- CLM RS (o} A BD
ACTERS UNDER MASK
COMPARE LOGICAL LONG CLCL RR C A SP 1l R OF
CONVERT TO BINARY CvB RX A D IK R 4F
CONVERT TO DECIMAL CVvD RX A ST 4E
DIVIDE DR RR SP IK R 1D
DIVIDE D RX A SP IK R 5D
EXCLUSIVE OR XR RR C R 17
EXCLUSIVE OR X RX C A R 57
EXCLUSIVE OR (character) XC SS C A ST D7
EXCLUSIVE OR (immediate) X! Sl C A ST 97
EXECUTE EX RX A SP EX 44
INSERT CHARACTER ic RX A R 43
INSERT CHARACTERS UNDER iIcMm RS C A R BF
MASK -
LOAD LR RR R 18
LOAD L RX A R 58
LOAD ADDRESS LA RX R 41
LOAD AND TEST LTR RR C R 12
LOAD COMPLEMENT LCR RR C IF R 13
LOAD HALFWORD LH RX A R 43
LOAD MULTIPLE LM RS A R 98
LOAD NEGATIVE LNR RR C R 1
LOAD POSITIVE LPR RR C IF R 10
MONITOR CALL MC S SP MO AF
MOVE (character) MVvC SS A ST D2

Summary of General Instructions (Part 1 of 2)

Chapter 7. General Instructions 7-5

Name

MOVE (immediate)
MOVE INVERSE
MOVE LONG

MOVE NUMERICS
MOVE WITH OFFSET

MOVE ZONES
MULTIPLY

MULTIPLY

MULTIPLY HALFWORD
OR

OR

OR (character)

OR (immediate)

PACK

SET PROGRAM MASK

SHIFT LEFT DOUBLE

SHIFT LEFT DOUBLE LOGICAL
SHIFT LEFT SINGLE

SHIFT LEFT SINGLE LOGICAL
SHIFT RIGHT DOUBLE

SHIFT RIGHT DOUBLE LOGICAL
SHIFT RIGHT SINGLE

SHIFT RIGHT SINGLE LOGICAL
STORE

STORE CHARACTER

STORE CHARACTERS UNDER MASK
STORE CLOCK

STORE HALFWORD

STORE MULTIPLE

SUBTRACT

SUBTRACT

SUBTRACT HALFWORD
SUBTRACT LOGICAL
SUBTRACT LOGICAL
SUPERVISOR CALL

TEST AND SET

TEST UNDER MASK
TRANSLATE
TRANSLATE AND TEST
UNPACK

Explanation:

A Access exceptions

B PER branch event

C Condition code is set

D Data exception

EX Execute exception

IF Fixed-point-overfiow exception
Il Interruptible instruction

iK Fixed-point-divide exception
L New condition code loaded
MO Monitor event

R PER general-register-alteration event

RR RR instruction format

Mnemonic Characteristics Code
MVi S| A ST 92
MVCIN SS A ST E8
MVCL RR C A SP " R ST OE
MVN SS A ST D1
MVO SS A ST F1
MvZz SS A ST D3
MR RR sP R. ic
M RX A SP R 5C
MH RX A R 4Cc
OR RR C R 16
o} RX C A R 56
ocC SS o] A ST D6
[o]] Si [o] A ST 96
PACK SS A ST F2
SPM RR L 04
SLDA RS C SP IF R 8F
SLDL RS SP R 8D
SLA RS C IF R 88
SLL RS R 89
SRDA RS C SP R 8E
SRDL RS SP R 8C
SRA RS C R 8A
SRL RS R 88
ST RX A ST 56
STC RX A ST 42
STCM RS A ST BE
STCK S Cc A $ ST 8205
STH /X A ST 40
STM RS A ST 90
SR RR C IF R 1B
S RX C A \F R 58
SH RX C A IF R 48
SLR RR C R 1F
SL RX C A R 5F
sve RR $ 0A
TS S C A $ ST 93
™ St o A 91
TR SS A ST DC
TRT SS o] A R DD
UNPK SS A ST F3

RS RS instruction format

RX RX instruction format

S Sinstruction format

S! Sfinstruction format

SP Specification exception

S§S SS instruction format

ST PER storage-alteration event

$ Causes serialization

$1 Causes serialization when the M 1 and R 2 fields contain

Summary of General Instructions (Part 2 of 2)

7-6 IBM 4300 Processors Principles of Operation

all ones and all zeros, respectively.

ADD
AR R1,Rz [RR]
A Ri | R
) | 8 12 15
A R;,D2(X3,B2) [RX]
‘SA’ Ry X, | By | by
) x 1z 18 T m

The second operand is added to the first operand,
and the sum is placed in the first-operand location..
The operands and the sum are treated as 32-bit:
signed binary integers. -

An overflow causes:a program interruption when
the fixed-point-overflow mask bit is one.
Resulting Condition Code:
0 Sum is zero

Sum is less than zero

1
2 Sum js greater than zero
3 Overflow

-Program Exceptions:

Access (fetch, operand 2 of A only)
leed-Pomt Overflow

ADD HALFWORD

Resulting Condition Code:

0 Sum is zero

1 Sum is less than zero

2 ‘Sum is greater than zero
3 Overflow

Program_Exceptions:
Access (fetch; operand 2)
Fixed-Point Overflow

Programming Note
An examwe of the use of ADD ' HAT FWORD is

‘given in Appendix A.

AH Ry, D(X;,B,) [RXT
‘an | Ry 1} x2 | By 1 B
0 8 12 16 20 s

The second operand is added to the first' operand;
and the sum is placed in the first-operand location.
The second operand is two bytes in length ;md is
treated as a 16-bit signed binary integer: The first
operand and the sum are treated as 32-bit signed
binary integers.

An overflow causes a program interruption-when
the fixed-point-overflow mask bit is one.

ADD LOGICAL
ALR RuR: [RR]
1E nl Ry
o 8 »12 15
AL RiDaXpBy) ~ [RX]
55 R; Xz Bz -’ Dz
b 8 ‘iu 1320 ~ . 31

The:second operand is added to the first operand;
-and‘the sum is- placed in-the first-operand locatiomn.
The uperzmds and the sum are treated as 32-bit
unsigned binary integers.

W NS

Sum is not zero, with carry

Program -Exceptions:
Access (fetch, operand 2 of AL only)

AND
NR Ri Ry - [RR]
‘14’ "Ry . Ry

0 8 12 15

Chapter 7. Geneéral Instructions - 7-7

N R1,D2(X2,B,) [RX]
‘54" R1 " X2 By Dy
0 8 12 16 20 31
NI D1(B1),L [S1]
‘94’ ‘ ' 103 By Dy .
0 8 16 20 31
NC Dy(L,B1),D2(B,) [SS] L
— s T
D& L Bi |D: | B ;A,D‘;i: |
0 8 . 16 20 32 . 35': 47 ;

The AND of the first and second operands is.placed
in the first-operand location.

The connective AND is applied to the operands bit’
by bit. A bit position in the result is set to one:if ‘the
corresponding bit positions in both operands.contain.
ones; otherwise, the result bit is set to zero.

For NC, each operand. is processed left to right.
When the operands overlap, the result is obtained as
if the operands were processed one byte at a time and
each result by“ce were stored immediately after the
necessary operand byte is fetched.

For NI, the first operand is one byte in length, and
only one byte is stored.

Resulting Condition Code:

0 Result is zero

1 Result is not zero
2 -

3 -

Program Exceptions:

Access (fetch, dperand 2, N and NC; fetch and store,
operand 1, NI and NC)

7-8 IBM 4300 Processors Principles of Operation

:mformauon in the general register: desxgnated by Ry
Subsequently, «the instruction address is repiaced,by

Programming Notes

1. An example of the use of the AND instruction is
given in Appendix A.

2. The instruction AND may be used to set a bit to
Zero.

3. Accesses to the first operand of NI and NC
consist in fetching a first-operand byte from
storage and subsequently storing the updated
value. These fetch and store accesses to a
particular byte do not necessarily occur one
immediately after the other. Thus, the instruction
AND cannot be safely used to update a location:
in storage if the possibility exists that another
CPU or a channel may also be updatmg the
location. An example of this effect is shown for
the instruction OR. (OI} in the‘ ection

Multlprocessmg Examples in vAppendlx A.

BRANCH AND: LINK

BALR - RyR; - [RR]
BAL RyDy(X2,By) [RXT
d 45 | R | X | B - Dy
o 8 12 1w m =

Information from the current PSW,. mcludmg the
updated instruction address, is loaded as link

the braneh address. -

In the RX format, the second-operand address is
used as the branch address. In the RR format, blts
8-31 of the general register des:lgnated by Rz are:
used as the branch address; however, when the R,
field contains zeros, the operation is performed
without branching. The branch address is computed:
before the link information is loaded.

- The link information consists of:the instruction-.
length code (IL.C), the condition .code (CC), the
program mask bits, and the updated instruction
address, arranged in the following format:

Prog

ILC CC| Mask Instruction Address

0 2 4 8 31
The instruction-length code is 1 or 2.

Condition Code: The code remains unchanged.
Program Exceptions: None.

Programming Notes

1. An example of the use of BRANCH AND LINK
is given in Appendix A.

2. When the R, field in the RR format contains all
zeros, the link information is loaded without
branching.

3. When BRANCH AND LINK is the subject
instruction of EXECUTE, the instruction-length
code is 2.

4. The format and the contents of the link
information do not depend on whether the PSW
specifies the EC or BC mode. In both modes, the
link information is in the format of the rightmost
32 bit positions of the BC-mode PSW.

BRANCH ON CONDITION

BCR M1,R; [RR]
07’ M, R>
() 8 12 15
BC M1,D,(X2,B2) [RX]
‘a7 M X, By D
0 8 12 16 20 31

The instruction address in the current PSW is
replaced by the branch address if the condition code
has one of the values specified by M;; otherwise,
normal instruction sequencing proceeds with the
updated instruction address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, bits
. 8-31 of the general register specified by R, are used
as the branch address; however, when the R, field

contains zeros, the operation is performed without
branching.

The M; field is used as a four-bit mask. The four
condition codes (0, 1, 2, and 3) correspond, left to
right, with the four bits of the mask, as follows:

Mask
Condition Instruction Position
Code Bit Value
0 8 8
1 9 4
2 10 2
3 11 1

The current condition code is used to select the
corresponding mask bit. If the mask bit selected by
the condition code is one, the branch is successful. If
the mask bit selected is zero, normal instruction
sequencing proceeds with the next sequential
instruction.

When the M; and R; fields of BCR are all ones and
all zeros, respectively, a serialization function is
performed. CPU operation is delayed until all
previous accesses by this CPU to storage have been
completed, as observed by channels and other CPUs.
No subsequent instructions or their operands are
accessed by this CPU until the execution of this
instruction is completed.

Condition Code: The code remains unchanged.
Program Exceptions: None.

Programming Notes

1. An example of the use of BRANCH ON
CONDITION is given in Appendix A.

2. When a branch is to dépend on more than one
condition, the pertinent condition codes are
specified in the mask as the sum of their mask
position values. A mask of 12, for example,
specifies that a branch is to be made when the
condition code is 0 or 1.

3. When all four mask bits are zero or when the R,
field in the RR format contains zero, the branch
instruction is equivalent to a no-operation. When
all four mask bits are ones, that is, the mask value
is 15, the branch is unconditional unless the R,
field in the RR format is zero.

4. Execution of BCR 15,0 (that is, an instruction
with a value of 07F0 hex) may result in
significant performance degradation. To ensure
optimum performance, the program should avoid

Chapter 7. General Instructions 7-9

use of BCR 15,0 except in cases when the
serialization function is actually required.

5. Note that the relation between the RR and RX
formats in branch-address specification is not the
same as in operand-address specification. For
branch instructions in the RX format, the branch
address is the address specified by X,, B,, and
D,; in the RR format, the branch address is
contained in the register specified by R,. For
operands, the address specified by X,, B,, and D,
is the operand address, but the register specified
by R, contains the operand itself.

BRANCH ON COUNT

BCTR Ry R; [RR]
‘08’ Ri Rz
0 8 12 15
BCT R1,D,(X2,B5) [RX]
‘46" Ry X2 B2 D,
0 8 12 16 20 31

A one is subtracted from the first operand, and the
result is placed in the first-operand location. The
first operand and result are treated as 32-bit binary
integers, with overflow ignored. When the result is
zero, normal instruction sequencing proceeds with the
updated instruction address. When the result is not
zero, the instruction address in the current PSW is
replaced by the branch address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, the
contents of bit positions 8-31 of the general register
specified by R, are used as the branch address;
however, when the R, field contains zeros, the
operation is performed without branching.

The branch address is computed before the counting
operation.

Condition Code: The code remains unchanged.

Program Exceptions:

None.

7-10 IBM 4300 Processors Principles of Operation

Programming Notes

1. An example of the use of BRANCH ON COUNT
is given in Appendix A.

2. The first operand and result can be considered as
either signed or unsigned binary integers since the
result of a binary subtraction is the same in both
cases.

3. An initial count of one results in zero, and no
branching takes place; an initial count of zero
results in minus one and causes branching to be
executed; an initial count of minus one results in
minus 2 and causes branching to be executed;
and so on. In a loop, branching takes place each
time the instruction is executed until the result is
again zero. Note that, because of the number
range, an initial count of minus 231 results in a
positive value of 231-1.

4. Counting is performed without branching when
the R, field in the RR format contains zero.

BRANCH ON INDEX HIGH

BXH R1,R3,D2(B3) [RS]
‘86" Ry R3; B2 D,
1] 8 12 16 20 31

BRANCH ON INDEX LOW OR EQUAL

BXLE Ry,R;,Du(B3) [RS]
‘87’ R R3 By D>
0 8 12 16 20 31

An increment is added to the first operand, and the
sum is compared with a comparand. Subsequently,
the sum is placed in the first-operand location. The
second-operand address is used as a branch address.

For BXH, when the sum is high, the instruction
address in the current PSW is replaced by the branch
address. When the sum is low or equal, normal
instruction sequencing proceeds with the updated
instruction address.

For BXLE, when the sum is low or equal, the
instruction address in the current PSW is replaced by
the branch address. When the sum is high, normal
instruction sequencing proceeds with the updated
instruction address.

When the R; field is even, the even and odd
registers of the pair specified by the R field are used
as the increment and the comparand, respectively.
When the R; field is odd, the register specified by the
R; field is used as both the increment and the
comparand. The branch address is computed before
the addition and comparison.

For purposes of the addition and comparison, all
operands and results are treated as 32-bit signed
binary integers. Overflow caused by the addition is
ignored. When the first-operand and comparand
locations coincide, the original register contents are
used as the comparand.

The sum is placed in the first-operand location
regardless of whether the branch is taken.

Condition Code: The code remains unchanged.

Program Exceptions:
None.

Programming Notes

1. An example of the use of BRANCH ON INDEX
HIGH is given in Appendix A.

2. The word "index" in the names of these
instructions indicates that one of the major
purposes is the incrementing and testing of an
index value. The increment, being a signed
binary integer, may be used to increase or
decrease the value in register Ry by an arbitrary

amount.
COMPARE
CR Ri,Rz [RR]

19 R; R
(] 8 12 15
C R1,D2(X3,B5) [RX]

‘59’ Ri Xz | B D>
(] 8 12 16 20 31

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The operands are treated as 32-bit signed
binary integers.

Resulting Condition Code:

0 Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operand 2 of C only)

COMPARE AND SWAP

CS RI,R39D2(B2) [RS]
‘BA’ R R3 B> D2
[8 12 16 20 31

COMPARE DOUBLE AND SWAP

CDS R1,R3,D2(B3) [RS]
‘BB’ R1 R3 By Dy
0 8 12 16 20 31

The first and second operands are compared. If they
are equal, the third operand is stored at the second-
operand location. If they are unequal, the second
operand is loaded into the first-operand location.
The result of the comparison is indicated in the
condition code.

For CS, the first and third operands are 32 bits in
length, with each operand occupying a general
register. The second operand is a word in storage.

For CDS, the first and third operands are 64 bits in
length, with each operand occupying an even-odd
pair of general registers. The second operand is a
doubleword in storage.

When the result of the comparison is unequal, the
second-operand location remains unchanged. No
attempt to store occurs, and no change-bit and
store-protection actions are taken.

When an equal comparison occurs, no access by
another CPU to the second-operand location is
permitted between the moment that the second
operand is fetched for comparison and the moment
that the third operand is stored at the second-
operand location.

Serialization is performed before the operand is
fetched, and again after the operation is completed.
CPU operation is delayed until all previous accesses

Chapter 7. General Instructions 7-11

by this CPU to storage have been completed, as
observed by channels and other CPUs, and then the
second operand is fetched. No subsequent
instructions or their operands are accessed by this
CPU until the execution of this instruction is
completed, including placing the result value, if any,
in storage, as observed by channels and other CPUs.

The second operand of CS must be designated on a
word boundary. The R; and R; fields for CDS must
each designate an even register, and the second
operand for CDS must be designated on a
doubleword boundary. Otherwise, a specification
exception is recognized.

Resulting Condition Code:

0 First and second operands equal, second operand
replaced by third operand

1 First and second operands unequal, first operand
replaced by second operand

2 =

3

Program Exceptions:

Access (fetch and store, operand 2)
Specification

Programming Notes

1. Several examples of the use of the COMPARE
AND SWAP and COMPARE DOUBLE AND
SWAP instructions are given in Appendix A.

2. The instruction CS can be used by programs
sharing common storage areas in either a
multiprogramming or multiprocessing
environment. Two examples are:

a. By performing the following procedure, a
program can modify the contents of a storage
location even though the possibility exists that
the program may be interrupted by another
program that will update the location or even
though the possibility exists that another CPU
may simultaneously update the location.

First, the entire word containing the byte or
bytes to be updated is loaded into a general
register. Next, the updated value is computed
and placed in another general register. Then
the instruction CS is executed with the R;
field designating the register that contains the
original value and the Rj; field designating the
register that contains the updated value. If
condition code 0 is set, the update has been
successful. If condition code 1 is set, the

7-12 IBM 4300 Processors Principles of Operation

storage location no longer contains the
original value, the update has not been
successful, and the general register designated
by the R; field of the CS instruction contains
the new current value of the storage location.
When condition code 1 is set, the program
can repeat the procedure using the new
current value.

b. The instruction CS can be used for controlled
sharing of a common storage area in a
manner similar to that described in the
programming note under TEST AND SET,
but it provides the added capability of leaving
a message when the common area is in use.
To accomplish this, a word in storage can be
used as a control word, with a zero value in
the word indicating that the common area is
not in use, a negative value indicating that
the area is in use, and a nonzero positive
value indicating that the common area is in
use and that the value is the address of the
most recent message added to the list. Thus,
any number of programs desiring to seize the
area can use CS to update the control word to
indicate that the area is in use or to add
messages to the list. The single program
which has seized the area can also safely use
CS to remove messages from the list.

The instruction CDS can be used in a manner

similar to that described for CS. In addition, it

has another use. Consider a chained list, with a

control word used to address the first message in

the list, as described in programming note 2b
above. If multiple programs are permitted to add

and delete messages by using CS, there is a

possibility the list will be incorrectly updated.

This would occur if, after one program has

fetched the address of the most recent message in

order to remove the message, another program
removes the first two messages and then adds the
first message back into the chain. The first
program, on continuing, cannot easily detect that
the list is changed. By increasing the size of the
control word to a doubleword containing both the
first message address and a word with a change
number that is incremented for each modification
of the list, and by using CDS to update both
fields together, the possibility of the list being
incorrectly updated is reduced to a negligible
level. That is, an incorrect update can occur only
if the first program is delayed while changes
exactly equal in number to a multiple of 232 take

place and only if the last change places the
original message address in the control word.

4. The instructions CS and CDS do not interlock
against storage accesses by channels. Therefore,
the instructions should not be used to update a
location which is in an I/O input area, since the
input data may be lost.

COMPARE HALFWORD

CH = Ry;,Dy(X3,B2) [RX]
49° | Ry X2 | B2 D2
1] 8 12 16 20 31

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The second operand is two bytes in length and
is treated as a 16-bit signed binary integer. The first
operand is treated as a 32-bit signed binary integer.

Resulting Condition Code:

0 Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operand 2)

Programming Note

An example of the use of COMPARE HALFWORD
is given in Appendix A.

COMPARE LOGICAL
CLR RiR, [RR]
‘15° Ri Ry
(3] 8 12 15
CL R1,D2(X2,B;) [RX]
‘85" R1 Xz By D2
0 8 12 16 20 31

CLI Di(By,k2 [s1]

‘95” I B1 Dy

CLC Diy(L.B1),Dx(By) [SS]
7/

! L
7/
‘D5’ L B1 D1 B> Dy
S A / L
7/ 7/
0 8 16 20 32 36 47

The first operand is compared with the second
operand, and the result is indicated in the condition
code.

The comparison proceeds left to right, bit for bit,
and ends as soon as an inequality is found or an end
of the fields is reached. For CL and CLC, access
exceptions may or may not be recognized for the
portion of a storage operand to the right of the first
unequal byte.

Resulting Condition Code:

0 Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:

Access (fetch, operand 2, CL and CLC; fetch,
operand 1, CLI and CLC)

Programming Notes

1. Examples of the use of the COMPARE
LOGICAL instructions are given in Appendix A.

2. The COMPARE LOGICAL instructions treat all
bits of each operand alike as part of a field of
unstructured logical data. For CLC, the
comparison may extend to field lengths of 256
bytes.

COMPARE LOGICAL CHARACTERS
UNDER MASK

CLM R1,M;,D2(B>) [RS]
‘8D R; M3 By Dy
0 8 12 16 20 31

Chapter 7. General Instructions 7-13

The first operand is compared with the second
operand under control of a mask, and the result is
indicated in the condition code.

The contents of the Mj; field are used as a mask.
These four bits, left to right, correspond one for one
with the four bytes, left to right, of the general
register designated by the R, field. The byte
positions corresponding to ones in the mask are
considered as a contiguous field and are compared
with the second operand. The second operand is a
contiguous field in storage, starting at the second-
operand address and equal in length to the number of
ones in the mask. The bytes in the general register
corresponding to zeros in the mask do not participate
in the operation.

The comparison proceeds left to right, bit for bit,
and ends as soon as an inequality is found or the end
of the fields is reached.

When the mask is not zero, exceptions associated
with storage-operand access are recognized for no
more than the number of bytes specified by the mask.
Access exceptions may or may not be recognized for
the portion of a storage operand to the right of the
first unequal byte. When the mask is zero, access
exceptions are recognized for one byte.

Resulting Condition Code:

0 Selected bytes are equal, or mask is zero
1 Selected field of first operand is low

2 Selected field of first operand is high

3 _

Program Exceptions:
Access (fetch, operand 2)

Programming Note

An example of the use of COMPARE LOGICAL
CHARACTERS UNDER MASK is given in
Appendix A.

COMPARE LOGICAL LONG

CLCL RyR; [RR]

‘OF” Ry Ry

0 8 12 15

7-14 IBM 4300 Processors Principles of Operation

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The shorter operand is considered to be
extended on the right with padding bytes.

The R; and R, fields each specify an even-odd pair
of general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and second operand is designated by bits
8-31 of the general registers specified by the R; and
R, fields, respectively. The number of bytes in the
first-operand and second-operand locations is
specified by bits 8-31 of general registers Ry+1 and
R,+1, respectively. Bit positions 0-7 of register
R+ 1 contain the padding byte. The contents of bit
positions 0-7 of registers Ry, R, and Ry+1 are
ignored.

Graphically, the contents of the registers just
described are as follows:

% FirstOporand Addrass

R,
0

Ri+1

First-Operand Length

%

0 8 31

R,

/ Second-Operand Address

0 8 31
Ry+1

Pad Second-Operand Length
0 8 31

The comparison proceeds left to right, bit for bit,
and ends as soon as an inequality is found or the end
of the longer operand is reached. If the operands are
not of the same length, the shorter operand is
considered to be extended on the right with the
appropriate number of padding bytes.

If both operands are of zero length, the operands
are considered to be equal.

The execution of the instruction is interruptible.
When an interruption occurs, other than one that
causes termination, the contents of registers R;+1
and Ry+1 are decremented by the number of bytes
compared, and the contents of registers R; and R, are
incremented by the same number, so that the
instruction, when reexecuted, resumes at the point of
interruption. The high-order bits which are not part
of the address in registers R; and R; are set to zeros;
the contents of the high-order byte of registers Ri+1
and R,+1 remain unchanged; and the condition code
is unpredictable. If the operation is interrupted after
the shorter operand has been exhausted, the length
field pertaining to the shorter operand is zero, and its
address is updated accordingly.

If the operation ends because of an inequality, the
address fields in registers Ry and R, at completion
identify the first unequal byte in each operand. The
lengths in bit positions 8-31 of registers R1+1 and
R,+1 are decremented by the number of bytes that
were equal, unless the inequality occurred with the
padding byte, in which case the length field for the
shorter operand is set to zero. The addresses in
registers Ry and R, are incremented by the amounts
by which the corresponding length fields were
reduced.

If the two operands, including the padding byte, if
necessary, are equal, both length fields are made zero
at completion, and the addresses are incremented by
the corresponding operand-length values. The bits
which are not part of the address in registers Ry and
R, are set to zeros, including the case when one or
both of the initial length values are zero. The
contents of bit positions 0-7 of registers Ry+1 and
R>+1 remain unchanged.

Access exceptions for the portion of a storage
operand to the right of the first unequal byte may or
may not be recognized.

When the length of an operand is zero, no access
exceptions are recognized for that operand. Access
exceptions are not recognized for an operand if the R
field associated with that operand is odd.

Resulting Condition Code:

0 Operands are equal, or both have zero length
1 First operand is low

2 First operand is high
3

Program Exceptions:

Access (fetch, operands 1 and 2)
Specification

Programming Notes

1. An example of the use of COMPARE LOGICAL
LONG is given in Appendix A.

2. When the Ry and R, fields are the same, the
operation proceeds in the same way as when two
distinct pairs of registers having the same
contents are specified, and, in the absence of
dynamic modification of the operand area by
another CPU or a channel, condition code 0 is
set. However, it is unpredictable whether access
exceptions are recognized for the operand since
the operation can be completed without storage
being accessed.

3. Another programming note concerning
interruptible instructions is included in the section
"Point of Interruption' in Chapter 6,
"Interruptions."

4. Special precautions should be taken when
COMPARE LOGICAL LONG is made the target
of EXECUTE. See the programming note
concerning interruptible instructions under
EXECUTE.

CONVERT TO BINARY

CVB R1,D,(X2,By) [RX]
‘4F° Ri | X2 | By D2
0 8 12 16 20 31

The radix of the second operand is changed from
decimal to binary, and the result is placed in the
first-operand location.

The second operand occupies eight bytes in storage
and is treated as packed decimal data, as described in
Chapter 8, "Decimal Instructions." It is checked for
valid sign and digit codes, and a data exception is
recognized when an invalid code is detected.

The result of the conversion is a 32-bit signed
binary integer, which is placed in the general register
specified by R;. The maximum positive number that
can be converted and still be contained in a 32-bit
register is 2,147,483,647; the maximum negative
number (the negative number with the greatest
absolute value) that can be converted is
—2,147,48 ,648. For any decimal number outside

Chapter 7. General Instructions 7-15

this range, the operation is completed by placing the
32 low-order bits of the binary result in the register,
and a fixed-point-divide exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2)
Data
Fixed-Point Divide

Programming Notes

1. An example of the use of CONVERT TO
BINARY is given in Appendix A.

2. When the second operand is negative, the result
is in two’s-complement notation.

CONVERT TO DECIMAL

CVD R1,D2(X2,B2) [RX]
‘4E’ R, Xz By D>
0 8 12 16 20 31

The radix of the first operand is changed from binary
to decimal, and the result is stored at the second-
operand location. The first operand is treated as a
32-bit signed binary integer.

The result occupies eight bytes in storage and is in
the format for packed decimal data, as described in
Chapter 8, "Decimal Instructions." The low-order
four bits of the result represent the sign. A positive
sign is encoded as 1100; a negative sign is encoded
as 1101.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (store, operand 2)

Programming Notes

1. An example of the use of CONVERT TO
DECIMAL is given in Appendix A.

2. The number to be converted is a 32-bit signed
binary integer obtained from a general register.
Since 15 decimal digits are available for the
result, and the decimal equivalent of 31 bits
requires at most 10 decimal digits, an overflow
cannot occur.

7-16 IBM 4300 Processors Principles of Operation

DIVIDE
DR R1,R; [RR]
1D’ Ry R,
0 8 12 15
D R1,D2(X2,B>) [RX]
‘5D° Ry Xz By Dy
0 8 12 16 20 31

The doubleword first operand (the dividend) is
divided by the second operand (the divisor), and the
remainder and the quotient are placed in the first-
operand location.

The R; field of the instruction specifies an even-odd
pair of general registers and must designate an even-
numbered register. When R; is odd, a specification
exception is recognized.

The dividend is treated as a 64-bit signed binary
integer. The divisor, the remainder, and the quotient
are treated as 32-bit signed binary integers. The
remainder and quotient replace the dividend in the
pair of registers specified by the R; field. The
remainder is placed in the even-numbered register,
and the quotient is placed in the odd-numbered
register.

The sign of the quotient is determined by the rules
of algebra. The remainder has the same sign as the
dividend, except that a zero quotient or a zero
remainder is always positive. When the magnitudes
of the dividend and divisor are such that the quotient
cannot be expressed by a 32-bit signed binary
integer, a fixed-point-divide exception is recognized,
and the operation is suppressed.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2 of D only)
Fixed-Point Divide
Specification

EXCLUSIVE OR

17’ R1 Ry,
0 8 12 15
X R1,D2(X2,B3) [RX]

‘57" Ri X2 B; D>
0 8 12 16 20 31
X1 D1(B41).I [S1]

‘97" I B4 Dy
0 8 16 20 31
XC D1(L,B1),D2(B>) [SS]

~7 /- 7/
‘D7’ L B1 D1 B, Dy
///I // L

0 8 16 20 32 36 47

The EXCLUSIVE OR of the first and second
operands is placed in the first-operand location.

The connective EXCLUSIVE OR is applied to the
operands bit by bit. A bit position in the result is set
to one if the corresponding bit positions in the two
operands are unlike; otherwise, the result bit is set to
Zero.

For XC, each operand is processed left to right.
When the operands overlap, the result is obtained as
if the operands were processed one byte at a time and
each result byte were stored immediately after the
necessary operand byte is fetched.

For X1, the first operand is one byte in length, and
only one byte is stored.

Resulting Condition Code:

0 Result is zero

1 Result is not zero
2 -

3 -

Program Exceptions:

Access (fetch, operand 2, X and XC; fetch and store,
operand 1, XI and XC)

Programming Notes

1. An example of the use of EXCLUSIVE OR is
given in Appendix A.

2. The instruction EXCL.USIVE OR may be used to
invert a bit, an operation particularly useful in
testing and setting programmed binary bit
switches.

3. A field EXCLUSIVE-ORed with itself becomes
all zeros.

4. For XR, the sequence A EXCLUSIVE-OR B, B
EXCLUSIVE-OR A, A EXCLUSIVE-OR results
in the exchange of the contents of A and B
without the use of an additional general register.

5. Accesses to the first operand of XI and XC
consist in fetching a first-operand byte from
storage and subsequently storing the updated
value. These fetch and store accesses to a
particular byte do not necessarily occur one
immediately after the other. Thus, the instruction
EXCLUSIVE OR cannot be safely used to update
a location in storage if the possibility exists that
another CPU or a channel may also be updating
the location. An example of this effect is shown
for the instruction OR (OI) in the section
"Multiprocessing Examples," in Appendix A.

EXECUTE
EX R1,D2(X>,B>) [RX]

‘a4’ Ri | X2 | B D2
0 8 12 16 20

The single instruction at the second-operand address
is modified by the contents of the general register
specified by Ry, and the resulting target instruction is
executed.

When the R; field is not zero, bits 8-15 of the
instruction designated by the second-operand address
are ORed with bits 24-31 of the register specified by
R;. The ORing does not change either the contents
of the register specified by R or the instruction in
storage, and it is effective only for the interpretation
of the instruction to be executed. When the Ry field
is zero, no ORing takes place.

Chapter 7. General Instructions 7-17

The target instruction may be two, four, or six bytes
in length. The execution and exception handling of
the target instruction are exactly as if the target
instruction were obtained in normal sequential
operation, except for the instruction address and the
instruction-length code.

The instruction address of the current PSW is
increased by the length of EXECUTE. This updated
address and the instruction-length code of
EXECUTE are used as part of the link information
when the target instruction is BRANCH AND LINK.
When the target instruction is a successful branching
instruction, the instruction address of the current
PSW is replaced by the branch address specified by
the target instruction.

When the target instruction is in turn an
EXECUTE, an execute exception is recognized.

The effective address of EXECUTE must be even;
otherwise, a specification exception is recognized.
Access exceptions are not recognized for the second-
operand address when the address is odd.

Condition Code: The code may be set by the target
instruction.

Program Exceptions:

Access (fetch, target instruction)
Execute
Specification

Programming Notes

1. An example of the use of EXECUTE is given in
Appendix A.

2. The ORing of eight bits from the general register
with the designated instruction permits indirect
length, index, mask, immediate-data, and register
specification.

3. The fetching of the target instruction is
considered to be an instruction fetch for purposes
of program-event recording and for purposes of
reporting access exceptions.

4. An access or specification exception may be

caused by EXECUTE or by the target instruction.

5. When an interruptible instruction is made the
target of EXECUTE, the program normally
should not designate any register updated by the
interruptible instruction as the Ry, X5, or By
register for EXECUTE, since on resumption of
execution after an interruption, or if the
instruction is refetched without an interruption,
the updated values of these registers will be used
in the execution of EXECUTE. Similarly, the

7-18 IBM 4300 Processors Principles of Operation

program should normally not let the destination
field of an interruptible instruction include the
location of the EXECUTE, since the new
contents of the location may be interpreted when
resuming execution.

INSERT CHARACTER

IC R1,D2(X;3,B5) [RX]
‘43" Ry X2 By D2
0 8 12 16 20 31

The byte at the second-operand location is inserted
into bit positions 24-31 of the general register
designated by the R, field. The remaining bits in the
register remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

INSERT CHARACTERS UNDER MASK

ICM R1,M3,D2(B2) [RS]
‘BF’ R1 M3 By Dy
0 8 12 16 20 31

Bytes from contiguous locations beginning at the
second-operand address are inserted into the first-
operand location under control of a mask.

The contents of the M; field are used as a mask.
These four bits, left to right, correspond one for one
with the four bytes, left to right, of the general
register designated by the R; field. The byte
positions corresponding to ones in the mask are filled.
left to right, with bytes from successive storage
locations beginning at the second-operand address.
When the mask is not zero, the length of the second
operand is equal to the number of ones in the mask.
The bytes in the general register corresponding to
zeros in the mask remain unchanged.

The resulting condition code is based on the mask
and on the value of the bits inserted. When the mask
is zero or when all inserted bits are zeros, the
condition code is set to 0. When all inserted bits are
not zeros, the code is set according to the leftmost bi‘

of the storage operand: if this bit is one, the code is
set to 1; if this bit is zero, the code is set to 2.

When the mask is not zero, exceptions associated
with storage-operand access are recognized only for
the number of bytes specified by the mask. When
the mask is zero, access exceptions are recognized for
one byte.

Resulting Condition Code:

0 All inserted bits are zeros, or mask is zero

1 Leftmost bit of the inserted field is one

2 Leftmost bit of the inserted field is zero, and not
all inserted bits are zeros

3 -

Program Exceptions:
Access (fetch, operand 2)

Programming Notes

1. Examples of the use of INSERT CHARACTERS
UNDER MASK are given in Appendix A.

2. The condition code for INSERT CHARACTERS
UNDER MASK (ICM) is defined such that, when
the mask is 1111, the instruction causes the same
condition code to be set as for LOAD AND
TEST. Thus, the instruction may be used as a
storage-to-register load-and-test operation.

3. An ICM instruction with a mask of 1111 or 0001
performs a function similar to that of a LOAD
(L) or INSERT CHARACTER (IC), respectively,
with the exception of the condition-code setting.
However, the performance of ICM may be

slower.
LOAD
LR R1,R; [RR]

18 R Rz
(] 8 12 15
L Ri,Dx(X2,B;) [RX]

‘58’ Ry X2 | B2 D2
(] 8 12 16 20 31

The second operand is placed unchanged in the first-
operand location.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2 of L only)

Programming Note

An example of the use of LOAD is given in
Appendix A.

LOAD ADDRESS

LA R1,D2(X2,B2) [RX]
‘41" R1 X2 B2 D>
0 8 12 16 20 31

The address specified by the X, B, and D, fields is
placed in bit positions 8-31 of the general register
specified by the R, field. Bits 0-7 of the register are
set to zeros. The address computation follows the
rules for address arithmetic.

No storage references for operands take place, and
the address is not inspected for access exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

None.

Programming Notes

1. An example of the use of the LOAD ADDRESS
instruction is given in Appendix A.

2. The same general register may be specified by the
Rj, X», and B, fields, except that general register
0 can be specified only by the R, field. In this
manneyr, it is possible to increment the low-order
24 bits of a general register, other than register O,
by the contents of the D, field of the instruction.
The register to be incremented should be
specified by R; and by either X, (with B, set to
zero) or B, (with X, set to zero).

LOAD AND TEST
LTR Ri,R; [RR]

‘12' R Ry

0 8 12 15

Chapter 7. General Instructions 7-19

The second operand is placed unchanged in the first-
operand location, and the sign and magnitude of the
second operand, treated as a 32-bit signed binary
integer, are indicated in the condition code.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3

Program Exceptions:
None.

Programming Note

When the R; and R, fields designate the same
register, the operation is equivalent to a test without
data movement.

LOAD COMPLEMENT

LCR R{,R, [RR]

13" R1 Ry

0 8 12 15

The two’s complement of the second operand is
placed in the first-operand location. The second
operand and result are treated as 32-bit signed binary
integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow

Programming Note

The operation complements all numbers. Zero and
the maximum negative number remain unchanged.
An overflow condition occurs when the maximum

negative number is complemented.

7-20 IBM 4300 Processors Principles of Operation

LOAD HALFWORD

LH R1,D2(X3,B2) [RX]
‘48’ Ry Xa :73 D,
L] 8 12 16 20 31

The second operand is extended to a 32-bit signed
binary integer and placed in the first-operand
location. The second operand is two bytes in length
and is considered to be a 16-bit signed binary
integer. The second operand is extended by
propagating the sign-bit value through the 16 high-
order bit positions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Programming Note

An example of the use of LOAD HALFWORD is
given in Appendix A.

LOAD MULTIPLE

LM R1,R3,D,(B2) [RS]
‘98’ Ry Rj By D,
0 8 12 16 20 31

The set of general registers starting with the register
specified by R; and ending with the register specified
by R; is loaded from storage beginning at the location
designated by the second-operand address and
continuing through as many locations as needed.

The general registers are loaded in the ascending
order of their register numbers, starting with the
register specified by R and continuing up to and
including the register specified by R3, with register 0
following register 15.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Programming Note

All combinations of register numbers specified by R;
and R; are valid. When the register numbers are
equal, only four bytes are transmitted. When the
number specified by Rj is less than the number
specified by R;, the register numbers wrap around
from 15 to 0.

LOAD NEGATIVE

LNR Ri,R» [RR]

11 Ry Ry

0 8 12 15

The two’s complement of the absolute value of the
second operand is placed in the first-operand
location. The second operand and result are treated
as 32-bit signed binary integers.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero
2 —

3 —

Program Exceptions:
None.

Programming Note

The operation complements positive numbers;
negative numbers remain unchanged. The number
zero remains unchanged.

LOAD POSITIVE

LPR Ri,R; [RR]

‘10" Ry R,

0 8 12 15

The absolute value of the second operand is placed in
the first-operand location. The second operand and
the result are treated as 32-bit signed binary integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:
0 Result is zero

1 =
2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow

Programming Note

The operation complements negative numbers;
positive numbers and zero remain unchanged. An
overflow condition occurs when the maximum
negative number is complemented; the number
remains unchanged.

MONITOR CALL

MC D;i(B1),I, [S1]

'AF* I B1 D1

0 8 16 20 31

A program interruption is caused if the appropriate
monitor-mask bit in control register 8 is one.

The monitor-mask bits are in bit positions 16-31 of
control register 8. The mask bits, bits 16-31,
correspond to monitor classes 0-15, respectively.

Bit positions 12-15 in the I, field contain a binary
number specifying one of 16 monitoring classes.
When the monitor-mask bit corresponding to the
class specified by the I, field is one, a monitor-event
program interruption occurs. The contents of the I,
field are stored at location 149, with zeros stored at
location 148. Bit 9 of the program-interruption code
is set to one.

The first-operand address is not used to address
data; instead, the address specified by the By and D;
fields forms the monitor code, which is placed in the
word at location 156. Address computation follows
the rules of address arithmetic; bits 0-7 are set to
Zeros.

When the monitor-mask bit corresponding to the
class specified by bits 12-15 of the instruction is
zero, no interruption occurs, and the instruction is
executed as a no-operation.

Bit positions 8-11 of the instruction must contain
zeros; otherwise, a specification exception is
recognized.

Chapter 7. General Instructions 7-21

Condition Code: The code remains unchanged.

Program Exceptions:

Monitor Event
Specification

Programming Notes

1. The MONITOR CALL instruction provides the
capability for passing control to a monitoring
program when selected points are reached in the
monitored program. This is accomplished by
implanting MONITOR CALL instructions at the
desired points. This function may be useful in
performing various measurement functions;
specifically, by implanting MONITOR CALL
instructions within the programs, tracing
information can be generated indicating which
programs were executed, counting information
can be generated indicating how often particular
programs are used, and timing information can be
generated indicating how long a particular
program required for execution.

2. The monitor masks provide a means of
disallowing all interruptions due to MONITOR
CALL or allowing monitoring for all or selected
classes.

3. The monitor code provides a means of associating
descriptive information, in addition to the class
number, with each MONITOR CALL instruction.
Without the use of a base register, up to 4,096
distinct monitor codes can be associated with a
monitoring interruption. With the base register
designated by a nonzero value in the B, field,
each monitoring interruption can be identified by
a 24-bit code.

MOVE
MVI D1(B1),I, [s1]
‘92’ 12 By D1
0 8 16 20 31

MVC D1(L,B1),D2(B,) [SS]

7/ 7/
‘D2’ L B] B2 D2
/L y
7/ 7/
0 8 16 20 32 36 47

7-22 IBM 4300 Processors Principles of Operation

The second operand is placed in the first-operand
location.

For MVC, each operand is processed left to right.
When the operands overlap, the result is obtained as
if the operands were processed one byte at a time and
each result byte were stored immediately after the
necessary operand byte is fetched.

For MVI, the first operand is one byte in length,
and only one byte is stored.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2 of MVC; store, operand 1,
MVI and MVC)

Programming Netes

1. Examples of the use of the MOVE instructions
are given in Appendix A.

2. It is possible to propagate one byte through an
entire field by having the first operand start one
byte to the right of the second operand.

MOVE INVERSE

MVCIN Dy(L,B1),D2(B) [S/S}
A

o
'E8’ L By Dy By D2
/ 4
0 8 16 20 32 36 47

The second operand is placed in the first-operand
location with the left-to-right sequence of the bytes
inverted.

The first-operand address designates the leftmost
byte of the first operand. The second-operand
address designates the rightmost byte of the second
operand. Both operands have the same length.

The result is obtained as if the second operand were
processed from right to left and the first operand
from left to right. The second operand may wrap
around from location O to location 16,777,215. The
first operand may wrap around from location
16,777,215 to location 0.

When the operands overlap by more than one byte,
the contents of the overlapped portion of the result
field are unpredictable.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; store, operand 1)
Programming Notes

1. The contents of each byte moved remain
unchanged.

2. MOVE INVERSE is the only SS-format
instruction for which the second-operand address
designates the rightmost, instead of the leftmost,
byte of the second operand.

Note: The MOVE INVERSE instruction is also
available in the System/370 mode. This will be
incorporated in a future update of the IBM
System/370 Principles of Operation.

MOVE LONG

MVCL RyR, [RR]
‘OE’ R1 Ry

0 8 12 15

The second operand is placed in the first-operand
location, provided overlapping of operand locations
does not affect the final contents of the first-operand
location. The remaining rightmost byte positions, if
any, of the first-operand location are filled with
padding bytes.

The R; and R, fields each specify an even-odd pair
of general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and second operand is designated by bits
8-31 of the general registers specified by the R; and
R, fields, respectively. The number of bytes in the
first-operand and second-operand locations is
specified by bits 8-31 of general registers R;+1 and
R>+1, respectively. Bit positions 0-7 of register
R»+1 contain the padding byte. The contents of bit
positions 0-7 of registers Ry, Ry, and R;+1 are
ignored.

Graphically, the contents of the registers just
described are as follows:

Ry

// // First-Operand Address

0 8 31

Ri+1

8 31
R>
7
A Second-Operand Address
0 8 31
Ryo+1
Pad Second-Operand Length
0 8 : 31

The movement starts at the left end of both fields
and proceeds to the right. The operation is ended
when the number of bytes specified by bit positions
8-31 of register R1+1 have been moved into the
first-operand location. If the second operand is
shorter than the first operand, the remaining
rightmost bytes of the first-operand are filled with
the padding byte.

As part of the execution of the instruction, the
values of the two length fields are compared for the
setting of the condition code, and a check is made for
destructive overlap of the operands. Operands are
said to overlap destructively when the first-operand
location is used as a source after data has been
moved into it. When the operands overlap
destructively, no movement takes place, and
condition code 3 is set.

Operands do not overlap destructively, and
movement is performed, if the leftmost byte of the
first operand does not coincide with any of the
second-operand bytes participating in the operation
other than the leftmost byte of the second operand.
When an operand wraps around from location
16,777,215 to location 0, operand bytes in locations
up to and including 16,777,215 are considered to be
to the left of bytes in locations from O up.

When the length specified by bit positions 8-31 of
register Ry1+1 is zero, no movement takes place, and
condition code 0 or 1 is set to indicate the relative
values of the lengths.

The execution of the instruction is interruptible.
When an interruption occurs other than one that
causes termination, the contents of registers Ry+1
and R,+1 are decremented by the number of bytes
moved, and the contents of register R; and R, are

Chapter 7. General Instructions 7-23

incremented by the same number, so that the
instruction, when reexecuted, resumes at the point of
interruption. The high-order bits which are not part
of the address in registers R; and R, are set to zeros;
the contents of the high-order byte of registers Ry+1
and R,+1 remain unchanged; and the condition code
is unpredictable. If the operation is interrupted
during padding, the length field in register R,+1 is O,
the address in register R, is incremented by the
original contents of register R+ 1, and registers R,
and R;+1 reflect the extent of the padding operation.

When the first-operand location includes the
location of the instruction, the instruction may be
refetched from storage and reinterpreted even in the
absence of an interruption during execution. The
exact point in the execution at which such a refetch
occurs is unpredictable.

At the completion of the operation, the length in
register Ry+1 is decremented by the number of bytes
stored at the first-operand location, and the address
in register R; is incremented by the same. amount.
The length in register Ry+1 is decremented by the
number of bytes moved out of the second-operand
location, and the address in register R, is incremented
by the same amount. The bits which are not part of
the address in registers R; and R, are set to zeros,
including the case when one or both of the original
length values are zeros or when condition code 3 is
set. The contents of bit positions 0-7 of registers
R;+1 and R;+1 remain unchanged.

When condition code 3 is set, no exceptions
associated with operand access are recognized. When
the length of an operand is zero, no access exceptions
for that operand are recognized. Similarly, when the
second operand is longer than the first operand,
access exceptions are not recognized for the part of
the second-operand field that is in excess of the
first-operand field. Access exceptions are not
recognized for an operand if the R field associated
with that operand is odd. Also, when the R, field is
odd, PER storage alteration is not recognized, and no
change bits are set.

Resulting Condition Code:

0 First-operand and second-operand lengths are
equal
1 First-operand length is low
First-operand length is high
3 No movement performed because of destructive
overlap

7-24 IBM 4300 Processors Principles of Operation

Program Exceptions:

Access (fetch, operand 2; store, operand 1)
Specification

Programming Notes

1. The instruction MOVE LONG may be used for
clearing storage by setting the padding byte to
zero and the second-operand length to zero.

.2. The program should avoid specification of a

length for either operand which would result in

an addressing exception. Addressing (and also

protection) exceptions may result in termination
of the entire operation, not just the current unit
of operation. The termination may be such that
the contents of all result fields are unpredictable;
in the case of MV CL, this includes the condition
code and the two even-odd general-register pairs,
as well as the first-operand location in main
storage. The following are situations that
actually occur on one or more System/370
models.

a. When a protection exception occurs on a
2,048-byte block of a first operand which is
several blocks in length, stores to the
protected block are suppressed. However, the
move continues into the subsequent blocks of
the first operand, which are not protected.
Similarly, in the case of reconfigurable
storage, an addressing exception on a block
does not necessarily suppress processing of
subsequent blocks which are addressable.

b. The model may update the general registers
only when an 1/0 interruption occurs, or a
program interruption occurs which is required
to nullify or suppress. Thus, if after a move
into several blocks of the first operand, an
addressing or protection exception occurs, the

. registers remain unchanged.

3. When the first-operand length is zero, the
operation consists in setting the condition code
and setting the high-order bytes of registers R,
and R; to zero.

4. When the contents of the R; and R; fields are the
same, the operation proceeds the same way as
when two distinct pairs of registers having the
same contents are specified. Condition code 0 is
set.

5. The following is a detailed description of those
cases in which movement takes place, that is,
where destructive overlap does not exist.
Depending on whether the second operand wraps

around from location 16,777,215 to location O,

movement takes place in the following cases:

a. When the second operand does not wrap
around, movement is performed if the
leftmost byte of the first operand coincides
with or is to the left of the leftmost byte of
the second operand, or if the leftmost byte of
the first operand is to the right of the
rightmost second-operand byte participating
in the operation.

b. When the second operand wraps around,
movement is performed if the leftmost byte of
the first operand coincides with or is to the
left of the leftmost byte of the second
operand, and if the leftmost byte of the first
operand is to the right of the rightmost
second-operand byte participating in the
operation.

The rightmost second-operand byte is
determined by using the smaller of the first-
operand and second-operand lengths.

When the second-operand length is one or zero,
destructive overlap cannot exist.

6. Special precautions must be taken if MOVE
LONG is made the target of EXECUTE. See the
programming note concerning interruptible
instructions under EXECUTE.

7. Since the execution of MOVE LONG is
interruptible, the instruction cannot be used for
situations where the program must rely on
uninterrupted execution of the instruction or on
the interval timer not being updated during the
execution of the instruction. Similarly, the
program should normally not let the first operand
of MOVE LONG include the location of the
instruction since the new contents of the location
-may be interpreted for a resumption after an
interruption, or the instruction may be refetched
without an interruption.

8. Further programming notes concerning
interruptible instructions are included in the
section "Interruptible Instructions"” in Chapter 6,
"Interruptions."

MOVE NUMERICS

MVN D1(L,B1),D2(B>) [SS]

/L

/74 //
‘D1’ L B1 Dg By D,
/ ‘
7/ 7
0 8 16 20 32 36 47

The rightmost four bits of each byte in the second
operand are placed in the rightmost bit positions of
the corresponding bytes in the first operand. The
leftmost four bits of each byte in the first operand
remain unchanged.

Each operand is processed left to right. When the
operands overlap, the result is obtained as if the
operands were processed one byte at a time and each
result byte were stored immediately after the
necessary operand byte is fetched.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and store, operand 1)

Programming Notes

1. An example of the use of MOVE NUMERICS is
given in Appendix A.

2. MVN moves the numeric portion of a decimal-
data field that is in the zoned format. The
zoned-decimal format is described in Chapter 8,
"Decimal Instructions." The operands are not
checked for valid sign and digit codes.

3. Accesses to the first operand of MVN consist in
fetching the rightmost four bits of each byte in
the first operand and subsequently storing the
updated value of the byte. These fetch and store
accesses to a particular byte do not necessarily
occur one immediately after the other.

MOVE WITH OFFSET
MVO D1(L1,B1),D2(12,B2) » [Ss]

7/ L

7/ 7/
F1’ L1 L, |Bg D | B D,
S L / L
7/ 7/
(8 12 16 20 32 36 47

The second operand is placed to the left of and
adjacent to the rightmost four bits of the first
operand.

The rightmost four bits of the first operand are
attached as the rightmost bits to the second operand,
the second operand bits are offset by four bit
positions, and the result is placed in the first-operand
location.

The result is obtained as if the operands were
processed right to left. When necessary, the second
operand is considered to be extended on the left with

Chapter 7. General Instructions 7-25

zeros. If the first operand is too short to contain all
of the second operand, the remaining leftmost portion
of the second operand is ignored. Access exceptions
for the unused portion of the second operand may or
may not be indicated.

When the operands overlap, the result is obtained as
if the operands were processed one byte at a time and
each result byte were stored immediately after the
necessary operand bytes are fetched. The left digit
of each second-operand byte remains available for
the next result byte and is not refetched.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2; fetch and store, operand 1)

Programming Notes

1. An example of the use of MOVE WITH OFFSET
is given in Appendix A.

2. Access to the rightmost byte of the first operand
of MVO consists in fetching the rightmost four
bits and subsequently storing the updated value
of this byte. These fetch and store accesses to
the rightmost byte of the first operand do not
necessarily occur one immediately after the other.

3. MVO may be used to shift packed decimal data
by an odd number of digit positions. The
packed-decimal format is described in Chapter 8,
"Decimal Instructions.”" The operands are not
checked for valid sign and digit codes.

MOVE ZONES
MVZ D;(L,B1),D2(B>) [SS]
// L 7/
‘D3’ L B, D B D,
7/~ 7,
1] 8 16 20 32 36 47

The leftmost four bits of each byte in the second
operand are placed in the leftmost four bit positions
of the corresponding bytes in the first operand. The
rightmost four bits of each byte in the first operand
remain unchanged.

Each operand is processed left to right. When the
operands overlap, the result is obtained as if the
operands were processed one byte at a time and each
result byte were stored immediately after the
necessary operand byte is fetched.

7-26 IBM 4300 Processors Principles of Operation

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and store, operand 1)

Programming Notes

1. An example of the use of MOVE ZONES is given
in Appendix A.

2. MVZ moves the zoned portion of a decimal field
in the zoned format. The zoned format is
described in Chapter 8, "Decimal Instructions."
The operands are not checked for valid sign and
digit codes.

3. Accesses to the first operand of MVZ consist in
fetching the leftmost four bits of each byte in the
first operand and subsequently storing the
updated value of the byte. These fetch and store
accesses to a particular byte do not necessarily
occur one immediately after the other.

MULTIPLY
MR Ri,R, [RR]
“1C* Rg Ry
0 8 12 15
M R1,D2(X2,B2) [RX]
‘58C’ R1 Xo, B> Dy
0 8 12 16 20 31

The second word of the first operand (multiplicand)
is multiplied by the second operand (multiplier), and
the doubleword product is placed at the first-operand
location.

The R field of the instruction specifies an even-odd
pair of general registers and must designate an even-
numbered register. When R; is odd, a specification
exception is recognized.

Both the multiplicand and multiplier are treated as
32-bit signed binary integers. The multiplicand is
taken from the odd-numbered register of the pair
specified by the R; field. The contents of the even-
numbered register are ignored. The product is a
64-bit signed binary integer, which replaces the

contents of the even-odd pair of general registers
specified by the Ry field. An overflow cannot occur.

The sign of the product is determined by the rules
of algebra from the multiplier and multiplicand sign,
except that a zero result is always positive.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2 of M only)
Specification

Programming Notes

1. An example of the use of MULTIPLY is given in
Appendix A.

2. The significant part of the product usually
occupies 62 bits or fewer. Only when two
maximum negative numbers are multiplied are 63
significant product bits formed.

MULTIPLY HALFWORD
MH R1,D2(X2,B2) [RX]
‘4C’ Ry Xz B, D3
0 8 12 16 20 31

The first operand (multiplicand) is multiplied by the
second operand (multiplier), and the product is
placed at the first-operand location. The second
operand is two bytes in length and is considered to be
a 16-bit signed binary integer.

The multiplicand is treated as a 32-bit signed binary
integer and is replaced by the low-order 32 bits of
the signed-binary-integer product. The bits to the
left of the 32 low-order bits are not tested for
significance; no overflow indication is given.

The sign of the product is determined by the rules
of algebra from the multiplier and multiplicand sign,
except that a zero result is always positive.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Programming Notes

1. An example of the use of MULTIPLY HALF-
WORD is given in Appendix A.

2. The significant part of the product usually
occupies 46 bits or fewer. Only when two
maximum negative numbers are multiplied are 47
significant product bits formed. Since the low-
order 32 bits of the product are stored unchanged,
ignoring all bits to the left, the sign bit of the
result may differ from the true sign of the
product in the case of overflow. For a negative
product, the 32 bits placed in register R; are the
low-order part of the product in two’s-
complement notation.

OR
OR Ri,R, [RR]
‘16" Ry Ry,
0 8 12 15
(0] R1,D2(X3,B2) [RX]
‘56" R1 X By Dy
0 8 12 16 20 31
OI D;i(B1).I, [S1]
‘96’ I B1 D1
0 8 16 20 31
ocC Dy(L,B1),D2(B2) [SS]
~/ f ~ /—j
‘D6’ L B1 »]} B Dy
7//I IJ/;‘
0 8 16 20 32 36 47

The OR of the first and second operands is placed in
the first-operand location.

The connective OR is applied to the operands bit by
bit. A bit position in the result is set to one if the
corresponding bit position in one or both operands
contains a one; otherwise, the result bit is set to zero.

Chapter 7. General Instructions 7-27

For OC, each operand is processed left to right.
When the operands overlap, the result is obtained as
if the operands were processed one byte at a time and
each result byte were stored immediately after the
necessary operand byte is fetched.

For OI, the first operand is only one byte in length,
and only one byte is stored.

Resulting Condition Code:
0 Result is zero

1 Result is not zero

2 -

3 -

Program Exceptions: .

Access (fetch, operand 2, O and OC; fetch and store,
operand 1, OI and OC)

Programming Notes

1. Examples of the use of the OR instructions are
given in Appendix A.

2. The instruction OR may be used to set a bit to
one.

3. Accesses to the first operand of OI and OC
consist in fetching a first-operand byte from
storage and subsequently storing the updated
value. These fetch and store accesses to a
particular byte do not necessarily occur one
immediately after the other. Thus, the instruction
OR cannot be safely used to update a location in
storage if the possibility exists that another CPU
or a channel may also be updating the location.
An example of this effect is shown in the section
"Multiprocessing Examples," in Appendix A.

PACK
PACK Diy(L4,B;),D2(L2,B2) » [Ss] .,
- 7/ 7/
‘F2° L1 Ly B4 D1 | By Dy
~ /-~ : ~/ f—
0 8 12 16 20 32 36 47

The format of the second operand is changed from
zoned to packed, and the result is placed in the first-
operand location. The zoned and packed formats are
described in Chapter 8, "'Decimal Instructions."

The second operand is treated as having the zoned
format. All zones are ignored, except the zone in the
rightmost byte, which is treated as a sign. The sign is
placed in the rightmost four bits of the rightmost
byte, and the digits are placed adjacent to the sign

7-28 IBM 4300 Processors Principles of Operation

and to each other in the remainder of the result field.
The sign and digits are moved unchanged to the first
operand and are not checked for valid codes.

The result is obtained as if the operands were
processed right to left. When necessary, the second
operand is considered to be extended on the left with
zeros. If the first operand is too short to contain all
digits of the second operand, the remaining leftmost
portion of the second operand is ignored. Access
exceptions for the unused portion of the second
operand may or may not be indicated.

When the operands overlap, the result is obtained as

. if each result byte were stored immediately after the

necessary operand bytes are fetched. Two second-
operand bytes are needed for each result byte, except
for the rightmost byte of the result field, which
requires only the rightmost second-operand byte.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; store, operand 1)

Programming Notes

1. An example of the use of PACK is given in
Appendix A.

2. The PACK instruction may be used to
interchange the two hexadecimal digits in one
byte by specifying a zero in the L; and L, fields
and the same address for both operands.

3. To remove the zones of all bytes of a field,
including the rightmost byte, both operands must
be extended on the right with a dummy byte,
which subsequently is ignored in the result field.

SET PROGRAM MASK

SPM R; [RR]
‘04’ R; /

1] 8 12 15

The contents of the general register specified by the
R, field are used to set the condition code and the
program mask of the current PSW. Bits 12-15 of the
instruction are ignored.

Bits 2 and 3 of the register specified by the R; field
replace the condition code, and bits 4-7 replace

the program mask. Bits 0, 1, and 8-31 of the register
specified by the R, field are ignored.

Resulting Condition Code:

0 Bit 2 is zero, and bit 3 is zero
1 Bit 2 is zero, and bit 3 is one
2 Bit 2 is one, and bit 3 is zero
3 Bit 2 is one, and bit 3 is one

Program Exceptions:
None.

Programming Notes

1. Bits 2-7 of the general register may have been
loaded from the PSW by BRANCH AND LINK.

2. The instruction permits setting of the condition
code and the mask bits in either the problem or
supervisor state.

3. The program should take into consideration that
the setting of the program mask can have a
significant effect on subsequent execution of the
program. Not only do the four mask bits control
whether the corresponding interruptions occur,
but the exponent-underflow and significance
masks also determine the result which is obtained.

SHIFT LEFT DOUBLE
SLDA R;,Dy(B)) [RS]
'8F R1 / By D>
0 8 12 16 20 31

The double-length numeric part of the first operand is
shifted left the number of bits specified by the
second-operand address. Bits 12-15 of the
instruction are ignored.

The R; field of the instruction specifies an even-odd
pair of general registers and must designate an even-
numbered register. When R, is odd, a specification
exception is recognized.

The second-operand address is not used to address
data; its low-order six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

The first operand is treated as a 64-bit signed
binary integer. The sign position of the even register
remains unchanged. The leftmost position of the odd
register contains a numeric bit, which participates in

_the shift in the same manner as the other numeric

bits. Zeros are supplied to the vacated register
positions on the right.

If one or more bits unlike the sign bit are shifted
out of bit position 1 of the even register, an overflow
occurs. The overflow causes a program interruption
when the fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:

Fixed-Point Overflow
Specification

Programming Notes

1. An example of the use of SHIFT LEFT
DOUBLE is given in Appendix A.

2. The eight shift instructions provide the following
three pairs of alternatives: left or right, single or
double, and signed or logical. The signed shifts
differ from the logical shifts in that, in the signed
shifts, overflow is recognized, the condition code
is set, and the leftmost bit participates as a sign.

3. A zero shift amount in the two signed double-
shift operations provides a double-length sign and
magnitude test.

4. The base register participating in the generation
of the second-operand address permits indirect
specification of the shift amount. A zero in the
B, field indicates the absence of indirect shift
specification.

SHIFT LEFT DOUBLE LOGICAL

SLDL R1,D2(B2) [RS]
‘8D’ Ry / B, D,
7
1] 8 12 16 20 31

The double-length first operand is shifted left the
number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.

The R, field of the instruction specifies an even-odd
pair of general registers and must designate an even-
numbered register. When R; is odd, a specification
exception is recognized.

Chapter 7. General Instructions 7-29

The second-operand address is not used to address
data; its low-order six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

All 64 bits of the first operand participate in the
shift. Bits shifted out of bit position O of the even-
numbered register are not inspected and are lost.
Zeros are supplied to the vacated register positions on
the right.

Condition Code: The code remains unchanged.

Program Exceptions:

Specification
SHIFT LEFT SINGLE
SLA R1,D2(B2) [RS]
'8B’ Ry // B, D2
0 ’ 8 12 16 20 31

The numeric part of the first operand is shifted left
the number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.

The second-operand address is not used to address
data; its low-order six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

‘The first operand is treated as a 32-bit signed
birary integer. The sign of the first operand remains
unchanged. All 31 numeric bits of the operand
participate in the left shift. Zeros are supplied to the
vacated register positions on the right.

If one or more bits unlike the sign bit are shifted
out of bit position 1, an overflow occurs. The
overflow causes a program interruption when the

. fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow

7-30 IBM 4300 Processors Principles of Operation

Programming Notes

1. An example of the use of SHIFT LEFT SINGLE
is given in Appendix A.

2. For numbers with an absolute value of less than
230, a left shift of one bit position is equivalent to
multiplying the number by two.

3. Shift amounts from 31 to 63 cause the entire
numeric part to be shifted out of the register,
leaving a result of the maximum negative number
or zero, depending on whether or not the initial
contents were negative.

SHIFT LEFT SINGLE LOGICAL

SLL R1,D2(B2) [RS]

‘89" R1 :7) D,

7.

o 8 12 16 20 31

The first operand is shifted left the number of bits
specified by the second-operand address. Bits 12-15
of the instruction are ignored.

The second-operand address is not used to address
data; its low-order six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

All 32 bits of the first operand participate in the
shift. Bits shifted out of bit position O are not
inspected and are lost. Zeros are supplied to the
vacated register positions on the right.

-Condition Code: The code remains unchanged.

Program Exceptions:

None.
SHIFT RIGHT DOUBLE
SRDA Ry,Dy(By) [RS]
‘8E’ R1 ‘ By Do,
1] 8 12 16 20 31

The double-length numeric part of the first operand is
shifted right the number of places specified by the
second-operand address. Bits 12-15 of the
instruction are ignored.

The R; field of the instruction specifies an even-odd
pair of general registers and must designate an

even-numbered register. When Ry is odd, a
specification exception is recognized.

The second-operand address is not used to address
data; its low-order six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

The first operand is treated as a 64-bit signed
binary integer. The sign position of the even register
remains unchanged. The leftmost position of the odd
register contains a numeric bit, which participates in
the shift in the same manner as the other numeric
bits. Bits shifted out of bit position 31 of the odd-
numbered register are not inspected and are lost.

Bits equal to the sign are supplied to the vacated
register positions on the left.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 _

Program Exceptions:
Specification

SHIFT RIGHT DOUBLE LOGICAL

SRDL R1,D2(B>) [RS]

‘8C’ Ry / B, D,

0 8 12 16 20 31

The double-length first operand is shifted right the
number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.

The R, field of the instruction specifies an even-odd
pair of general registers and must designate an even-
numbered register. When R; is odd, a specification
exception is recognized.

The second-operand address is not used to address
data; its low-order six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored. .

All 64 bits of the first operand participate in the
shift. Bits shifted out of bit position 31 of the odd-
numbered register are not inspected and are lost.
Zeros are supplied to the vacated register positions on
the left.

Condition Code: The code remains unchanged.

Program Exceptions:
Specification

SHIFT RIGHT SINGLE

SRA R1,D2(B>) [RS]
‘8A’ R1 //A B, Dy
0 8 12 16 20 31

The numeric part of the first operand is shifted right
the number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.

The second-operand address is not used to address
data; its low-order six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

The first operand is treated as a 32-bit signed
binary integer. The sign of the first operand remains
unchanged. All 31 numeric bits of the operand
participate in the right shift. Bits shifted out of bit
position 31 are not inspected and are lost. Bits equal
to the sign are supplied to the vacated register
positions on the left.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 -

Program Exceptions:
None.

Programming Notes

1. A right shift of one bit position is equivalent to
division by 2 with rounding downward. When an
even number is shifted right one position, the
result is equivalent to dividing the number by 2.
When an odd number is shifted right one
position, the result is equivalent to dividing the
next lower number by 2. For example, +5
shifted right by one bit position yields +2,
whereas —35 yields —3.

2. Shift amounts from 31 to 63 cause the entire
numeric part to be shifted out of the register,
leaving a result of —1 or zero, depending on
whether or not the initial contents were negative.

Chapter 7. General Instructions 7-31

SHIFT RIGHT SINGLE LOGICAL

SRL R;,D2(B,) [RS]

‘88° R; / By D,

0 8 12 16 20 31

The first operand is shifted right the number of bits
specified by the second-operand address. Bits 12-15
of the instruction are ignored.

The second-operand address is not used to address
data; its low-order six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

All 32 bits of the first operand participate in the
shift. Bits shifted out of bit position 31 are not
inspected and are lost. Zeros are supplied to the
vacated register positions on the left.

Condition Code: The code remains unchanged.

Program Exceptions:

None.
STORE
ST R1,D2(X2,B2) [RX]
‘50" R1 X2 B, D>
(1] 8 12 16 20 31

The first operand is stored at the second-operand
location.

The 32 bits in the general register are placed
unchanged at the second-operand location.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

STORE CHARACTER

STC R1,D2(X5,B>) [RX]
‘42’ R1 Xo By D>
0 8 12 16 20 31

7-32 IBM 4300 Processors Principles of Operation

Bits 24-31 of the general register designated by the
R field are placed unchanged at the second-operand
location. The second operand is one byte in length.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (store, operand 2)

STORE CHARACTERS UNDER MASK

STCM Ry,M;3,D2(By) [RS]
‘BE’ Rq M3 B, D,
0 8 12 16 20 31

Bytes selected from the first operand under control of
a mask are placed in contiguous byte locations
beginning at the second-operand address.

The contents of the M; field are used as a mask.
These four bits, left to right, correspond one for one
with the four bytes, left to right, of the general
register designated by the Ry field. The bytes
corresponding to ones in the mask are placed in the
same order in successive and contiguous storage
locations beginning at the second-operand address.
When the mask is not zero, the length of the second
operand is equal to the number of ones in the mask.
The contents of the general register remain)
unchanged.

When the mask is not zero, exceptions associated
with storage-operand accesses are recognized only for
the number of bytes specified by the mask.

When the mask is zero, the single byte designated
by the second-operand address remains unchanged,
and no access exceptions are recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Programming Notes

1. An example of the use of STORE
CHARACTERS UNDER MASK is given in
Appendix A.

2. STCM with a mask of 0111 may be used to store
a three-byte address, for example, in modifying
the address in a CCW.

3. STCM with a mask of 1111, 0011, or 0001

performs the same function as STORE (ST),
STORE HALFWORD (STH), or STORE
CHARACTER (STC), respectively. However, on
most models, the performance of STCM will be
slower.

STORE CLOCK

STCK Dy(By) [S]

*B205° B, D>

0 16 20 31

The current value of the time-of-day clock is stored
at the eight-byte field designated by the second-
operand address, provided the clock is in the set or
not-set state.

Zeros are stored for the rightmost bit positions that
are not provided by the clock.

Zeros are stored at the operand location when the
clock is in the error state or in the not-operational
state. ;

The quality of the clock value stored by the
instruction is indicated by the resultant condition-
code setting.

A serialization function is performed before the
value of the clock is fetched and again after the value
is placed in storage. CPU operation is delayed until
all previous accesses by this CPU to storage have
been completed, as observed by channels and other
CPUs, and then the value of the clock is fetched. No
subsequent instructions or their operands are fetched
by this CPU until the clock value has been placed in
storage, as observed by channels and CPUs.

Resulting Condition Code:

0 Clock in set state

1 Clock in not-set state

2 Clock in error state

3 Clock in not-operational state

Program Exceptions:
Access (store, operand 2)

Programming Notes

1. Bit position 31 of the clock is incremented every
1.048576 seconds; hence, for timing applications
involving human responses, the high-order clock
word may provide sufficient resolution.

2. Condition code 0 normally indicates that the
clock has been set by the control program.
Accordingly, the value may be used in elapsed-
time measurements and as a valid time-of-day
and calendar indication. Condition code 1
indicates that the clock value is the elapsed time
since the power for the clock was turned on. In
this case the value may be used in elapsed-time
measurements but is not a valid time-of-day
indication. Condition codes 2 and 3 mean that
the value provided by STORE CLOCK cannot be
used for time measurement or indication.

STORE HALFWORD

STH R1,D,(X2,B2) [RX]
‘40’ Rq X B> D
0 8 12 16 20 31

Bits 16-31 of the general register designated by the
R; field are placed unchanged at the second-operand
location. The second operand is two bytes in length.
Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

STORE MULTIPLE

STM R1,R3,D2(B>) [RS]
‘90’ R1 R3 B> D,
0 8 12 16 20 31

The contents of the set of general registers starting
with the register specified by Ry and ending with the
register specified by Rj are placed in the storage area
beginning at the location designated by the second-
operand address and continuing through as many
locations as needed. '

The general registers are stored in the ascending
order of register numbers, starting with the register

Chapter 7. General Instructions 7-33

specified by Ry and continuing up to and including
the register specified by R3, with register 0 following
register 15.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Programming Note
An example of the use of STORE MULTIPLE is
given in Appendix A.

SUBTRACT
SR Ri,R; [RR]
18 Rl | R
0 8 12 15
S R1,D2(X2,B2) [RX]
‘5B* R1 X2 B> D,
0 8 12 16 20 31

The second operand is subtracted from the first
operand, and the difference is placed in the first-
operand location. The operands and the difference
are treated as 32-bit signed binary integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Difference is zero

1 Difference is less than zero

2 Difference is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2 of S only)
Fixed-Point Overflow

7-34 IBM 4300 Processors Principles of Operation

Programming Notes

1. When, in the RR format, the Ry and R, fields
designate the same register, subtracting is
equivalent to clearing the register.

2. Subtracting a maximum negative number from
another maximum negative number gives a zero
result and no overflow.

SUBTRACT HALFWORD
SH R1,D2(X2,B2) [RX]
‘4B’ Rt | X2 | B2 D2
0 8 12 16 20 31

The second operand is subtracted from the first
operand, and the difference is placed in the first-
operand location. The second operand is two bytes
in length and is treated as a 16-bit signed binary
integer. The first operand and the difference are
treated as 32-bit signed binary integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Difference is zero

1 Difference is less than zero

2 Difference is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2)
Fixed-Point Overflow

SUBTRACT LOGICAL
SLR Ry,R; [RR]
‘1F" R; Ry
0 8 12 15
SL R1,D2(X2,B5) [RX]
‘BF R1 X2 B, D,
0 8 12 16 20 31

The second operand is subtracted from the first
operand, and the difference is placed in the first-
operand location. The operands and the difference
are treated as 32-bit unsigned binary integers.

Resulting Condition Code:

0o -

1 Difference is not zero, with no carry
2 Difference is zero, with carry

3 Difference is not zero, with carry

Program Exceptions:
Access (fetch, operand 2 of SL only)

Programming Notes

1. Logical subtraction is performed by adding the
one’s complement of the second operand and a
low-order one to the first operand. The use of
the one’s complement and the low-order one
instead of the two’s complement of the second
operand results in a carry when subtracting zero.

2. SUBTRACT LOGICAL differs from
SUBTRACT only in the meaning of the condition
code and in the absence of the interruption for
overflow.

3. A zero difference is always accompanied by a
carry out of the high-order bit position.

4. The condition-code setting for SUBTRACT
LOGICAL can also be interpreted as indicating
the presence and absence of a borrow, as follows:

1 Difference is not zero, with borrow
2 Difference is zero, with no borrow
3 Difference is not zero, with no borrow

SUPERVISOR CALL

svcC I [RR]

"OA’ 1

0 8 15

The instruction causes a supervisor-call interruption,
with the I field of the instruction providing the
interruption code.

Bits 8-15 of the instruction, with eight high-order
zeros appended, are placed in the supervisor-call
interruption code that is stored in the course of the
interruption. The old PSW is stored at location 32,
and a new PSW is obtained from location 96. The

instruction is valid in both the problem and supervisor
states.

A serialization function is performed. CPU
operation is delayed until all previous storage accesses
by this CPU to storage have been completed, as
observed by channels and other CPUs. No
subsequent instructions or their operands are accessed
by this CPU until the execution of this instruction is
completed.

Condition Code: The code remains unchanged and
is saved as part of the old PSW. A new condition
code is loaded as part of the supervisor-call
interruption.

Program Exceptions:
None.

TEST AND SET

TS D»(B3) [s]
0 8 16 20 31

The leftmost bit (bit position 0) of the byte located
at the second-operand address is used to set the

~ condition code, and then the byte is set to all ones.

Bits 8-15 of the instruction are ignored.

,The byte in storage is set to all ones as it is fetched
for the testing of bit position 0. No access by
another CPU to this location is permitted between
the moment of fetching and the moment of storing all
ones. :

A serialization function is performed before the
byte is fetched and again after the storing of all ones.
CPU operation is delayed until all previous accesses
by this CPU to storage have been completed, as
observed by channels and other CPUs, and then the
byte is fetched. No subsequent instructions or their
operands are accessed by this CPU until the all-ones
value has been placed in storage, as observed by

- channels and o;he; CPUs.

Resulting Condition Code:

0 Leftmost bit of byte specified was zero
1 Leftmost bit of byte specified was one
2 -
3 -

Chapter 7. General Instructions 7-35

Program Exceptions:
Access (fetch and store, operand 2)

Programming Notes

1. TEST AND SET may be used for controlled
sharing of a common storage area by more than
one program. To accomplish this, bit position 0
of a byte must be designated as the control bit.
The desired interlock can be achieved by
establishing a program convention in which a
zero in the bit position indicates that the common
area is available but a one means that the area is
being used. Each using program then must
examine this byte by means of TEST AND SET
before making access to the common area. If the
test sets condition code 0, the area is available
for use; if it sets condition code 1, the area
cannot be used. Because TEST AND SET
permits no other CPU access to the test byte
between the moment of fetching (for testing) and
the moment of storing all ones (setting), the
possibility is eliminated of a second program
testing the byte before the first program is able to
set it.

2. It should be noted that TEST AND SET does not
interlock against storage accesses by channels.

TEST UNDER MASK

™ D1(B1),L [S1]

‘91’ Iy B D1

0 8 16 20 31

A mask is used to select bits of the first operand, and
the result is indicated in the condition code.

The byte of immediate data, I, is used as an eight-
bit mask. The bits of the mask are made to
correspond one for one with the bits of the byte in
storage designated by the first-operand address.

A mask bit of one indicates that the storage bit is to
be tested. When the mask bit is zero, the storage bit
is ignored. When all storage bits thus selected are
zero, condition code 0 is set. Condition code O is
also set when the mask is all zeros. When the
selected bits are all ones, condition code 3 is set;
otherwise, the code is set to 1.

Access exceptions associated with the storage
operand are recognized for one byte, even when the
mask is all zeros.

7-36 IBM 4300 Processors Principles of Operation

Resulting Condition Code:

0 Selected bits all zeros; or the mask is all zeros
1 Selected bits mixed zeros and ones

27 -

3 Selected bits all ones

Program Exceptions:
Access (fetch, operand 1)

Programming Note

An example of the use of TEST UNDER MASK is
given in Appendix A.

TRANSLATE
TR D1(L,B1),D2(B3) [SS]
7/ L ///’
‘DC’ L Bq Di| B> Dy
7]// N 7I/L
0 ‘8 16 20 32 36 47

The bytes of the first operand are used as eight-bit
arguments to reference a list designated by the
second-operand address. Each function byte selected
from the list replaces the corresponding argument in
the first operand.

The L field designates the length of only the first
operand.

The bytes of the first operand are selected one by
one for translation, proceeding left to right. Each
argument byte is added to the initial second-operand
address. The addition is performed following the
rules for address arithmetic, with the argument byte
treated as an eight-bit unsigned binary integer and
extended with high-order zeros. The sum is used as
the address of the function byte, which then replaces
the original argument byte.

The operation proceeds until the first-operand field
is exhausted. The list is not altered unless an overlap
occurs.

When the operands overlap, the result is obtained as
if each result byte were stored immediately after the
corresponding function byte is fetched.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2; fetch and store, operand 1)

Programming Notes

1. An example of the use of TRANSLATE is given
in Appendix A.

2. The instruction TRANSLATE may be used to
convert data from one code to another code.

3. The instruction may also be used to rearrange
data. This may be accomplished by placing a
pattern in the destination area, by designating the
pattern as the first operand of TRANSLATE, and
by designating the data that is to be rearranged
as the second operand. Each byte of the pattern
contains an eight-bit number specifying the byte
destined for this position. Thus, when the
instruction is executed, the pattern selects the
bytes of the second operand in the desired order.

4. The fetch and subsequent store accesses to a
particular byte in the first-operand field do not
necessarily occur one immediately after the other.

5. Because each eight-bit argument byte is added to
the initial second-operand address to obtain the
address of a function byte, the list may contain
256 bytes. In cases where it is known that not all
eight-bit argument values will occur, it is possible
to reduce the size of the list.

6. Because of pretesting, significant performance
degradation is possible when the second-operand
address of TRANSLATE designates a location
less than 256 bytes to the left of a 2,048-byte
boundary.

TRANSIATE AND TEST

TRT D1(L,B1),D2(B>) [ss]

xZa 7
‘DD’ L By | D1 | B D
/L
7/ . 7/
0 8 16 20 32 36 47

The bytes of the first operand are used as eight-bit
arguments to select function bytes from a list
designated by the second-operand address. The first
nonzero function byte is inserted in general register
2, and the related argument address in general
register 1. '

The L field designates the length of only the first
operand.

The bytes of the first operand are selected one by
one for translation, proceeding from left to right.
The first operand remains unchanged in storage.
Fetching of the function byte from the list is
performed as in TRANSLATE. The function byte
retrieved from the list is inspected for a value of zero.

When the function byte is zero, the operation
proceeds with the next byte of the first operand.
When the first-operand field is exhausted before a
nonzero function byte is encountered, the operation
is completed by setting condition code 0. The
contents of general registers 1 and 2 remain
unchanged.

When the function byte is nonzero, the related
argument address is inserted in the rightmost 24 bits
of general register 1. This address points to the
argument byte last translated. The function byte is
inserted in the low-order eight bits of general
register 2. Bits 0-7 of register 1 and bits 0-23 of
register 2 remain unchanged.

When the function byte is nonzero, either condition
code 1 or 2 is set, depending on whether the
argument byte is the rightmost byte of the first
operand. Condition code 1 is set if one or more
argument bytes remain to be translated. Condition
code 2 is set if no more argument bytes remain.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required. Access exceptions are not recognized for
those bytes in the first operand which are to the right
of the first byte for which a nonzero function byte is
obtained. '

Resulting Condition Code:

0 All function bytes zero

1 Nonzero function byte; first-operand field not
exhausted

2 Nonzero function byte; first-operand field
exhausted '

3

Program Exceptions:
Access (fetch, operands 1 and 2)

Programming Notes

1. An example of the use of TRANSLATE AND
TEST is given in Appendix A.

2. The instruction TRANSLATE AND TEST may
be used to scan the first operand for characters
with special meaning. The second operand, or
list, is set up with all-zero function bytes for
those characters to be skipped over and with
nonzero function bytes for the characters to be
detected.

Chapter 7. General Instructions 7-37

UNPACK

UNPK Di(L1,B1),D2(L2,B2) [SS])
‘F3’ L | |8 |bilB D27

0 8 12 16 20 32 36 7 47

The format of the second operand is changed from
packed to zoned, and the result is placed in the first-
operand location. The packed and zoned formats are
described in Chapter 8, ''Decimal Instructions."

The second operand is treated as having the packed
format. Its digits and sign are placed unchanged in
the first-operand location, using the zoned format.
Zones with coding of 1111 are supplied for all bytes
except the low-order byte, which receives the sign of
the second operand. The sign and digits are not
checked for valid codes.

The result is obtained as if the operands were
processed right to left. When necessary, the second
operand is considered to be extended on the left with
zeros. If the first-operand field is too short to
contain all digits of the second operand, the
remaining leftmost portion of the second operand is
ignored. Access exceptions for the unused portion of
the second operand may or may not be indicated.

When the operands overlap, the result is obtained as
if the operands were processed one byte at a time and

7-38 IBM 4300 Processors Principles of Operation

each result byte were stored immediately after the
necessary operand byte is fetched. The entire
rightmost second-operand byte is used in forming the
first result byte. For the remainder of the field,
information for two result bytes is obtained from a
single second-operand byte, and the leftmost four bits
of the byte remain available and are not refetched.
Thus, two result bytes are stored immediately after
fetching a single operand byte.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2; store, operand 1)

Programming Notes

1. An example of the use of UNPACK is given in
Appendix A.

2. A field that is to be unpacked can be destroyed
by improper overlapping. To save storage space
for unpacking by overlapping the operands, the
rightmost position of the first operand must be to
the right of the rightmost position of the second
operand by the number of bytes in the second
operand minus 2. If only one or two bytes are to
be unpacked, the low-order positions of the two
operands may coincide.

Chapter 8. Decimal Instructions

Contents

Data Format 8-1

Zoned Format 8-1
Packed Format 8-1
Number Representation 8-2
Instructions 8-2

ADD DECIMAL 83
COMPARE DECIMAL 84
DIVIDE DECIMAL 84

Decimal instructions provide arithmetic, shifting, and

editing operations on decimal data.

Data Format

Decimal operands reside in storage and may be in
either the zoned or packed format.

Zoned Format

z N z N Zz N Z/S| N

In the zoned format, the rightmost four bits of a byte
are called the numeric (N) and normally comprise a
code representing a decimal digit. The leftmost four
bits of a byte are called the zone (Z), except for the
rightmost byte of the field, where these bits may be
treated either as a zone or as a sign (S) code.

Packed Format

Sy
7/

In the packed format, each byte contains two decimal
digits (D), except for the rightmost byte, which
contains a sign to the right of a decimal digit. The
digit and sign codes each comprise four bits.
Arithmetic and shifting are performed with
operands in the packed format and generate results in
the packed format. Decimal numbers in the zoned
format are represented as part of an alphameric
character set, which includes also alphabetic and

EDIT 8-5

EDIT AND MARK 8-8

MULTIPLY DECIMAL 8-8 .
SHIFT AND ROUND DECIMAL 8-8
SUBTRACT DECIMAL 8-10

ZERO AND ADD 8-10

special characters. The zoned format is usually
produced by input devices, such as keyboards, and is
usually used for displaying or printing decimal data
on output devices.

The instructions MOVE ZONES and MOVE
NUMERICS are provided for operating on data in
the zoned format. Two instructions are provided for
converting data between the zoned and packed
formats: the PACK instruction transforms zoned
data into packed data, and UNPACK performs the
reverse transformation. Two instructions are
provided for conversion between the packed-decimal
and binary formats. The CONVERT TO BINARY
instruction converts packed decimal to binary, and
CONVERT TO DECIMAL converts binary to packed
decimal. These six instructions are not considered to
be decimal instructions and are described in
Chapter 7, "General Instructions." The instructions
EDIT and EDIT AND MARK may also be used to
change data from the packed to the zoned format.

Decimal operands occupy fields in storage that start
on a byte boundary. For all decimal instructions
other than EDIT and EDIT AND MARK, the
operands are in the packed format and are composed
of one to sixteen 8-bit bytes. For the two editing
instructions, operands of up to 256 bytes in length
can be designated.

For the decimal-arithmetic instructions, the lengths
of the two operands specified in the instruction need
not be the same. If necessary, the operands are
considered to be extended with zeros to the left of
the high-order digit. Results, however, never exceed
the first-operand field length as specified in the
instruction. When a carry or high-order significant
digits are lost because the first-operand field is too
small, a program interruption for decimal overflow

Chapter 8. Decimal Instructions 8-1

occurs, provided the decimal-overflow mask bit is
one. For the two editing instructions, only one
operand (the pattern) has an explicitly specified
length; the other operand (the source) is considered
to have as many digits as necessary for the
completion of the operation.

The operand fields in decimal instructions, other
than EDIT and EDIT AND MARK, should not over-
lap at all or should have coincident rightmost bytes.
In ZERO AND ADD, the field may also overlap in
such a manner that the rightmost byte of the first
operand is to the right of the rightmost byte of the
second operand. For these cases of proper overlap,
the result is obtained as if operands were processed
right to left. Because the code configurations for
digits and signs are verified during the performance
of the arithmetic, improperly overlapping fields are
recognized as data exceptions. In editing,
overlapping operands yield unpredictable results.

During the execution of a decimal instruction, all
bytes of the operands are not necessarily accessed
concurrently, and the fetch and store accesses to a
single location do not necessarily occur one
immediately after the other. Furthermore, for
decimal instructions, intermediate values may be
placed in the result field that may differ from the
original operand and final result values. Thus, in a
multiprocessing system, an instruction such as ADD
DECIMAL cannot be safely used to update a shared
storage location when the possibility exists that
another CPU may also be updating that location.

Number Representation

Packed decimal numbers are represented as right-
aligned true integers with a plus or minus sign.

The digits 0-9 have the binary encoding 0000-1001.
The codes 1010-1111 are invalid as digit codes and
are interpreted as sign codes, with 1010, 1100, 1110,
and 1111 recognized as plus and with 1011 and 1101

8-2 IBM 4300 Processors Principles of Operation

recognized as minus. The codes 0000-1001 are
invalid as sign codes. A data exception is recognized
when an invalid code is detected. The operation is
terminated, except when the sign position contains an
invalid sign code, in which case the operation is
suppressed.

Although alternate encoding of the sign in an
operand is accepted, the preferred sign codes are
always generated for the results of decimal arithmetic
and shifting operations (for the first-operand field of
ADD DECIMAL, DIVIDE DECIMAL, MULTIPLY
DECIMAL, SHIFT AND ROUND DECIMAL,
SUBTRACT DECIMAL, and ZERO AND ADD).
These codes are plus, 1100, and minus, 1101. They
are provided even when the operand value is
otherwise unchanged, such as when adding zero to a
number or when shifting the field by a zero amount.
The editing instruction, as well as UNPACK,
generates the zone code 1111.

Instructions

The decimal instructions and their mnemonics,
formats, and operation codes are listed in the figure
"Summary of Decimal Instructions." The figure also
indicates when the condition code is set and the
exceptional conditions in operand designations, data,
or results that cause a program interruption.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic operand
designation for the assembler language are shown
with each instruction. For ADD DECIMAL,

for example, AP is the mnemonic and

D (L 1,B1),D L2 B2 the operand designation.

Name Mnemonic Characteristics Code
ADD DECIMAL AP SS [} A D DF ST FA
COMPARE DECIMAL CcP SS (od A D F9
DIVIDE DECIMAL DP SS A SP D DK ST FD
EDIT ED 8§S C A D ST DE
EDIT AND MARK EDMK SS C A D R ST DF
MULTIPLY DECIMAL MP SS A SP D ST FC
SHIFT AND ROUND DECIMAL SRP SS C A D DF ST FO
SUBTRACT DECIMAL SP SS C A D DF ST FB
ZERO AND ADD ZAP SS Cc A D DF ST F8
Explanation:
A Access exceptions
(o] Condition code is set
D Data exception

DF Decimal-overflow exception

DK Decimal-divide exception

R PER general-register-alteration event
sP Specification exception

SS SS instruction format

ST PER storage-alteration event

Summary of Decimal Instructions

Programming Note

The moving and logical~éomparing instructions may
also be used in decimal calculations.

ADD DECIMAL

AP D1(L1,B1),D2(L2,B>) [Ss]
Illl 7’/"""
‘FA’ L Ly Bq D; | By D, ‘|
0 8 12 16 20 32 36 47

The second operand is added to the first operand,
and the sum is placed in the first-operand location.

Addition is algebraic, taking into account the signs
and all digits of both operands. All sign and digit
codes are checked for validity. If necessary, high-
order zeros are supplied for either operand. When
‘the first-operand field is too short to contain all
significant digits of the sum, a decimal overflow
occurs, and a program interruption is taken, provided
that the decimal-overflow mask bit is one.

Overflow has two possible causes. The first occurs
when a carry out of the high-order digit position of
the result field is lost. The second occurs when the
second-operand field is longer than the first-operand
field and significant result digits are lost. The field
lengths alone are not an indication of overflow.

The first-operand and second-operand fields may
overlap when their low-order bytes coincide;
therefore, it is possible to add a number to itself.

The sign of the sum is determined by the rules of
algebra. When the operation is completed without an
overflow, a zero sum has a positive sign, but when
high-order digits are lost because of an overflow, a
zero sum may be either positive or negative, as
determined by what the sign of ‘the correct sum would
have been.

Resulting Condition Code:

0 Sum is zero

1 Suom is less than zero

2 Sum is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2; fetch and store, operand 1)
Data
Decimal Overflow

Chapter 8. Decimal Instructions 8-3

COMPARE DECIMAL

CP D1(L1,B1),D2(12,B2) . [SS]
'F9’ Ly Ly B1 Dy { By D,
A y)
[1) 8 12 16 20 32 36 47

The first operand is compared with the second, and
the condition code indicates the comparison resuit.

Comparison is algebraic, taking into account the
sign and all digits of both operands. All sign and
digit codes are checked for validity, and any valid
plus or minus sign is considered equal to any other
valid plus or minus sign, respectively. If the fields
are unequal in length, the shorter is extended with
high-order zeros. A field with a zero value and
positive sign is considered equal to a field with a zero
value but negative sign. Neither operand is changed
as a result of the operation. Overflow cannot occur
in this operation.

The first-operand and second-operand fields may
overlap when their low-order bytes coincide. It is
possible, therefore, to compare a number with itself.

Resulting Condition Code:

0 Operands equal

1 First operand is low
2 First operand is high
3 _ .

Program Exceptions:

Access (fetch, operands 1 and 2)
Data

DIVIDE DECIMAL

DP Di(L1,B1),D2(L2,B,)) [SS]
7 7.
‘FD’ Ly Ly B4 D; | B2 D,
’,ll "III
0 8 12 16 20 32 36 47

The dividend (the first operand) is divided by the
divisor (the second operand) and replaced by the
quotient and remainder.

The quotient field is placed leftmost in the first-
operand field. The remainder field is placed
rightmost in the first-operand field and has a length
equal to the divisor length. Together, the quotient
and remainder occupy the entire dividend field;
therefore, the address of the quotient field is the

8-4 IBM 4300 Processors Principles of Operation

address of the first operand. The length of the
yuuilcni fieid in pytes is L.q-Lo, and the length code
for this field is one less (LL1-L>-1). When the
divisor length code is greater than seven (15 digits
and sign) or greater than or equal to the dividend
length code, a specification exception is recognized.
The operation is suppressed, and a program
interruption occurs.

The dividend, divisor, quotient, and remainder are
all signed integers, right-aligned in their fields. All
sign and digit codes of the dividend and divisor are
checked for validity.

The sign of the quotient is determined by the rules
of algebra from dividend and divisor signs. The sign
of the remainder has the same value as the dividend
sign. These rules are true even when the quotient or
remainder is zero.

Overflow cannot occur. If the quotient is too large
to be represented by the number of digits allowed, a
decimal-divide exception is recognized. The
operation is suppressed, and a program interruption
occurs. The divisor and dividend remain unchanged
in their storage locations. The decimal-divide
exception can be indicated only if the digit or digits
used in establishing the exception are valid.

The divisor and dividend fields may overlap only if
their low-order bytes coincide.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2; fetch and store, operand 1)
Data

Decimal Divide

Specification

Programming Neotes

1. The maximum dividend size is 31 digits and sign.
Since the smallest remainder size is one digit and
sign, the maximum quotient size is 29 digits and
sign.

2. The condition for a decimal divide exception can
be determined by a trial subtraction. The
leftmost digit of the divisor field is aligned with
the leftmost-less-one digit of the dividend field.
When the divisor, so aligned, is less than or equal
to the dividend, a divide exception is indicated.

3. A decimal-divide exception occurs if the dividend
does not have at least one leading zero.

EDIT
ED D1(L,B1),D2(B3) [SS]
w/a ~
‘DE’ L B; D1 B> D,
_/Ill Illl
(1] 8 16 20 32 36 47

The format of the source (the second operand) is
changed from packed to zoned, and is modified under
control of the pattern (the first operand). The edited
result replaces the pattern.

Editing includes sign and punctuation control, and
the suppressing and protecting of leading zeros. It
also facilitates programmed blanking of all-zero
fields. Several fields may be edited in one operation,
and numeric information may be combined with text.

The length field applies to the pattern (the first
operand). The pattern may contain any bit
combination.

The length of the source (the second operand) is
determined by the operation according to the
contents of the pattern. Access exceptions are
recognized only for those bytes in the second
operand which are actually required.

The source has the packed format. The leftmost
four bits of a source byte must specify a decimal digit
code (0000-1001); a sign code (1010-1111) is
recognized as a data exception and causes a program
interruption. The rightmost four bits may specify
either a sign or a decimal digit.

The result is obtained as if both operands were
processed left to right one byte at a time.
Overlapping pattern and source fields give
unpredictable results.

During the editing process, each character of the
pattern is affected in one of three ways:

1. It is left unchanged.

2. Tt is replaced by a source digit expanded to zoned
format.

3. It is replaced by the first character in the pattern,
called the fill character.

Which of the three actions takes place is determined
by one or more of the following: the type of the
pattern character, the state of the significance
indicator, and whether the source digit examined is
Zero.

Pattern Characters: There are four types of pattern
characters: digit selector, significance starter, field

separator, and message character. Their coding is as
follows:

Name Code
0010 0000

Digit selector

Significance starter 0010 0001
Field separator 0010 0010
Message character Any other

The detection of either a digit selector or a
significance starter in the pattern causes an
examination to be made of the significance indicator
and of a source digit. As a result, either the
expanded source digit or the fill character, as
appropriate, is selected to replace the pattern
character. Additionally, encountering a digit selector
or a significance starter may cause the significance
indicator to be changed.

The field separator identifies individual fields in a
multiple-field editing operation. It is always replaced
in the result by the fill character, and the significance
indicator is always off after the field separator is
encountered.

Message characters in the pattern are either
replaced by the fill character or remain unchanged in
the result, depending on the state of the significance
indicator. They may thus be used for padding,
punctuation, or text in the significant portion of a
field or for the insertion of sign-dependent symbols.

Fill Character: The fill character is obtained from
the pattern as part of the editing operation. The first
character of the pattern is used as the fill character.
The fill character can have any code and may
concurrently specify a control function. If this
character is a digit selector or significance starter, the
indicated editing action is taken after the code has
been assigned to the fill character.

Source Digits: Each time a digit selector or
significance starter is encountered in the pattern, a
new source digit is examined for placement in the
pattern field. The source digit either is given a zone
and replaces the pattern character or is disregarded.
The source digits are selected one byte at a time,
and a source byte is fetched for inspection only once
during an editing operation. Each source digit is
examined only once for a zero value. The leftmost
four bits of each byte are examined first, and the
rightmost four bits, when they represent a decimal-
digit code, remain available for the next pattern
character that calls for a digit examination. When
the leftmost four bits contain an invalid digit code,
the operation is terminated. At the time the left digit

Chapter 8. Decimal Instructions 8-5

of a source byte is examined, the rightmost four bits
ara chacked far the evictence of a sign code. When a
sign code is encountered in the four rightmost bit
positions, these bits are not treated as a decimal-digit
code, and a new source byte is fetched from storage
for the next pattern character that calls for a source-
digit examination.

When the source digit is stored in the result, its
code is expanded from the packed to the zoned
format by attaching the zone code 1111.

Significance Indicator: The significance indicator, by
its on or off state, indicates the significance or
nonsignificance, respectively, of subsequent source
digits or message characters. Significant source digits
replace their corresponding digit selectors or
significance starters in the result. Significant message
characters remain unchanged in the result.

The significance indicator, by its on or off state,
indicates also the negative or positive value,
respectively, of the source and is used as one factor
in the setting of the condition code.

The indicator is set to the off state, if not already so
set, at the start of the editing operation, after a field.
separator is encountered, or after a source byte is
examined that has a plus code in the rightmost four
bit positions. Any of the codes 1010, 1100, 1110,
and 1111 is considered a plus code.

The indicator is set to the on state, if not already so
set, when a significance starter is encountered whose
source digit is a valid decimal digit, or when a digit
selector is encountered whose source digit is a ’
nonzero decimal digit, and if in both instances the
source byte does not have a plus code in the
rightmost four bit positions.

In all other situations, the indicator is not changed.
A minus sign code has no effect on the significance
indicator.

Result Characters: The field resulting from an
editing operation replaces and is equal in length to
the pattern. It is composed from pattern characters,
fill characters, and zoned source digits.

If the pattern character is a message character and
the significance indicator is on, the message character
remains unchanged in the result. If the pattern
character is a field separator or if the significance
indicator is off when a message character is
encountered in the pattern, the fill character replaces
the pattern character in the result.

If the digit selector or significance starter is
encountered in the pattern with the significance

8-6 IBM 4300 Processors Principles of Operation

indicator off and the source digit zero, the source
digit is considered nonsignificant, and the fill
character replaces the pattern character. If a digit
selector or significance starter is encountered with
either the significance indicator on or with a nonzero
decimal source digit, the source digit is considered
significant, is zoned, and replaces the pattern
character in the result.

Result Condition: All digits examined are tested for
the code 0000. The sign of the last field edited and
whether all source digits in the field contain zeros are
recorded in the condition code at the completion of
the editing operation.

The condition code is made 0 when the last field is
zero, that is, when all source digits examined since
the last field separator are zeros. When the pattern
has no digit selectors or significance starters, the
source is not examined, and the condition code is
made 0. Similarly, the condition code is made 0
when the last character in the pattern is a field
separator or when no digit selector or significance
starter is encountered beyond the last field separator.

When the last field edited is nonzero and the
significance indicator is on, the condition code is
made 1 to indicate a result field less than zero.

When the last field edited is nonzero and the
significance indicator is off, the condition code is
made 2 to indicate a result field is greater than zero.

The figure "Summary of EDIT Functions"
summarizes the functions of the editing operation.
The leftmost four columns list all the significant
combinations of the four conditions that can be
encountered in the execution of an editing operation.
The rightmost two columns list the action taken for
each case—the type of character placed in the result
field and the new setting of the significance
indicator.

Resulting Condition Code:

0 Last field is zero

1 Last field is less than zero

2 Last field is greater than zero
3

Program Exceptions:

Access (fetch, operand 2; fetch and store, operand 1)
Data

Programming Notes

1.

2.

As a rule, the source is shorter than the pattern
because for each source digit a zone and numeric
are inserted in the result.

The total number of digit selectors and
significance starters in the pattern must equal the
number of source digits to be edited.

If the fill character is a blank, if no significance
starter appears in the pattern, and if the source is
all zeros, the editing operation blanks the result
field.

Conditions

of Significance Source Low-Order Source
Pattern Character Indicator Digit Digit Is a Plus Sign
Digit selector Off 0 *
1-9 No
1-9 Yes
On 0-9 No
09 Yes
Significance starter Off 0 No
0 Yes
19 No
1-9 Yes
On 0-9 No
09 Yes
Field separator * ** **
Message character Off ** **
O n * % * %

Previous State

Explanation:
* No effect on result character and new state of significance indicator
** Not applicable because source digit not examined

Summary of EDIT Functions

The resultant condition code indicates whether or
not the last field is all zeros, and, if nonzero,
réflects the state of the significance indicator.
The significance indicator reflects the sign of the
source field only if the last source byte examined
contains a sign code in the low-order digit
position. For multiple-field editing operations,
the condition code reflects the sign and value
only of the field following the last field separator.

Results

State of Significance
Indicator at End of

Result Character Digit Examination

Fill character Off
Source digit On
Source digit Off
Source digit On
Source digit Off
Filt character On
Filt character Off
Source digit On
Source digit Off
Source digit On
Source digit Off
Fill character Off
Fill character Off
Message character On

Chapter 8. Decimal Instructions 8-7

EDIT AND MARK

EDMK Dy(L,B1),D2(B>) [§/S]

7//__ |
‘DF” L B; D1 By D,
. —t e Vg
44 7/
0 8 16 20 32 36 47

The format of the source (the second operand) is
changed from packed to zoned and is modified under
control of the pattern (the first operand).

The address of each first significant result character
is recorded in general register 1. The edited result
replaces the pattern.

The instruction EDIT AND MARK is identical to
EDIT, except for the additional function of inserting
the address of the result character in bit positions
8-31 of general register 1 whenever the result
character is a zoned source digit and the significance
indicator was off before the examination. The use of
general register 1 is implied. The contents of bit
positions 0-7 of the register are not changed.

Resulting Condition Code:

0 Last field is zero

1 Last field is less than zero

2 Last field is greater than zero
3

Program Exceptions:

Access (fetch, operand 2; fetch and store, operand 1)
Data

Programming Notes

1. The instruction EDIT AND MARK facilitates the
programming of floating currency-symbol
insertion. The character address inserted in
general register 1 is one more than the address
where a floating currency-sign would be inserted.
The instruction BRANCH ON COUNT (BCTR),
with zero in the R, field, may be used to reduce
the inserted address by one.

2. The character address is not stored when
significance is forced. To ensure that general
register 1 contains a valid address when
significance is forced, it is necessary to place into
the register beforehand the address of the pattern
character that immediately follows the
significance starter.

8-8 IBM 4300 Processors Principles of Operation

MULTIPLY DECIMAL

MP D1(L1,B1),D2(1L>,B,) D [SS] /
‘FC’ L1 L |B; Zl B, D:

0 8 12 16 21/)% 32 36 ” a7

The product of the multiplier (the second operand)
and the multiplicand (the first operand) replaces the
multiplicand.

The multiplier length is limited to 15 digits and sign
and must be less than the multiplicand length. If the
length code L, is greater than 7, or greater than or
equal to the length code L;, a specification exception
is recognized. The operation is suppressed, and a
program interruption occurs.

The multiplicand must have at least as many bytes
of high-order zeros as the multiplier length in bytes;
otherwise, a data exception is recognized, the
operation is terminated, and a program interruption
occurs. This definition of the multiplicand field
ensures that no product overflow can occur. The
maximum product length is 31 digits. At least one
high-order digit of the product field is zero.

All operands and results are treated as signed
integers, right-aligned in their field. All sign and
digit codes of the multiplier and multiplicand are
checked for validity.

The sign of the product is determined by the rules
of algebra from the multiplier and multiplicand signs,
even if one or both operands are zeros.

The multiplier and product fields may overlap only
if their low-order bytes coincide.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2; fetch and store, operand 1)
Data
Specification

SHIFT AND ROUND DECIMAL

SRP D1(L1,B1),D2(B3),I5 ~ [SS]
| /I/I]l
‘FO’ Ly i3 B1 D1 | By Dy
,I/L 7/
0 8 12 16 20 32 36 47

The first operand is shifted in the direction and for
the number of digit positions specified by the

second-operand address, and, when shifting to the
right is specified, is rounded by the rounding
factor, I.

The second-operand address, specified by the B,
and D, fields, is not used to address data; its low-
order six bits are the shift value, and the remainder of
the address is ignored.

Second-Operand Address

Shift Value

The shift value is a six-bit signed binary integer,
indicating the direction and the number of digit
positions to be shifted. Positive shift values specify
shifting to the left. Negative shift values, which are
represented in two’s complement notation, specify
shifting to the right. The following are examples of
the interpretation of shift values:

Shift Value Amount and Direction

011111 31 digits to the left
000001 One digit to the left
000000 No shift

111111 One digit to the right
100000 32 digits to the right

The L;, By, and D fields are interpreted in the
same manner as in the SS format with two length
fields. The result replaces the first operand and is
not stored outside the field specified by the address
and length.

The first operand is considered to be in the
packed-decimal format. Only its digit portion is
shifted; the sign position does not participate in the
shifting. Zeros are supplied for the vacated digit
positions.

For right shift, the contents of the I3 field, bit
positions 12-15, are used as a rounding factor. The
first operand is rounded by decimally adding the
rounding factor to the leftmost digit to be shifted out
and by propagating the carry, if any, to the left. The
result of this addition is then shifted right. Both the
first operand and the rounding factor are considered
positive quantities for the purpose of this addition.
No overflow results from the propagation of a carry
since all digits resulting from the addition participate
in the shift. Except for validity checking and the

participation in rounding, the digits shifted out of the
low-order digit position are ignored and are lost.

In the absence of overflow, the sign of a zero result
is made positive. Otherwise, the sign of the result is
the same as the original sign, but the code is the
preferred sign code.

A data exception is recognized when the first
operand does not have valid sign and digit codes or
when the rounding factor does not have a valid digit
code. The validity of first-operand codes is checked
even when no shift is specified, and the validity of
the rounding factor is checked even when no addition
for rounding takes place. The operation is .
terminated, except when the sign position contains an
invalid sign code, in which case the operation is
suppressed. V

When one or more significant digits are shifted out
of the high-order digit positions during left shift, a
decimal overflow occurs and results in a program
interruption, provided that the decimal-overflow mask
bit is one. Overflow cannot occur on right shift or
when no shifting is specified.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:

Access (fetch and store, operand 1)
Data
Decimal Overflow

Programming Note

SHIFT AND ROUND can be used for shifting up to
31 digit positions left and up to 32 digit positions
right. This is sufficient to clear all digits of any
decimal field even when rounding in right shift is
specified.

Note that when the B, field is zero, the six-bit shift
value, bits 26-31 of the second-operand address, are
obtained directly from bits 42-47 of the instruction.

Chapter 8. Decimal Instructions 8-9

SUBTRACT DECIMAL

SP D1(L1,B1),D2(L2,B2) o, [SS]
‘FB’ L Lo B1 D; | B2 | Dy
ljll /j/“"—
(1] 8 12 16 20 32 36 47

The second operand is subtracted from the first
operand, and the difference is placed in the first-
operand location.

Subtraction is algebraic, taking into account the
signs and all digits of both operands. The execution
of SUBTRACT DECIMAL is identical to that of
ADD DECIMAL, except that the sign of the second
operand, if negative, is treated as positive, and, if
positive, is treated as negative.

The sign of the difference is determined by the rules
of algebra. When the operation is completed without
an overflow, a zero difference has a positive sign, but
when high-order digits are lost because of an
overflow, a zero difference may be either positive or
negative, as determined by what the sign of the
correct difference would have been.

Resulting Condition Code:

0 Difference is zero

1 Difference is less than zero

2 Difference is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2; fetch and store, operand 1)
Data
Decimal Overflow

Programming Note

The operands of SUBTRACT DECIMAL may
overlap when their low-order bytes coincide, even
when their lengths are unequal. This property may
be used to set to zero an entire field or the low-order
part of a field.

8-10 IBM 4300 Processors Principles of Operation

ZERO AND ADD
ZAP D1(L1,B1),D2(L,,B>) " [SS]

7/~ ~7/
‘F8' L1 Ly B1 D By D,
Jf- —
0 8 12 16 20 32 36 47

The second operand is placed in the first-operand
location.

The operation is equivalent to an addition to zero.
A zero result is positive. When high-order digits are
lost because of overflow, a zero result has the sign of
the second operand.

Only the second operand is checked for valid sign
and digit codes. Extra high-order zeros are supplied
if needed. When the first-operand field is too short
to contain all significant digits of the second operand,
a decimal overflow occurs and results in a program
interruption, provided that the decimal-overflow mask
bit is one.

The first-operand and second-operand fields may
overlap when the rightmost byte of the first-operand
field is coincident with or to the right of the
rightmost byte of the second operand. In this case
the result is obtained as if the operands were
processed right to left.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2; store, operand 1)
Data
Decimal Overflow

Chapter 9. Floating-Point Instructions

Contents

Data Format 9-1

Guard Digit 9-2

Number Representation 9-3

Normalization 9-3

Instructions 9-4
ADD NORMALIZED 9-6
ADD UNNORMALIZED 9-7
COMPARE 9-8

DIVIDE 9-8
HALVE 99
LOAD 9-10

The floating-point instructions are used to perform
calculations on operands with a wide range of
magnitude and to yield results scaled to preserve
precision.

A floating-point number consists of a signed
exponent, represented by the characteristic, and a
signed fraction. The quantity expressed by this
number is the product of the fraction and the number
16 raised to the power of the exponent. The
exponent is expressed in excess-64 binary notation
(see the section "Number Representation' in this
chapter); the fraction is expressed as a hexadecimal
number having a radix point to the left of the
high-order digit.

To avoid unnecessary storing and loading operations
for results and operands, four floating-point registers
are provided. The floating-point instructions provide
for the loading, rounding, adding, subtracting,
comparing, multiplying, dividing, and storing, as well
as the sign control, of short, long, and extended
operands. Short operands generally provide faster
processing and require less storage than long or
extended operands. On the other hand, long and
extended operands provide greater precision in
computation. Operations may be either register to
register or storage to register.

For addition, subtraction, multiplication, and
division, instructions are provided that generate
normalized results. Normalized results preserve the
highest precision in the operation. For addition and
subtraction, instructions are also provided that
generate unnormalized results. Normalized and
unnormalized operands may be used in any
’ floating-point operation.

LOAD AND TEST 9-10

LOAD COMPLEMENT 9-11
LOAD NEGATIVE 9-11

LOAD POSITIVE 9-11

LOAD ROUNDED 9-12
MULTIPLY 9-12

STORE 9-14

SUBTRACT NORMALIZED 9-14
SUBTRACT UNNORMALIZED 9-15

The condition code is set as a result of all
sign-control, add, subtract, and compare operations.

Data Format

Floating-point data occupies a fixed-length format,
which may be either a four-byte (short) format, an
eight-byte (long) format, or a 16-byte (extended)
format. The short and long formats may be
designated as operands both in main storage and in
the floating-point registers, whereas the extended
formats can be designated only in the floating-point
registers.

The floating-point registers are numbered 0, 2, 4,
and 6. Designation of an odd-numbered register in
the R; or R; field of a floating-point instruction
causes the operation to be suppressed and a program
interruption for specification exception to occur.

Short Floating-Point Number

/ L
7

S |Characteristic 6-Digit Fraction

/L
77

0 1 8 31

Long Floating-Point Number

— L
7/

S [Characteristic 14-Digit Fraction

L
7/

Chapter 9. Floating-Point Instructions 9-1

Extended Floating-Point Number

'I’L

. High-Order Half
S| Characteristic of 28-Digit Fraction
+/#
0 1 8 63
7 _I’l
// Low-Order Half
/ of 28-Digit Fraction
% l/[l
64 72 127

In the short and long formats, the first bit is the
sign bit (S). The subsequent seven bit positions are
occupied by the characteristic. The following field
contains the fraction, which, depending on the
format, consists of six or 14 hexadecimal digits.

Short floating-point numbers occupy only the
leftmost 32 bit positions of a floating-point register.
When a floating-point register is used as the source of
a short floating-point number, the rightmost 32 bit
positions of the register are ignored. When a
floating-point register is used as the destination of a
short floating-point number, the rightmost 32 bit
positions of the register remain unchanged.

An extended floating-point number has a 28-digit
fraction and consists of two long floating-point
numbers in consecutive floating-point registers. Two
pairs of floating-point registers can be used as sources
of extended operands or destinations of extended
results: registers 0, 2 and registers 4, 6. The
designation of any other register pair causes the
operation to be suppressed and a program
interruption for a specification exception to occur.

The two long floating-point numbers comprising an
extended floating-point number are called the
high-order and low-order parts. The high-order part
may be any long floating-point number. If it is
normalized, the extended number is considered
normalized. The characteristic of the high-order part
is the characteristic of the extended number, and the
sign of the high-order part is the sign of the extended
number.

The fraction field of the low-order part contains the
14 low-order hexadecimal digits of the 28-digit
extended fraction. The sign and characteristic of the
low-order part of an extended operand are ignored,
the value of the number being assumed such as if the
sign of the low-order part were the same as that of
the high-order part, and the characteristic of the
low-order part were 14 less than that of the
high-order part. In extended results, the sign of the

9-2 IBM 4300 Processors Principles of Operation

low-order part is made the same as that of the
high-order part, and, unless the result is a true zero,
the low-order characteristic is made 14 less than the
high-order characteristic. When the subtraction of
14 causes the low-order characteristic to become less
than zero, it is made 128 larger than its correct value.
Exponent underflow is indicated only when the
high-order characteristic underflows.

The entire set of floating-point functions is
available for short and long operands. These
instructions generate a result that has the same
format as the sources, except that in the case of
MULTIPLY, a long product is produced from a short
multiplier and multiplicand. For extended operands,
instructions are provided for normalized addition,
subtraction, and multiplication. Additionally, two
multiplication instructions are provided that generate
an extended product from a long multiplier and
multiplicand. The rounding instructions provide for
rounding from extended to long format and from long
to short format.

Programming Note

A long floating-point number can be extended to the
extended format by appending any long
floating-point number having a zero fraction,
including a true zero. Conversion from the extended
to the long format can be accomplished by truncation
or by means of LOAD ROUNDED.

In the absence of an exponent overflow or exponent
underflow, the long floating-point number
constituting the low-order part of an extended result
correctly expresses the value of the low-order part of
the extended result when the characteristic of the
high-order part is 14 or higher. This relation is true
also when the result is a true zero. When the
high-order characteristic is less than 14 but the
number is not a true zero, the low-order part, when
addressed as a long floating-point number, does not
have the correct characteristic value.

Guard Digit

Although final results have six fraction digits in the
short format, 14 fraction digits in the long format,
and 28 fraction digits in the extended format,
intermediate results in ADD NORMALIZED,
SUBTRACT NORMALIZED, ADD
UNNORMALIZED, SUBTRACT
UNNORMALIZED, COMPARE, HALVE, and
MULTIPLY may have one additional low-order digit.
This low-order digit, the guard digit, increases the
precision of the final result.

Number Representation

The fraction of a floating-point number is expressed
in hexadecimal digits. The radix point of the fraction
is assumed to be immediately to the left of the
high-order fraction digit. The fraction is considered
to be multiplied by a power of 16. The characteristic
portion, bits 1-7 of the floating-point formats,
indicates this power. The bits within the
characteristic field can represent numbers from 0
through 127. To accommodate large and small
magnitudes, the characteristic is formed by adding 64
to the actual exponent. The range of the exponent is
thus -64 through +63. This technique produces a
characteristic in excess-64 notation. '

Both positive and negative quantities have a true
fraction, the sign being indicated by the sign bit. The
number is positive or negative, depending on whether
the sign bit is zero or one, respectively.

The range covered by the magnitude (M) of a
normalized floating-point number is:

In the short format:

1665 < M < (1 — 16-6) x 1653
In the long format:

1665 < M < (1 — 16-14) x 1663
In the extended format:

1665 < M < (1 — 1628) x 1663
In all formats, approximately:

54x10 < M < 7.2 x 1075

A number with a zero characteristic, zero fraction,
and plus sign is called a true zero. When an
extended result is made a true zero, both the
high-order and low-order parts are made true zero.

A true zero may arise as the result of an arithmetic
operation because of the particular magnitude of the
operands. A result is forced to be true zero when
1. An exponent underflow occurs and the

exponent-underflow mask bit in the PSW is zero,
2. The result fraction of an addition or subtraction
operation is zero and the significance mask bit in
the PSW is zero, or
3. The operand of HALVE, one or both operands of
MULTIPLY, or the dividend in DIVIDE has a
zero fraction.)

When a program interruption due to exponent
underflow occurs, a true zero fraction is not forced;
instead, the fraction and sign remain correct, and the
characteristic is 128 too large. When a program
interruption due to the significance exception occurs,

he fraction remains zero, the sign is positive, and the

characteristic remains correct. The
exponent-overflow and exponent-underflow
exceptions do not cause a program interruption when
the result has a zero fraction. When a divisor has a
zero fraction, division is omitted, and a program
interruption for a floating-point-divide exception
occurs. In addition and subtraction, an operand with
a zero fraction or characteristic participates as a
normal number.

The sign of a sum, difference, product, or quotient
with zero fraction is positive. The sign of a zero
fraction resulting from other operations is established
by the rules of algebra from the operand signs.

Normalization

A quantity can be represented with the greatest
precision by a floating-point number of given fraction
length when that number is normalized. A
normalized floating-point number has a nonzero
high-order hexadecimal fraction digit. If one or more
high-order fraction digits are zeros, the number is
said to be unnormalized. The process of
normalization consists in shifting the fraction left,
one digit at a time, until the high-order hexadecimal
digit is nonzero and reducing the characteristic by the
number of hexadecimal digits shifted. For extended
results, the entire fraction participates in the
normalization; therefore, the low~-order part may or
may not appear to be a normalized long number,
depending on the value of the fraction. A number
with a zero fraction cannot be normalized, and its
characteristic therefore remains unchanged when
normalization is called for.

Normalization usually takes place when the
intermediate arithmetic result is changed to the final
result. This function is called postnormalization. In
performing multiplication and division, the operands
are normalized before the arithmetic process. This
function is called prenormalization.

Floating-point operations may be performed with or
without normalization. Most operations are
performed only with normalization. Addition and
subtraction with short or long operands may be
specified either way.

When an operation is performed without
normalization, high-order zeros in the result fraction
are not eliminated. The result may or may not be
normalized, depending upon the original operands.

In both normalized and unnormalized operations,
the initial operands need not be in normalized form.

Also, intermediate fraction results are shifted right

when an overflow occurs, and the intermediate

Chapter 9. Floating-Point Instructions 9-3

fraction result is truncated to the final result length
after the chifting if any

Programming Note

Since normalization applies to hexadecimal digits, the
three high-order bits of the fraction of a normalized
number may be zero.

Instructions

The floating-point instructions and their mnemonics,
formats, and operation codes are listed in the figure
"Summary of Floating-Point Instructions.”" The
figure also indicates when the condition code is set
and the exceptional conditions in operand
designations, data, or results that cause a program
interruption.

9-4 1BM 4300 Processors Principles of Operation

Note: In the detailed descriptions of the individual
instructions. the mnemonic and the svmbolic operand
designation for the assembler language are shown
with each instruction. For a register-to-register
operation using LOAD (short), for example, LER is
the mnemonic and R 1,R ; the operand designation.

Mnemonics for the floating-point instructions have
an "R" as the last letter when the instruction is in the
RR format. For instructions where all operands are
the same length, certain letters are used to represent
operand-format length and normalization, as follows:

short normalized
short unnormalized
long normalized
long unnormalized
extended normalized

Xgoom

Name Mnemonic Characteristics Code

ADD NORMALIZED (extended) AXR RR C SP U EO LS 36
ADD NORMALIZED (iong) ADR RR C SP U EO LS 2A
ADD NORMALIZED (long) AD RX C A SsP u EO LS 6A
ADD NORMALIZED (short} AER RR C SP (V) EO LS 3A
ADD NORMALIZED (short) AE RX C A SP u EO LS 7A
ADD UNNORMALIZED (long) AWR RR C SP EO LS 2E
ADD UNNORMALIZED (long} AW RX C A SP EO LS 6E
ADD UNNORMALIZED (short) AUR RR C SsP EO LS 3E
ADD UNNORMALIZED (short) AU RX C A SP EO LS 7€
COMPARE (long) CDR RR C SP 29
COMPARE (long) CcD RX C A SP 69
COMPARE (short) CER RR C sP 39
COMPARE (short) CE RX C A SP 79
DIVIDE (long) DDR RR SP U EO FK ’ 2D
DIVIDE (long) DD RX A SP U EO FK 6D
DIVIDE (short) DER RR SP V) EO FK 3D
DIVIDE (short) DE RX A SP U EO FK 7D
HALVE (long) HDR RR SP U 24
HALVE (short) HER RR SP u 34
LOAD (long) LDR RR SP 28
LOAD (long) LD RX A SP 68
LOAD (short) LER RR spP 38
LOAD (short) LE RX A SP 78
LOAD AND TEST (long) LTDR RR C SP 22
LOAD AND TEST (short) LTER RR C SP 32
LOAD COMPLEMENT (long) LCDR RR C SP 23
LOAD COMPLEMENT (short) LCER RR C SP 33
LOAD NEGATIVE (long) LNDR RR C SP 21
LOAD NEGATIVE (short) LNER RR C SP 31
LOAD POSITIVE (long) LPDR RR C SP 20
LOAD POSITIVE (short) LPER RR C SP 30
LOAD ROUNDED (extended to long) LRDR RR SP EO 25
LOAD ROUNDED ({long to short) LRER RR SP EO 35
MULTIPLY (extended) MXR RR SP U EO 26
MULTIPLY (long) MDR RR SP U EOC 2C
MULTIPLY (long) MD RX A SP U EO 6C
MULTIPLY (long to extended) MXDR RR SP U EO 27
MULTIPLY {long to extended) MXD KX A SP U EO 67
MULTIPLY (short to long) MER RR SP u EO 3C
MULTIPLY ({short to long) ME RX A SP U EO 7C
STORE (long) STD RX A SP ST 60
STORE (short) STE RX A SP ST 70
SUBTRACT NORMALIZED (extended) SXR RR C SP u EO LS 37
SUBTRACT NORMALIZED (long) SDR RR C SP u EO LS 2B
SUBTRACT NORMALIZED (long) SD RX C A SP u EO LS 6B
SUBTRACT NORMALIZED {short) SER RR C SP U EO LS 3B
SUBTRACT NORMALIZED ({short) SE RX C A SP U EO LS 7B
SUBTRACT UNNORMALIZED (long) SWR RR C SP EO LS 2F
SUBTRACT UNNORMALIZED (long) SwW RX C A SP EO LS 6F
SUBTRACT UNNORMALIZED {(short) SUR RR C SP EO LS 3F
SUBTRACT UNNORMALIZED (short) SuU RX C A SP EO LS 7F
E xplanation:

A Access exceptions RR RR instruction format

C Condition code is set RX RX instruction format

EO Exponent-overflow exception . SP Specification exception

FK Floating-point-divide exception ST PER storage-alteration event

LS Significance exception U Exponent-underflow exception

Summary of Floating-Point Instructions

Chapter 9. Floating-Point Instructions 9-5

ADD NORMALIZED

AER R1,R,
[RR, Short Operands]

‘A’ Ry R,
0 8 12 15 A‘
AE R1,D2(X2,Bz)‘
[RX, Short Operands]
"TA’ R1 X2 By D2
1] 8 12 16 20 31

ADR Ri,R,
[RR, Long Operands]

‘2A7 R1 Ry
o 8 12 15
AD R1,D2(X3,B2)
[RX, Long Operands]
‘6A" Ri X By Dy
0 8 12 16 20 31

AXR Ri,R;,
[RR, Extended Operands]

‘36’ Ri R2

0 8 12 15

The second operand is added to the first operand,
and the normalized sum is placed in the first-operand
location.

Addition of two floating-point numbers consists in
characteristic comparison and fraction addition. The
characteristics of the two operands are compared, and
the fraction accompanying the smaller characteristic
is shifted right, with its characteristic increased by
one for each hexadecimal digit of shift until the two °
characteristics agree. ‘

9-6 IBM 4300 Processors Principles of Operation

When an operand is shifted right during alignment,
the leftmost hexadecimal digit of the field shifted out
is retained as a guard digit. The operand that is not
shifted is considered to be extended with a low-order
zero. Both operands are considered to be extended
with low-order zeros when no alignment shift occurs.
The fractions are then added algebraically to form an
intermediate sum.

The short intermediate-sum fraction consists of
seven hexadecimal digits and a possible carry. The
long intermediate-sum fraction consists of 15
hexadecimal digits and a possible carry. The
extended intermediate-sum fraction consists of 29
hexadecimal digits and a possible carry. If a carry is
present, the sum is shifted right one digit position,
and the characteristic is increased by one.

After the addition, the intermediate sum is shifted
left as necessary to form a normalized number,
provided the fraction is not zero. Vacated low-order
digit positions are filled with zeros, and the
characteristic is reduced by the number of
hexadecimal digits of shift. The intermediate-sum
fraction is subsequently truncated to the proper
result-fraction length.

The sign of the sum is determined by the rules of
algebra, unless all digits of the intermediate-sum
fraction are zero, in which case the sign is made plus.

An exponent-overflow exception is recognized when
a carry from the high-order position of the
intermediate-sum fraction causes the characteristic of
the normalized sum to exceed 127. The operation is
completed by making the characteristic 128 less than
the correct value, and a program interruption for
exponent overflow occurs. The result is normalized,
the sign and fraction remain correct, and, for AXR,
the low-order characteristic remains correct.

An exponent-underflow exception exists when the
characteristic of the normalized sum is less than zero
and the fraction is not zero. If the
exponent-underflow mask bit is one, the operation is
completed by making the characteristic 128 greater
than the correct value. The result is normalized, and
the sign and fraction remain correct. A program
interruption for exponent underflow then takes place.
When exponent underflow occurs and the
exponent-underflow mask bit is zero, a program
interruption does not take place; instead, the
operation is completed by making the result a true
zero. For AXR, exponent underflow is not
recognized when the low-order characteristic is less
than zero, but the high-order characteristic is zero or
above.

A significance exception exists when the
intermediate-sum fraction, including the guard digit,
is zero. If the significance mask bit is one, the
intermediate-sum characteristic remains unchanged
and becomes the characteristic of the result. No
normalization occurs, and a program interruption for
significance takes place. If the significance mask bit
is zero, the program interruption does not occur;
instead, the result is made a true zero.

The R; field for AER, AE, ADR, and AD, and the
R, field for AER and ADR must designate register
0,2, 4, or 6. The Ry and R, fields for AXR must
designate register 0 or 4. Otherwise, a specification
exception is recognized.

Resulting Condition Code:

0 Result fraction is zero

1 Result is less than zero

2 Result is greater than zero
3 -

Program Exceptions:

Access (fetch, operand 2 of AE and AD only)
Exponent Overflow

Exponent Underflow

Significance

Specification

Programming Note

Interchanging the two operands in a floating-point
addition does not affect the value of the sum.

ADD UNNORMALIZED

AUR Ri,R,
[RR, Short Operands]

‘3E’ R1 Ry
(] 8 12 15
AU R1,D2(X2,B2)
[RX, Short Operands]
‘7E’ Ry X2 B2 D2
U] 8 12 16 20 31

AWR Ri,R,

[RR, Long Operands]
"2E' Ry Ry

0 8 12 15

AW R;,D2(X5,B2)
[RX, Long Operands]

‘6E’ R1 Xa B, D2

0 8 12 16 20 31

The second operand is added to the first operand,
and the unnormalized sum is placed in the
first-operand location.

The execution of ADD UNNORMALIZED is
identical to that of ADD NORMALIZED, except’
that, after the addition, the intermediate-sum fraction
is truncated to the proper result-fraction length
without performing normalization. Leading zeros are
not eliminated in the result fraction, exponent
underflow cannot occur, and the guard digit does not
participate in the recognition of significance
exception. A significance exception is recognized
when the intermediate-sum fraction, not including the
guard digit, is zero.

The R and R, fields must designate register 0, 2,

4, or 6; otherwise, a specification exception is
recognized. ‘

Resulting Condition Code:

0 Result fraction is zero

1 Result is less than zero

2 Result is greater than zero
3 -

Program Exceptions:

Access (fetch, operand 2 of AU and AW only)
Exponent Overflow

Significance

Specification

Chapter ‘9. Floating-Point Instructions. 9-7

COMPARE
CER Ri,R,
[RR, Short Operands]
‘39" R1 R,
0 8 12 15
CE R1,D2(X3,B5)
[RX, Short Operands]
‘79’ R1 Xz B, D>
0 8 12 16 20 31
CDR Ri,R,
[RR, Long Operands]
‘29’ R1 Ry
0 8 12 15
CD R1,D2(X3,B2)
[RX, Long Operands]
‘69" R1 Xz By D2
o 8 . 12 16 20 31

The first operand is compared with the second
operand, and the condition code is set to indicate the
result.

Comparison is algebraic, taking into account the
sign, fraction, and exponent of each number. An
equality is established by following the rules for
normalized floating-point subtraction. When the
intermediate sum, including the guard digit, is zero,
the operands are equal. An exponent inequality is
not decisive for magnitude determination since the
fractions may have different numbers of leading
zeros. Neither operand is changed as a result of the
operation.

An exponent-overflow, exponent-underflow, or
significance exception cannot occur.

The R; and R, fields must designate register 0, 2, 4,
or 6; otherwise, a specification exception is
recognized.

9-8 IBM 4300 Processors Principles of Operation

Resulting Condition Code:
Opeiainds are cqual

1 First operand is low
2 First operand is high
3

<

Program Exceptions:

Access (fetch, operand 2 of CE and CD only)
Specification

Programming Note

Numbers with zero fractions compare equal even
when they differ in sign or characteristic.

DIVIDE

DER Ri,R,
[RR, Short Operands]

‘3D’ Ry Ry

12 15

DE Ry,D2(X3,B,)
{RX, Short Operands]

‘7D’ Rq Xa By Dy

0 8 12 16 20

DDR Ri,R,;
[RR, Long Operands]

'2D° Ry Ry

12 15

DD R1,D,(X3,B,)
[RX, Long Operands]

31

‘6D’ Ry X2 By D,

0 8 12 16 20

The first operand (the dividend) is divided by the
second operand (the divisor) and replaced by the
normalized quotient. No remainder is preserved.

31

Floating-point division consists in characteristic
subtraction and fraction division. The operands are
prenormalized, and the difference between the
dividend and divisor characteristics of the normalized
operands, plus 64, is used as the characteristic of the
intermediate quotient.

All dividend and divisor fraction digits participate in
forming the fraction of the quotient. Postnormalizing
the intermediate quotient is never necessary, but a
right-shift of one digit position may be called for.
The intermediate-quotient characteristic is adjusted
for the shift. The intermediate-quotient fraction is
subsequently truncated to the proper result-fraction
length.

The sign of the quotient is determined by the rules
of algebra, unless the quotient is made a true zero, in
which case the sign is made plus.

An exponent-overflow exception is recognized when
the final-quotient characteristic exceeds 127 and the
fraction is not zero. The operation is completed by
making the characteristic 128 less than the correct
value. The result is normalized, and the sign and
fraction remain correct. A program interruption for
exponent overflow occurs.

An exponent-underflow exception exists when the
characteristic of the normalized quotient is less than
zero and the fraction is not zero. If the
exponent-underflow mask bit is one, the operation is
completed by making the characteristic 128 greater
than the correct value, and a program interruption for
exponent underflow occurs. The result is normalized,
and the sign and fraction remain correct. If the
exponent-underflow mask bit is zero, a program
interruption does not take place; instead, the
operation is completed by making the quotient a true
zero.

Exponent underflow is not signaled when an
operand characteristic becomes less than zero during
prenormalization or the intermediate-quotient
characteristic is less than zero, but the final quotient
can be expressed without encountering exponent
underflow.

A floating-point divide exception is recognized
when the divisor fraction is zero. The operation is
suppressed, and a program interruption for
floating-point divide occurs.

When the dividend fraction is zero, the quotient is
made a true zero, and a possible exponent overflow
or exponent underflow is not recognized. A division
of zero by zero, however, causes the operation to be
suppressed and an interruption for floating-point
divide to occur.

The R, and R, fields must designate register 0, 2, 4,
or 6; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2 of DD and DE only)
Exponent Overflow

Exponent Underflow

Floating-Point Divide

Specification

HALVE

HER Ri,R,
[RR, Short Operands]

‘347 R1 Ry

0 8 12 15

HDR R1,R5
[RR, Long Operands]

‘24’ R1 Ry

)] 8 12 15

The second operand is divided by 2, and the
normalized quotient is placed in the first-operand
location.

The fraction of the second operand is shifted right
one bit position, placing the contents of the low-order
bit position into the high-order bit position of the
guard digit and introducing a zero into the high-order
bit position of the fraction. The intermediate result is
subsequently normalized, and the normalized quotient
is placed in the first-operand location. The guard
digit participates in the normalization.

The sign of the quotient is the same as that of the
second operand, unless the quotient is made a true
zero, in which case the sign is made plus.

An exponent-underflow exception exists when the
characteristic of the normalized quotient is less than
zero and the fraction is not zero. If the
exponent-underflow mask bit is one, a program
interruption occurs. The result is normalized, the
sign and fraction remain correct, and the

Chapter 9. Floating-Point Instructions 9-9

characteristic is made 128 greater than the correct
valua Tf the exnonent underflow mask bit is zero,
program interruption does not take place; instead, the
operation is completed by making the quotient a true
Zero.

When the fraction of the second operand is zero,
the result is made a true zero, and no exceptions are
recognized.

The R; and R, fields must designate register O, 2,
4, or 6; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

Exponent Underflow
Specification

Programming Notes

1. With short and long operands, the halve
operation is identical to a divide operation with
the number 2 as divisor. Similarly, the result of
HDR is identical to that of MD or MDR with
one-half as a multiplier. No multiply operation
corresponds to HER, since no multiply operation
produces short results.

2. The result of HALVE is replaced by a true zero
only when the second-operand fraction is zero, or
when exponent underflow occurs with the
exponent-underflow mask set to zero. When the
fraction of the second operand is zero, except for
the low-order bit position, the low-order one is
shifted into the guard-digit position and
participates in the postnormalization.

LOAD

LER Ri,R,
[RR, Short Operands]

LDR Ri,R,
[RR, Long Operands]

‘28 Ry Ry
0 8 12 15
LD R1,D2(X2,B3)

[RX, Long Operands]

‘68’ Ri | X2 | B2 D2

0 8 12 16 20 31

The second operand is placed unchanged in the
first-operand location.

The R; and R, fields must designate register O, 2,
4, or 6; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2 of LE and LD only)
Specification

LOAD AND TEST

LTER Ri,R,
[RR, Short Operands]

32’ R; Ry

‘38’ R; R
(1} 8 12 15
LE R1,D2(X2,B,)
[RX, Short Operands]
78’ R1 X By D,
0 8 12 16 20 31

9-10 IBM 4300 Processors Principles of Operation

0 8 12 15

LTDR Ri,R»
[RR, Long Operands]

‘22° R Ry,

0 8 12 15

The second operand is placed unchanged in the
first-operand location, and its sign and magnitude are
tested to determine the setting of the condition code.

The R; and R, fields must designate register 0, 2,
4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:

0 Result fraction is zero

1 Result is less than zero

2 Result is greater than zero
3

Program Exceptions:
Specification

Programming Note

When the same register is specified as the
first-operand and second-operand location, the
operation is equivalent to a test without data
movement.

LOAD COMPLEMENT

LCER Ri,R;

[RR, Short Operands]
‘33" R1 Ry

1] 8 12 15

LCDR Ri,R;
[RR, Long Operands]

‘23’ R; R>

0 8 12 15

The second operand is placed in the first-operand
location with the sign changed to the opposite value.
The sign bit is inverted, even if the fraction is zero.

The characteristic and fraction are not changed.

The R; and R, fields must designate register 0O, 2,

4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:

0 Result fraction is zero

1 Result is less than zero

2 Result is greater than zero
3

Program Exceptions:

Specification

LOAD NEGATIVE

LNER Ri,Ra
[RR, Short Operands]

‘31’ Ry Ry

0 8 12 15

LNDR Ri,R2
[RR, Long Operands]

217 R1 Ry

0 8 12 15

The second operand is placed in the first-operand

location with the sign made minus.

The sign bit is made one, even if the fraction is

zero. The characteristic and fraction are not
changed.

The R; and R, fields must designate register 0, 2,

4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:

0 Result fraction is zero
1 Result is less than zero
2

3 —

Program Exceptions:

Specification

LOAD POSITIVE

LPER Ri,R2 .
[RR, Short Operands]

‘30° Ry Ry

0 8 12 15

LPDR Ri,Rz
[RR, Long Operands]

20 R Ry

0 8 12 15

Chapter 9. Floating-Point Instructions

9-11

The cacond onerand ic nlaced in the firet-onerand
location with the sign made plus.

The sign bit is made zero. The characteristic and
fraction are not changed.

The R, and R, fields must designate register 0, 2,
4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:

0 Result fraction is zero

1 —_

2 Result is greater than zero
3 =

Program Exceptions:

Specification

LOAD ROUNDED

LRER Ri,R;
[RR, Long Operand 2, Short Operand 1]

‘35" R1 R>

0 8 12 15

LRDR Ri,Rs
[RR, Extended Operand 2, Long Operand 1]

iy R1 Ry

0 8 12 .15

The second operand is rounded to the next smaller
format, and the result is placed in the first-operand
location.

Rounding consists in adding a one in bit position 32
or 72 of the long or extended second operand,
respectively, and propagating the carry, if any, to the
left. For both cases, the sign of the fraction is
ignored, and addition is performed as if the fractions
were positive.

If rounding causes a carry out of the high-order
digit position of the fraction, the fraction is shifted
right one digit position, and the characteristic is
increased by one.

The sign of the result is the same as the sign of the
second operand. No normalization takes place.

An exponent-overflow exception is recognized when
shifting the fraction right causes the characteristic to
exceed 127. The operation is completed by loading a

9-12 IBM 4300 Processors Principles of Operation

number whose characteristic is 128 less than the
correct value, and a program interruption for
exponent overflow occurs. The result is normalized,
and the sign and fraction remain correct.

Exponent-underflow and significance exceptions
cannot occur.

The R; field must designate register 0, 2, 4, or 6;
the R, field of LRER must designate register 0, 2, 4,
or 6; and the R, field of LRDR must designate
register 0 or 4. Otherwise, a specification exception
is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

Exponent Overflow
Specification

MULTIPLY

MER Ri,R,
[RR, Short Multiplier and Multiplicand, Long
Product]

‘3C’ R1 R;
0 8 12 15
ME R1,D,(X2,B>)

[RX, Short Multiplier and Muitiplicand, Long
Product]

7C’ R X B, D;

MDR R;i,R,
[RR, Long Operands]

‘2C R1 Ry
0 8 12 15
MD R1,D2(X2,B)
[RX, Long Operands]
‘6C° R1 Xa By Dy
8 12 16 20 31

MXDR Ry,R;
[RR, Long Multiplier and Multiplicand, Extended
Product]

‘27 Ri1 Ry

0 8 12 15

MXD R1,D2(X3,B5)
[RX, Long Mulitiplier and Multiplicand, Extended
Product]

‘67" Ry Xz B, D>
0 8 12 16 20 31
MXR Ri,R;
[RR, Extended Operands]
‘26" R1 Ry
(1] 8 12 15

The normalized product of the second operand (the
multiplier) and the first operand (the multlphcand) is
placed in the first-operand location.

Multiplication of two floating-point numbers
consists in exponent addition and fraction
multiplication. The operands are prenormalized, and
the sum of the characteristics of the normalized
operands, less 64, is used as the charactenstlc of the
intermediate product.

The product of the fractions is developed such that
the result has the exact fraction product truncated to
the proper result-fraction length. When the result is
normalized without requiring any postnormalization,
the intermediate-product fraction is truncated to the
result-fraction length, and the intermediate-product
characteristic becomes the final product
characteristic. When the intermediate-product
fraction has one leading zero digit, it is shifted left
one digit position, bringing the contents of the
guard-digit position into the low-order position of the
result fraction, and the intermediate-product
characteristic is reduced by one. The
intermediate-product fraction is subsequently
truncated to the result-fraction length.

For MER and ME, the multiplier and multiplicand
have six-digit fractions, and the product fraction has
the full 14 digits of the long format, with the two
low-order fraction digits always zeros. For MDR and

MD, the multiplier and multiplicand fractions have 14
digits, and the result product fraction is truncated to
14 digits. For MXDR and MXD, the multiplier and
multiplicand fractions have 14 digits, with the
multiplicand occupying the high-order part of the first
operand; the result product fraction contains 28 digits
and is an exact product of the operand fractions. For
MXR, the multiplier and multiplicand fractions have
28 digits, and the result product fraction is truncated
to 28 digits.

The sign of the product is determined by the rules
of algebra, unless all digits of the product fraction are
zeros, in which case the sign is made plus.

An exponent-overflow exception is recognized when
the characteristic of the normalized product exceeds -
127 and the fraction of the product is not zero. The
operation is completed by making the characteristic
128 less than the correct value. If, for extended
results, the low-order characteristic also exceeds 127,
it, too, is decreased by 128. The result is normalized,
and the sign and fraction remain correct. A program
interruption for exponent overflow then occurs.

Exponent overflow is not recognized if the
intermediate-product characteristic exceeds 127 but is
brought within range by normalization.

An exponent-underflow exception exists when the
characteristic of the normalized product is less than
zero and the fraction of the product is not zero. If
the exponent-underflow mask bit is one, the
operation is completed by making the characteristic
128 greater than the correct value, and a program
interruption for exponent underflow occurs. The
result is normalized, and the sign and fraction remain
correct. If the exponent-underflow mask bit is zero,
program interruption does not take place; instead, the
operation is completed by making the product a true
zero. For extended results, exponent underflow is
not recognized when the low-order characteristic is
less than zero but the high-order characteristic is
equal to or greater than zero.

Exponent underflow is not recognized when the
characteristic of an operand becomes less than zero
during prenormalization, but the characteristic of the
normalized product is within range.

When either or both operand fractions are zero, the
result is made a true zero, and no exceptions are
recognized.

The R; field for MER, ME, MDR, and MD, and
the R, field for MER, MDR, and MXDR must
designate register 0, 2, 4, or 6. The R, field for
MXDR, MXD, and MXR, and the R, field for MXR

Chapter 9. Floating-Point Instructions 9-13

must designate register 0 or 4. Otherwise, a
enecification excention is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2 of ME, MD, and MXD
only)

Exponent Overflow

Exponent Underflow

Specification

Programming Note

Interchanging the two operands in a floating-point
multiplication does not affect the value of the
product.

STORE

STE R1,D2(X3,B2)
[RX, Short Operands]

‘70 Ri X By D2

0 8 12 16 20 31

STD R1,D2(X2,B2)
[RX, Long Operands]

‘60" Ry X2 By [v))

0 8 12 16 20 31

The first operand is placed unchanged at the
second-operand location.

~ The Ry field must designate register 0, 2, 4, 0r:6;
otherwise, a specification exception -is,recognfz.g&.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (store, operand 2)
Specification

SUBTRACT NORMALIZED

SER Ri,R2
[RR, Short Operands]

‘3B’ Ry Ry

0 8 12 15

9-14 IBM 4300 Processors Principles of Operation

SE RI,DZ(XZ,BZ)
[RX, Short Operands]
‘78" Ry X2 B D>
0 8 12 16 20 31

SDR R1,R,
[RR, Long Operands]

‘2B Ry R,
0 8 12 15
SD Ry,D2(X3,B2)
{RX, Long Operands]
‘6B’ R1 Xz B», D2
0 8 12 16 20 31

SXR Ri,R,
[RR, Extended Operands]

‘37 R1 Ra

0 8 12 15

The second operand is subtracted from the first
operand, and the normalized difference is placed in
the first-operand location.

The execution of SUBTRACT NORMALIZED is
identical to that of ADD NORMALIZED, except that
the second operand participates in the operation with
its sign bit inverted.

The R, field of SER, SE, SDR, and SD, and the
R, field of SER and SDR must designate register 0,
2,4, or 6. The R; and R, fields of SXR must
designate register 0 or 4. Otherwise, a specification
exception is recognized.

Resulting Condition Code:
0 Result fraction is zero

1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions:

Access (fetch, operand 2 of SE and SD only)
Exponent Overflow

Exponent Underflow

Significance

Specification

SUBTRACT UNNORMALIZED

SUR Ri,R,
[RR, Short Operands]

‘3F Ri | Ry

0 8 12 15
SU R1,D2(X2,B3)
[RX, Short Operands]
‘7F° R; Xz By D,
0 8 12 16 20 31

SWR Ri,R,
[RR, Long Operands]

‘2F" R; Ry

0 8 12 15

Sw R1,D2(X2,B5)
[RX, Long Operands]
‘6F R1 Xa B D,
0 8 12 16 20 31

The second operand is subtracted from the first
operand, and the unnormalized difference is placed in
the first-operand location.

The execution of SUBTRACT UNNORMALIZED
is identical to that of ADD UNNORMALIZED,
except that the second operand participates in the
operation with its sign bit inverted.

The R; and R, fields must designate register 0, 2,

4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:

0 Result fraction is zero

1 Result is less than zero

2 Result is greater than zero
3

Program Exceptions:

Access (fetch, operand 2 of SU and SW only)
Exponent Overflow

Significance

Specification

Chapter 9. Floating-Point Instructions 9-15

Chapter 10. Control Instructions

Contents

CLEAR PAGE 10-3 SET CLOCK 10-9

CONNECT PAGE 10-3 SET CLOCK COMPARATOR 10-9

DECONFIGURE PAGE 10-4 SET CPU TIMER 10-10

DIAGNOSE 10-4 SET PAGE BITS 10-10

DISCONNECT PAGE 10-5 SET PSW KEY FROM ADDRESS 10-10

INSERT PAGE BITS 10-6 SET STORAGE KEY 10-11

INSERT PSW KEY 10-5 SET SYSTEM MASK 10-11

INSERT STORAGE KEY 10-6 STORE CAPACITY COUNTS 10-11

LOAD CONTROL 10-6 STORE CLOCK COMPARATOR 10-12

LOAD FRAME INDEX 10-6 STORE CONTROL 10-12

LOAD PSW 10-7 STORE CPU ID 10-12

MAKE ADDRESSABLE 10-7 STORE CPU TIMER 10-13

MAKE UNADDRESSABLE 10-8 STORE THEN AND SYSTEM MASK 10-13

RESET REFERENCE BIT 10-8 STORE THEN OR SYSTEM MASK 10-14

RETRIEVE STATUS AND PAGE 10-8
The control instructions include all privileged when the condition code is set and the exceptional
instructions, except the input/output instructions, conditions in operand designations, data, or results
which are described in Chapter 12, "Input/Output that cause a program interruption.

Operations."

Privileged instructions may be executed only when Note: In the detailed descriptions of the individual
the CPU is in the supervisor state. An attempt to instructions, the mnemonic and the symbolic operand
execute a privileged instruction in the problem state designation for the assembler language are shown
generates a privileged-operation exception. with each instruction. For LOAD PSW, for example,

The control instructions and their mnemonics, LPSW is the mnemonic and D »(B,) the operand
formats, and operation codes are listed in the figure designation.

"Control Instructions." The figure also indicates

Chapter 10. Control Instructions 10-1

Name Mnemonic Characteristics

CLEAR PAGE CLRP S M AP PS ST
CONNECT PAGE CTP RS C M AD SP PT R
DECONFIGURE PAGE DEP S M AD SP PT
DIAGNOSE M DM
DISCONNECT PAGE DCTP S C M AD SP PT
INSERT PAGE BITS IPB RS M AD R
INSERT PSW KEY IPK S M R
INSERT STORAGE KEY I1ISK RR M AD SP R
LOAD CONTROL LCTL RS ™M A SP
LOAD FRAME INDEX LFI RS C M R
LLOAD PSw LPSW S L M A SP $
MAKE ADDRESSABLE MAD S C M AD PT
MAKE UNADDRESSABLE MUN S C M AD SP PT
RESET REFERENCE BIT RRB S C M AD
RETRIEVE STATUS AND PAGE RSP SS (o8 M A ST
SET CLOCK SCK S (o4 M A SP
SET CLOCK COMPARATOR SCKC S ™M A SP
SET CPU TIMER SPT S M A SP
SET PAGE BITS SPB RS C M AD
SET PSW KEY FROM ADDRESS SPKA S M
SET STORAGE KEY SSK RR M AD SP
SET SYSTEM MASK SSM S M A SP SO
STORE CAPACITY COUNTS STCAP S M A ST
STORE CLOCK COMPARATOR STCKC S M A SP ST
STORE CONTROL STCTL RS M A SP ST
STORE CPU ID STIDP S M A SP ST
STORE CPU TIMER STPT S M A SP ST
STORE THEN AND SYSTEM MASK STNSM Sl M A ST
STORE THEN OR SYSTEM MASK STOSM Si M A SP ST
Explanation:
$ Causes serialization PT Page-transition exception
A Access exceptions R PER general-register-alteration event
AD Addressing exception RR RR instruction format
AP Addressing and protection exceptions RS RS instruction format
C Condition code is set S S instruction format
DM DIAGNOSE may generate various program exceptions St Sl instruction format

and may change the condition code SO Special-operation exception
L New condition code loaded SP Specification exception
M Privileged-operation exception SS SSinstruction format
PS Page-state exception ST PER storage-alteration event

Control Instructions

10-2 IBM 4300 Processors Principles of Operation

Code

B215
BO
B21B
83
B21C

B4
B20B
09
B7
B8

82

B21D
B21E
B213

D8
B204
B206
B208
B5

B20A
08
80
B21F
B207
B6

B202
B209
AC
AD

CLEAR PAGE
CLRP Dy(By) [s]
‘B215° B2 D>
0 16 20 31

The storage page designated by the second-operand
address is cleared, which is equivalent to storing
2,048 zero bytes at that location. The page is
validated.

Bits 8-20 of the second-operand address designate
the page. Bits 0-7 and 21-31 of the address are
ignored.

The page may be addressable or connected; if the
page is disconnected, a page-state exception is raised,
and the operation is suppressed.

Condition Code: The code remains unchanged.

Program Exceptions:

Addressing (operand 2)
Page State

Privileged Operation
Protection (store, operand 2)

Programming Note

Page 0 may be cleared, but it can only be in the
addressable state.

CONNECT PAGE
CTP R;1,D2(Bs) [RS]
7
‘B0’ R1 / B, D2
0 8 12 16 20 31

If disconnected, the storage page designated by the
second-operand address enters the connected state.
If already connected, the page remains in the
connected state. The frame index of the page frame
that is connected to the page is returned in the
general register designated by the R; field.

Bits 8-20 of the second-operand address designate
the page. Bits 0-7 and 21-31 of the address are
ignored. Bits 12-15 of the instruction are ignored.

If bits 8-20 of the second-operand address are
zeros, that is, page O is specified, a specification
exception is recognized, and the operation is
suppressed.

If the page is in the addressable state, a page-
transition exception is recognized, and the operation
is suppressed.

If the operation is not successful, because the page
is disconnected but no page frame is free for
connection (free-frame-capacity count is zero), the
R; register remains unchanged, and condition code 2
is set.

If the operation is successful, the condition code
indicates whether the page was connected (1) or
disconnected (0) at the start of the operation. The
frame index, which is an unsigned binary integer, is
loaded right-aligned in the R; register, and the
remaining high-order bits of the register are set to
zeros. The frame index is unique and may have any
value from zero to EFCC - 1, where EFCC is the
existing-frame-capacity count.

If the page was disconnected before and the
operation is successful, the value of the free-frame-
capacity count is decreased by one.

The contents of a newly connected page frame are
unpredictable.

Resulting Condition Code:

0 Successful, page was disconnected, index
returned
1 Page was already connected, index returned
Not successful, index not returned
3 -

Program Exceptions:

Addressing (operand 2)
Page Transition
Privileged Operation
Specification

Programming Notes

1. The storage key and the reference, t:hange, and
page bits of a page are not changed when the
page is connected.

2. The frame index of the page frame connected to
the specified page remains unchanged until that
page is disconnected. The value of the frame
index to be assigned by CONNECT PAGE to a
previously disconnected page is unpredictable.

Chapter 10. Control Instructions 10-3

DECONFIGURE PAGE
DEP D, (B>) [S]

‘B21B’ By D2

0 16 20 31

If connected, the storage page designated by the
second-operand address enters the disconnected
state. The page frame that was connected to the page
becomes unavailable; that is, it will no longer be
available for connection to any page. The reference
and change bits of the page are set to zeros.

Bits 8-20 of the second-operand address designate
the page. Bits 0-7 and 21-31 of the address are
ignored.

If bits 8-20 of the second-operand address are
zeros, that is, page O is specified, a specification
exception is recognized, and the operation is
suppressed.

The page must be in the connected state at the start
of the operation; otherwise, a page-transition
exception is recognized, and the operation is
suppressed.

The value of the available-frame-capacity count is
decreased by one. The values of the free-frame and
existing-frame-capacity counts remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

Addressing (operand 2)
Page Transition
Privileged Operation
Specification

Programming Notes

1. DECONFIGURE PAGE allows a program to put
a page frame out of operation. This may be
desirable when the page frame is indicated as
defective by a machine check which is caused by
a storage access to the page connected to that
frame or by an access to the associated storage
key. The frame may become available again
during a subsequent manual clear-reset operation.

2. The instruction cannot be used on the frame
connected to page 0 because page 0 cannot be in
the disconnected state.

10-4 IBM 4300 Processors Principles of Operation

DIAGNOSE

‘83’

0 8 31

The CPU performs built-in diagnostic functions or
other implementation-dependent functions. The
purpose of the diagnostic functions is to verify that
CPU equipment is operating properly and to locate
any faulty components. Other implementation-
dependent functions may include reconfiguration of
storage and channels.

Bits 8-31 may be used as in the SI or RS formats,
or in some other way, to specify the particular
diagnostic function. The use depends on the model.

The execution of the instruction may affect the
state of the CPU and the contents of a register or
storage location, as well as the progress of an I/0
operation.

Condition Code: The code is unpredictable.

Program Exceptions:

Privileged Operation
Depending on the function, other exceptions may be
recognized.

Programming Notes

1. Since the instruction is not intended for
problem-program or control-program use,
DIAGNOSE has no mnemonic.

2. DIAGNOSE, unlike other instructions, does not
follow the rule that programming errors are
distinguished from equipment errors. Improper
use of DIAGNOSE may result in false machine-
check indications or may cause actual machine
malfunctions to be ignored. It may also alter
other aspects of machine operation, including
instruction execution and channel operation, to
an extent that the operation does not comply witk
that specified in this publication. As a result of
the improper use of DIAGNOSE, the machine
may be left in such a condition that a power-on
reset or initial microprogram loading (IML) must
be performed.

DISCONNECT PAGE

INSERT PAGE BITS

DCTP D, (By) [S] IPB R,D,(B3) [RS]
//
‘B21C’ B, D, ‘B4’ Ry / B, D)
7.
0 16 20 31 0 8 12 16 20 31

If connected, the storage page designated by the
second-operand address enters the disconnected
state. If already disconnected, the page remains in the
disconnected state. The reference and change bits of
the ‘page are set to zeros.

Bits 8-20 of the second-operand address designate
the page. Bits 0-7 and 21-31 of the address are
ignored.

If bits 8-20 of the second-operand address are
zeros, that is, page O is specified, a specification
exception is recognized, and the operation is
suppressed.

If the page is in the addressable state, a page-
transition exception is recognized, and the operation
is suppressed.

The condition code indicates whether the page was
connected (0) or disconnected (1) before. If the page
was connected before, the value of the free-frame-
capacity count is increased by one.

The contents of the disconnected page frame are
not necessarily cleared by the machine. The next time
this frame is connected to a page by some
CONNECT instruction, its contents will be
unpredictable.

Resulting Condition Code:

0 Page was connected

1 Page was already disconnected
2 —

& -

Program Exceptions:

Addressing (operand 2)
Page Transition
Privileged Operation
Specification

The current settings of the three programmable page
bits and the reference and change bits that are
associated with the storage page designated by the
second-operand address are inserted in the general
register designated by the R; field.

Bits 8-20 of the second-operand address designate
the page. Bits 0-7 and 21-31 of the address are
ignored. Bits 12-15 of the instruction are ignored.

The current values of the three page bits are
inserted in bit positions 25-27, and the reference and
change bits in bit positions 29-30 of the register
designated by the R; field. The contents of bit
positions 24, 28, and 31 of that register are set to
zeros. The contents of bit positions 0-23 remain
unchanged.

The references to the page bits and to the reference
and change bits are not subject to a protection
exception. These bits can be accessed regardless of
the state of the addressed page.

Condition Code: The code remains unchanged.

Program Exceptions:

Addressing (operand 2)
Privileged Operation

INSERT PSW KEY
IPK [S]

‘8208 ; //// /

The four-bit PSW key, bits 8-11 of the current PSW,
is inserted in bit positions 24-27 of general register 2,
and bits 28-31 of that register are set to zeros. Bits .
0-23 of general register 2 remain unchanged.

Bits 16-31 of the instruction are ignored.

0 31

Condition Code: The code remains unchanged.

Program Exceptions:
Privileged Operation

Chapter 10. Control Instructions 10-5

INSERT STORAGE KEY

ISK Ri,R2 [RR]
‘09’ R1 Ry,
0 8 12 15

The storage key associated with the page that is
addressed by the contents of the general register
designated by the R field is inserted in the general
register designated by the R; field.

Bits 8-20 of the register designated by the R, field
designate the page. Bits 0-7 and 21-27 of the
register are ignored. Bits 28-31 of the register must
be zeros; otherwise, a specification exception is
recognized, and the operation is suppressed.

The execution of the instruction depends on
whether the PSW specifies the EC or BC mode. In
the EC mode, the seven-bit storage key is inserted in
bit positions 24-30 of the register designated by the
R; field, and bit 31 is set to zero. In the BC mode,
bits 0-4 of the storage key are placed in bit positions
24-28 of that register, and bits 29-31 of the register
are set to zeros. In both modes, the contents of bit
positions 0-23 of the register remain unchanged.

The reference to the storage key is not subject to a
protection exception. The storage key can be
accessed regardless of the state of the addressed

page.
Condition Code: The code remains unchanged.

Program Exceptions:

Addressing (operand 2)
Privileged Operation
Specification

LOAD CONTROL
LCTL Ry,R3,D1(B2) [RS]

‘B7’ R; R3 By D,

0 8 12 16 20 31

The set of control registers starting with the control
register designated by the R; field and ending with
the control register designated by the R; field is
loaded from the locations designated by the second-
operand address.

10-6 IBM 4300 Processors Principles of Operation

The storage area from which the contents of the
control registers are obtained starts at the location
designated by the second-operand address and
continues through as many storage words as the
number of control registers specified. The control
registers are loaded in ascending order of their
addresses, starting with the control register
designated by the R; field and continuing up to and
including the control register designated by the R,
field, with control register 0 following control register
15. The second operand remains unchanged.

A word of the operand is fetched from storage for
each of the designated control registers, regardless of
whether the control register has any assigned
positions. Whenever the storage reference causes an
access exception, the exception is indicated. The
information fetched for unassigned control-register
positions may be loaded or ignored.

The second operand must be designated on a word
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2)
Privileged Operation
Specification

Programming Note

To ensure that existing programs run if and when
new facilities using additional control-register
positions are defined, only zeros should be loaded in
unassigned control-register positions.

LOAD FRAME INDEX

LFI Ry,D2(B2) [RS]
/
‘B8’ Ri // B) Dy,
A

[8 12 16 20 31

The frame index of the page frame that is connected
to the storage page designated by the second-operand
address is returned in the general register designated
by the R; field.

Bits 8-20 of the second-operand address designate -
the page. Bits 0-7 and 21-31 of the address are
ignored. Bits 12-15 of the instruction are ignored.

The frame index is an unsigned binary integer. It is
right-aligned in the R; register, and the remaining

high-order bits of the register are set to zeros. The
frame index is unique and may have any value from
zero to EFCC - 1, where EFCC is the existing-
frame-capacity count.

The frame index is returned only when the page is
connected or addressable. When the page is
disconnected or not provided (condition code 2 or 3),
the R; register remains unchanged.

Condition code 0, 1, or 2 is set when the page is
addressable, connected, or disconnected, respectively.
Condition code 3 is set when the address is invalid,
that is, the value of bits 8-20 of the second-operand
address equals or exceeds the page-capacity count.

Resulting Condition Code:

0 Index returned, page is addressable

1 Index returned, page is connected

2 Index not returned, page is disconnected
3 Index not returned, address is invalid

Program Exceptions:
Privileged Operation

Programming Note

The instruction may be used to test the page address
and state of a page and return its frame index, if any,
without raising an access exception.

LOAD PSW
LPSW Dy(By) [S]
0 8 16 20 31

The current PSW is replaced by the contents of the
doubleword at the location designated by the
second-operand address.

If the new PSW specifies the BC mode, information
in bit positions 16-33 of the new PSW is not retained
as the PSW is loaded. When the PSW is subsequently
stored, these bit positions contain the new
interruption code and the instruction-length code.

A serialization function is performed.

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on protection and addressing
exceptions.

The value which is to be loaded by the instruction is
not checked for validity before it is loaded. However,

immediately after loading, a specification exception is
recognized, and a program interruption occurs, when
the newly loaded PSW specifies the EC mode and the
contents of bit positions 0, 2-5, 16-17, and 24-39 are
not all zeros. In these cases, the operation is
completed, and the resulting instruction-length code
is zero.

Bits 8-15 of the instruction are ignored.

Resulting Condition Code: The code is that specified
in the new PSW loaded.

Program Exceptions:

Access (fetch, operand 2)
Privileged Operation

Specification
MAKE ADDRESSABLE
MAD Dy(B) [s]
"‘B21D’ By D,
o 16 20 31

If connected, the storage page designated by the
second-operand address enters the addressable state.
If already addressable, the page remains in the
addressable state.

Bits 8-20 of the second-operand address designate
the page. Bits 0-7 and 21-31 of the address are
ignored.

If the page is in the disconnected state, a page-
transition exception is recognized, and the operation
is suppressed.

The condition code indicates whether the page was
addressable (1) or connected (0) before.

Resulting Condition Code:

0 Page was connected

1 Page was already addressable
2 -

3 -

Program Exceptions:

Addressing (operand 2)
Page Transition
Privileged Operation

Chapter 10. Control Instructions 10-7

MAKE UNADDRESSABLE
MUN D2(B3) [S]

"B21E’ 82 D2

0 16 20 31

If addressable, the storage page designated by the
second-operand address enters the connected state. If
already connected, the page remains in the connected
state.

Bits 8-20 of the second-operand address designate
the page. Bits 0-7 and 21-31 of the address are
ignored.

If bits 8-20 of the second-operand address are
zeros, that is, page O is specified, a specification
exception is recognized, and the operation is
suppressed.

If the page is in the disconnected state, a page-
transition exception is recognized, and the operation
is suppressed.

The condition code indicates whether the page was
addressable (0) or connected (1) before.

Resulting Condition Code:

0 Page was addressable

1 Page was already connected
2 -

3 -

Program Exceptions:

Addressing (operand 2)
Page Transition
Privileged Operation
Specification

RESET REFERENCE BIT
RRB D2(B,) [S]

‘B213° B, D2

0 16 20 31

The reference bit in the storage key associated with
the storage page that is designated by the second-
operand address is set to zero.

Bits 8-20 of the second-operand address designate
the page. Bits 0-7 and 21-31 of the address are
ignored.

10-8 IBM 4300 Processors Principles of Operation

The condition code is set to reflect the state of the
reference and change bits before the reference bit is
set to zero.

The references to the storage key are not subject to
protection exceptions. The storage key can be
accessed regardless of the state of the addressed
page. The values of the remaining bits of the storage
key, including the change bit, are not affected.

Resulting Condition Code:

0 Reference bit zero, change bit zero
1 Reference bit zero, change bit one
2 Reference bit one, change bit zero
3 Reference bit one, change bit one

Program Exceptions:

Addressing (operand 2)
Privileged Operation

RETRIEVE STATUS AND PAGE

RSP D1(B1),D(B2) [SS] »
DS’ ///// B: | D1 B> D,
/// !,’,' vy
o 3 16 20 32 36 47

The saved machine status is retrieved and stored at
the first-operand location. The contents of the saved
page are retrieved and stored at the second-operand
location.

The saved machine status, as retrieved, consists of
256 bytes reflecting the state of the machine at the
last time that the manual machine-save operation was
performed. (See the figure '"Machine Status,
Retrieval Format" in Chapter 4, ''Control," for the
contents.) The saved page consists of the contents at
that time of page 0. The storage key, page bits, and
frame index for the saved page are contained in the
machine status.

If the two operands overlap, the results are
unpredictable.

If the saved information is valid, condition code O is
set. If the saved information is invalid, neither
storage operand is accessed, no access exceptions are
recognized, and condition code 3 is set.

The saved machine status and page remain
unchanged.

Resulting Condition Code:
0 Save information is valid

1 -
2 -
3 Save information is invalid

Program Exceptions:

Access (store, operand 1 and 2)
Privileged Operation

Programming Notes

1. The saved information may be found invalid if a
partially performed machine save was canceled by
resetting the machine. The saved information is
invalid if a clear reset has been performed since
the last machine save. RETRIEVE STATUS
AND PAGE will indicate an invalid save until
another machine save is performed.

2. Two executions of RETRIEVE STATUS AND
PAGE will retrieve the same status and page
information, as long as the information has not
been invalidated by a reset and no machine save
has intervened.

SET CLOCK
SCK Dy(By) [s]
| ‘B204" By D
0 16 20 i 31

The current value of the time-of-day clock is replaced
by the contents of the doubleword designated by the
second-operand address, and the clock enters the set
state.

The doubleword operand replaces the contents of
the clock, as determined by the resolution of the
clock. Only those bits of the operand are set in the
clock that correspond to the bit positions which are
updated by the clock; the contents of the remaining
rightmost bit positions of the operand are ignored and
are not preserved in the clock.

The value of the clock is changed and the clock is
placed in the set state only if the manual TOD-clock
control is set to enable-set. If the TOD-clock control
is set to secure, the value and the state of the clock
are not changed. The two results are distinguished by
condition codes 0 and 1, respectively.

When the clock is not-operational, the value and
state of the clock are not changed, regardless of the

setting of the TOD-clock control, and condition code
3 is set.

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. Access
exceptions are recognized regardless of the state of
the clock and the setting of the TOD-clock control.

Resulting Condition Code:

0 Clock value set
1 Clock value secure

2 -

3 Clock in not-operational state
Program Exceptions:

Access (fetch, operand 2)
Privileged Operation
Specification

SET CLOCK COMPARATOR
SCKC Dy(By) [s]

‘B206’ By D,

0 16 20 31

The current value of the clock comparator is replaced
by the contents of the doubleword designated by the
second-operand address.

Only those bits of the operand are set in the clock
comparator that correspond to the bit positions to be
compared with the time-of-day clock; the contents of
the remaining rightmost bit positions of the operand
are ignored and are not preserved in the clock
comparator.

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on protection and addressing
exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2)
Privileged Operation
Specification

Chapter 10. Control Instructions 10-9

SET CPU TIMER
SPT D,(B2) [S]

‘B208’ B2 D2

0 16 20 31

The current value of the CPU timer is replaced by
the contents of the doubleword designated by the
second-operand address.

Only those bits of the operand are set in the CPU
timer that correspond to the bit positions which are
updated by the CPU timer; the contents of the
remaining rightmost bit positions of the operand are
ignored and are not preserved in the CPU timer.

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on protection and addressing
exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2)
Privileged Operation
Specification

SET PAGE BITS

SPB R;,D2(B)) [RS]
‘B5” R W By D,
>
0 8 12 16 20 31

The current settings of the three programmable page
bits and the reference and change bits that are
associated with the storage page designated by the
second-operand address are replaced by the contents
of the general register designated by the R, field.

Bits 8-20 of the second-operand address designate
the page. Bits 0-7 and 21-31 of the address are
ignored. Bits 12-15 of the instruction are ignored.

The condition code is set to reflect the state of the
reference and change bits before these bits are
modified.

The new values of the three page bits are obtained
from bit positions 25-27, and the reference and
change bits from bit positions 29-30 of the register
designated by the R, field. The contents of bit

positions 0-24, 28, and 31 of the register are ignored.

10-10 IBM 4300 Processors Principles of Operation

The references to the page bits and to the reference
and change bits are not subject to a protection
exception. These bits can be accessed regardless of
the state of the addressed page.

Resulting Condition Code:

0 Reference bit zero, change bit zero
1 Reference bit zero, change bit one
2 Reference bit one, change bit zero
3 Reference bit one, change bit one

Program Exceptions:

Addressing (operand 2)
Privileged Operation

SET PSW KEY FROM ADDRESS
SPKA D,(B,) [S]

‘B20A’ By D2

0 16 20 31

The four-bit PSW key, bits 8-11 of the current PSW,
is replaced by bits 24-27 of the second-operand
address.

The second-operand address is not used to address
data; instead, bits 24-27 of the address form the new
PSW key. Bits 8-23 and 28-31 of the
second-operand address are ignored.

Condition Code: The code remains unchanged.

Program Exceptions:
Privileged Operation

Programming Notes

1.. The format of the SET PSW KEY FROM
ADDRESS instruction permits the program to set
the PSW Kkey either from the general register
designated by the B, field or from the D field in
the instruction itself.

2. When a problem program requests a control
program to access a location specified by the
problem program, the SET PSW KEY FROM
ADDRESS instruction can be used by the control
program to verify that the problem program is
authorized to make this access, provided the
storage location of the control program is not
protected against fetching. The control program
can perform the verification by replacing the

PSW key of the control program with the
problem-program PSW key before making the
access and subsequently restoring the control-
program PSW key to its original value.

SET STORAGE KEY
SSK Ri,R; [RR]

'08’ Ry R

0 8 12 15

The storage key associated with the page that is
addressed by the contents of the general register
designated by the R, field is replaced by the
contents of the general register designated by the R,
field.

Bits 8-20 of the register designated by the R, field
designate the page. Bits 0-7 and 21-27 of the register
are ignored. Bits 28-31 of the register must be zeros;
otherwise, a specification exception is recognized,
and the operation is suppressed.

The new seven-bit storage-key value is obtained
from bit positions 24-30 of the register designated by
the R; field. The contents of bit positions 0-23 and
31 of that register are ignored.

The reference to the storage key is not subject to a
protection exception. The storage key can be
accessed regardless of the state of the addressed

page.
Condition Code: The code remains unchanged.

Program Exceptions:

Addressing (operand 2)
Privileged Operation

Specification
SET SYSTEM MASK
SSM D,(B2) [S]
% |
‘80" B D
1] 8 16 20 31

Bits 0-7 of the current PSW are replaced by the byte
at the location designated by the second-operand
address.

When the SSM-suppression bit, bit 1 of control
register 0, is one and the CPU is in the supervisor

state, a special-operation exception is recognized, and
the operation is suppressed.

The operation is suppressed on protection and
addressing exceptions.

The value to be loaded into the PSW is not checked
for validity before loading. However, immediately
after loading, a specification exception is recognized,
and a program interruption occurs, if the CPU is in
the EC mode and the contents of bit positions 0 and
2-5 of the PSW are not all zeros. In this case, the
instruction is completed, and the instruction-length
code is set to 2.

Bits 8-15 of the instruction are ignored.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2)
Privileged Operation

Special Operation
Specification (EC mode only)

Programming Note

The SSM instruction is frequently used in the BC
mode to disable or enable the CPU for 1/0 or
external interruptions. Hence, suppressing the
execution of the SSM instruction by means of the
SSM-suppression bit, bit 1 of control register 0, may
be useful when converting a program wrtten for a
BC-mode PSW to operate with an EC-mode PSW.

STORE CAPACITY COUNTS
STCAP D,(B,) [S]

‘B21F By D,

0 16 20 31

The current values of the page-capacity (PCC),
existing-frame-capacity (EFCC), available-frame-
capacity (AFCC),and free-frame-capacity (FFCC)
counts are stored at the 16-byte location designated
by the second-operand address. The counts are stored
as 32-bit unsigned binary integers in the order, from
left to right, of PCC, EFCC, AFCC, and FFCC.

Condition Code: The code remains unchanged.

Chapter 10. Control Instructions 10-11

Program Exceptions:

Access (store, operand 2)
Privileged Operation

Programming Notes

1. The instruction allows the program to display the
current values of the PCC, EFCC, AFCC, and
FEFCC for initialization purposes at IPL time and
for the management of virtual storage and real
storage.

2. The high-order 16 bits of each counter value, as
stored, are always zeros. The counter values
cannot exceed 65,535.

STORE CLOCK COMPARATOR
STCKC D, (B») [S]

‘B207’ B2 D2

0 16 20 3

The current value of the clock comparator is stored at
the doubleword location designated by the second-
operand address.

Zeros are provided for the rightmost bit positions of
the clock comparator that are not compared with the
time-of-day clock.

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on protection and addressing
exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (store, operand 2)
Privileged Operation
Specification

STORE CONIROL

STCTL Ri,R;3,D,(B3) [RS]
‘B6° R R3; B, Dy
0 8 12 16 20 31

The set of control registers starting with the contfol
register designated by the R; field and ending with
the control register designated by the R; field is

10-12 IBM 4300 Processors Principles of Operation

stored at the locations designated by the second-
operand address.

The storage area where the contents of the control
registers are placed starts at the location designated
by the second-operand address and continues through
as many storage words as the number of control
registers specified. The contents of the control
registers are stored in ascending order of their
addresses, starting with the control register
designated by the R; field and continuing up to and
including the control register designated by the R;
field, with control register O following control register
15. The contents of the control registers remain
unchanged.

A word is stored for each of the designated control
registers, regardless of whether the control register
has any assigned positions. Whenever the storage
reference causes an access exception, the exception is
indicated. The information stored for unassigned
control-register positions is unpredictable.

The second operand must be designated on a word
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (store, operand 2)
Privileged Operation
Specification

Programming Note

Although STORE CONTROL may provide zeros in
the bit positions corresponding to unassigned register
positions, the program should not depend on such
Zeros.

STORE CPU ID

STIDP D,(B,) [S]

‘B202’ B2 D2

0 16 20 31

Information identifying the CPU is stored at the
doubleword location designated by the second-
operand address.

"
V4

Version Code CPU Identification Number

/

0 8 31/
ya
/

Mode! Number 0000000000000000
ya
7 32 48 63

Bit positions 0-7 contain the version code, which is -

information to supplement the model number.

Bit positions 8-31 contain the CPU identification
number, consisting of six digits: a high-order zero
digit and five digits selected from the physical serial
number stamped on the CPU, or six digits selected
from the serial number. The contents of the CPU
identification-number field, in conjunction with the
model number, permit unique identification of the
CPU. .

Bit positions 32-47 contain the model number of
the CPU. ‘

Bit positions 48-63 contain zeros.

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on protection and addressing
exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (store, operand 2)
Privileged Operation
Specification

Programming Notes

1. The program should allow for the possibility that
the CPU identification number may contain the
hexadecimal digits A-F as well as the digits 0-9.

2. The CPU identification number, combined with
the model number, provides a unique CPU
identification that can be used in associating
results with an individual machine, particularly in
regard to functional differences, performance
differences, and error handling.

STORE CPU TIMER
STPT D,(B,) [S]

‘B209’ B> D2

0 16 20 31

The current value of the CPU timer is stored at the
doubleword location designated by the second-
operand address. .

Zeros are provided for the rightmost bit positions
that are not updated by the CPU timer.

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on protection and addressing
exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)
Privileged Operation
Specification

STORE THEN AND SYSTEM MASK
STNSM Di(B1),I» [s1]

‘AC’ I2 By Di

0 8 16 20 31

Bits 0-7 of the current PSW are stored at the
first-operand location. Then the contents of bit
positions 0-7 of the current PSW are replaced by the
logical AND of their original contents and the second
operand.

The operation is suppressed on protection and
addressing exceptions.

Chapter 10. Control Instructions 10-13

Condition Code: The code remains unchanged.

Program Exceptions:

Access (store, operand 1)
Privileged Operation

Programming Nete

The STORE THEN AND SYSTEM MASK
instruction permits the program to set selected bits in
the system mask to zeros while retaining the original
contents for later restoration.

STORE THEN OR SYSTEM MASK
STOSM Dy(B1),I» [S1]

‘AD’ 12 By Dy

0 8 16 20 31

Bits 0-7 of the current PSW are stored at the
first-operand location. Then the contents of bit
positions 0-7 of the current PSW are replaced by the
logical OR of their original contents and the second
operand.

10-14 IBM 4300 Processors Principles of Operation

The value to be loaded into the PSW is not checked
for validity before loading. However, immediately
after loading, a specification exception is recognized,
and a program interruption occurs, if the CPU is in
the EC mode and the contents of bit positions 0 and
2-5 of the PSW are not all zeros. In this case, the
instruction is completed, and the instruction-length
code is set to 2.

The operation is suppressed on protection and
addressing exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (store, operand 1)
Privileged Operation
Specification (EC mode only)

Programming Note

The STORE THEN OR SYSTEM MASK instruction

permits the program to set selected bits in the system
mask to ones while retaining the original contents for
later restoration. :

Chapter 11. Machine-Check Handling

Contents

Machine-Check Detection 11-1
Correction of Machine Malfunctions 11-1
Handling of Machine Checks 11-2
Invalid CBC in Storage 11-2
Invalid CBC in Page Descriptions 11-2
Invalid CBC in Registers 11-3
Usage of Validation 11-3
Check-Stop State 11-3
Machine-Check Interruption 11-4
Exigent Conditions 11-4
Repressible Conditions 11-4

The machine-check-handling mechanism provides
machine-malfunction detection to ensure the integrity
of machine operation and permit automatic recovery
from some malfunctions. Machine malfunctions are
reported by machine-check interruptions to assist in
program-damage assessment and recovery.

Machine-Check Detection

Machine-check-detection mechanisms may take many
forms, especially in control functions for arithmetic
and logical processing, addressing, sequencing, and
execution. For program-addressable information,
detection is normally accomplished by encoding
redundancy into the information in such a manner
that most failures in the retention or transmission of
the information will result in an invalid code. The
encoding normally takes the form of one or more
redundant bits, called check bits, appended to a group
of data bits. Such a group of data bits and the
associated check bits are called a checking block.

The size of the checking block depends on the model
and is less than or equal to 2,048 bytes of data.

The inclusion of a single check bit in the checking
block allows the detection of any single-bit failure
within the checking block. In this arrangement, the
check bit is sometimes referred to as a parity bit. In
other arrangements, a group of check bits is included
to permit detection of multiple errors, to permit error
correction, or both.

For checking purposes, the entire contents of a
checking block, including the redundancy, is called a
checking-block code (CBC). When a CBC
completely meets the checking requirements (that is,

Interruption Action 11-4
Point of Interruption 11-5
Machine-Check-Interruption Code 11-6
Subclass 11-7
Augxiliary Bits 11-8
Machine-Check Interruption-Code Validity Bits 11-8
Machine-Check Extended Interruption Information 11-9
Register-Save Areas 11-9
Failing-Storage Address 11-9
Machine-Check Masking 11-9

no failure is detected), it is said to be valid. When
both detection and correction are provided and a
CBC is not valid but satisfies the checking
requirements for correction (the failure is
correctable), it is said to be near-valid. When a CBC
does not satisfy the checking requirements (the
failure is uncorrectable), it is said to be invalid.

Correction of Machine Malfunctions

When sufficient redundancy is included in circuitry or
in a checking block, failures can be corrected. For
example, circuitry can be triplicated, with a voting
circuit to take two out of three, thus correcting a
single failure. An arrangement for correction of
failures of one order and for detection of failures of a
higher order is called error checking and correction
(ECC). Commonly, ECC allows correction of
single-bit failures and detection of double-bit failures.
Some models have the capability of correcting
intermittent errors by retrying CPU operations.
When a malfunction is detected, recovery is
attempted by returning the CPU state to that existing
at the checkpoint when information about the CPU
state was last saved, and proceeding from that point.
Machine failures which are corrected successfuily
may be reported by machine-check interruptions as
system-recovery conditions. This permits the
program to note the cause of CPU delay and to keep
a log of such incidents.

Chapter 11. Machine-Check Handling 11-1

Handling of Machine Checks

A machine check can be caused only by a machine
malfunction and never by data or instructions. This
is ensured during the power-on sequence by
initializing the machine controls to a valid state and
by placing valid CBC in the CPU registers, in the
page descriptions, and in all available page frames.

Specification of an unavailable component, such as
a channel or I/0 device, does not cause a
machine-check indication. Instead, such a condition
is indicated by the appropriate program or I/0
interruption or condition-code setting. In particular,
an attempt to access a storage location which has
been configured out of the system results in an
addressing exception and does not generate a
machine-check condition, even though the storage
location or its associated storage key has invalid
CBC.

A machine check is indicated whenever the result of
an operation could be affected by information with
invalid CBC, or when any other malfunction makes it
impossible to establish reliably that an operation can
be, or has been, performed correctly. When
information with invalid CBC is fetched but not used,
the condition may or may not be indicated.

When an operation alters a checking block, invalid
CBC is preserved as invalid unless the contents of the
entire checking block are replaced in the operation.

When a machine malfunction is detected, the action
taken depends on the model, the nature of the
malfunction, and the situation in which the
malfunction occurs. A malfunction detected as part
of an I/O operation may cause a machine-check
condition, an I/O-error condition, or both.
1/O-error conditions are indicated by an I/O
interruption or by the appropriate condition-code
setting during the execution of an I/O instruction.
When a CCW or data with invalid CBC is fetched
from storage but is not used in an I/O operation, the
condition may or may not be reported.

When the machine reports a failing storage location
detected during an I/O operation, both I/O-error
and machine-check conditions are presented. The
1/0O-error condition is the primary indication to the
program. The machine-check condition is a
secondary report, which is indicated as system
recovery together with a failing-storage address.

A malfunction, detected as part of an operation that
is not 1/O, can only cause a machine-check
condition. Machine-check conditions may be
reported as machine-check interruptions, or they may
cause the CPU to enter the check-stop state.

11-2 IBM 4300 Processors Principles of Operation

Invalid CBC in Storage

An attempt to store into a checking block with
invalid CBC, without replacing the entire checking
block, leaves the data in the checking block
(including the check bits) unchanged.

When the checking block consists of multiple bytes
and contains invalid CBC, special procedures are
necessary to place new information into the checking
block. Placing valid CBC in storage is called storage
validation. ‘

Storage validation is provided as a program function
and is also provided with the manual clear-reset
function. Programmed storage validation is done,
one page at a time, by executing the privileged
instruction CLEAR PAGE. Manual storage
validation by clear reset validates all pages.

Invalid CBC in Page Descriptions
When invalid CBC is detected in a page description,
a machine-check interruption may occur; depending
on the circumstances, the machine-check condition
may be system damage, instruction-processing
damage, system recovery, or external damage. The
machine-check condition may or may not be
accompanied by a storage-key-error indication. Also,
if invalid CBC in a page description is detected
during an 1/0 operation, a channel-control check is
normally indicated at the end of the I/O operation.
In addition to internal storage for page descriptions,
some models may have a separate lookaside storage
for the storage keys of connected or addressable
pages. Each entry of such a lookaside is associated
with a page frame, whereas each page description is
associated with a page. A storage-key error may be
indicated only when invalid CBC is detected in the
lookaside storage during a reference to the storage
key of a page that is in the connected or addressable
state.
A storage-key error is not indicated when:
« Invalid CBC is detected in the storage key of a
disconnected page
« Invalid CBC is detected in the page bits, the page
state, or the frame index of a page, whether
disconnected or not
« No lookaside storage is provided for storage keys
All parts of the page descriptions are validated
manualily by clear reset. On models which provide
lookaside storage with a separate checking block for
the storage key of each connected or addressable
page, executing the instruction SET STORAGE KEY
sets new values for and validates the storage key
after a storage-key error has been indicated. The

instruction CONNECT PAGE may validate the
lookaside entry of a page frame which previously had
invalid CBC by using the values of the storage key
from the page-description entry.

No storage-key-error indication is given when a
machine check occurs during the execution of
DECONFIGURE PAGE, DISCONNECT PAGE,
LOAD FRAME INDEX, MAKE ADDRESSABLE,
and MAKE UNADDRESSABLE.

Any machine-check condition which would
otherwise be indicated as a storage-key error is
ignored if the access key is zero when a fetch
operation takes place. Depending on the model, a
storage-key error may or may not be ignored if the
access key is zero when a store operation takes place
or when the instruction CLEAR PAGE is executed.

The CPU enters the check-stop state when invalid
CBC is detected in the page description for page 0,
and also when a page description is left in an
inconsistent state after an error occurs while the page
description is being updated.

Programming Note

Recovery from a storage-key error which cannot be
successfully removed by issuing SET STORAGE KEY
may be attempted by issuing DECONFIGURE PAGE
to delete the page frame and CONNECT PAGE to
use another page frame. The previous contents of
the page are lost.

Invalid CBC in Registers

When invalid CBC is detected in a CPU register, a
machine-check condition may be recognized. CPU
registers include the general, floating-point, and
control registers, the current PSW, the time-of-day
clock, the CPU timer, and the clock comparator.

When a machine-check interruption occurs that is
due to invalid CBC in a CPU register, the following
actions are taken as part of the interruption.

1. As for all machine-check interruptions, the
contents of the CPU registers, other than the
time-of-day-clock, are saved in assigned storage
locations. The type of register that is in error is
identified, unless it is the time-of-day clock, by a
corrresponding validity bit of zero in the
machine-check-interruption code. Register saving
does not result in additional
machine-check-interruption conditions; instead,
the accuracy of all the information stored is
indicated by the appropriate setting of the
validity bits.

2. CPU registers with invalid CBC, other than the
time-of-day clock, are then validated, their actual
contents being unpredictable.

CPU registers other than the time-of-day clock are
also validated manually by the clear-reset function;
programmed validation is not provided.

The time-of-day clock enters the error state when a
malfunction is detected in the clock. It is validated
by programming when a SET CLOCK instruction
changes the state of the clock from the error state to
the set state. The clock is also validated manually by
a power-on reset.

Usage of Validation

When an error occurs in a checking block, the
original information contained in the checking block
should be considered lost even after validation.
Automatic register validation leaves the contents
unpredictable. Programmed and manual validation of
checking blocks causes the contents to be changed
explicitly.

Validating a checking block does not ensure a valid
CBC. If the failure is solid, the checking block will
still contain an invalid CBC after validation. For an
intermittent failure, however, validation is useful to
restore a valid CBC such that a subsequent partial
store into the checking block (a store into a checking
block without replacing the entire checking block) by
either the CPU or a channel will be permitted.

Check-Stop State

In certain situations it is impossible or undesirable to
continue operation when a machine error occurs. In
these cases, the CPU may enter the check-stop state,
which is indicated by the check-stop indicator.
In general, the CPU may enter the check-stop state
whenever an uncorrectable error or other malfunction
occurs and the machine is unable to recognize a
specific machine-check-interruption condition.
The CPU always enters the check-stop state when:
« PSW bit 13 is zero and an exigent machine-check
condition is generated

« During the execution of an interruption due to one
exigent machine-check condition, another exigent
machine-check condition is detected

e During a machine-check interruption, the
machine-check-interruption code cannot be stored
successfully or the new PSW cannot be fetched
successfully

« A machine-check interruption cannot be taken
because of a storage error in page 0

Chapter 11. Machine-Check Handling 11-3

« Invalid CBC is detected in the page description for
page 0

e An error occurs while a page description is being
updated, leaving the page description in an
inconsistent state

There may be many other conditions for particular
models when an error may cause check stop.

When the CPU is in the check-stop state,
instructions and interruptions are not executed, the
interval timer is not updated, and channel operations
may be stopped. The time-of-day clock is normally
not affected by the check-stop state. The CPU timer
may or may not run in the check-stop state,
depending on the error. The start key and stop key
are not effective in this state.

The CPU may be removed from the check-stop
state by program reset.

Machine-Check Interruption

The machine-check interruption provides a means of
reporting equipment malfunctions and certain
external disturbances, and it supplies the program
with information about the extent of the resultant
damage and the location and nature of the cause.
There are two major types of conditions which can
cause a machine-check interruption: exigent
conditions and repressible conditions.

Exigent Conditions

Exigent machine-check-interruption conditions are
those in which direct damage has occurred to CPU
operation, so that the current instruction or
interruption cannot safely continue. Exigent
conditions are divided into two subclasses:
instruction-processing damage and system damage.
Malfunctions which cannot be isolated to a specific
function are indicated as system damage.

Repressible Conditions

Repressible machine-check-interruption conditions
are those in which the sequential processing
capability of the CPU has not been damaged.
Repressible conditions can be delayed, until the
completion of the current instruction or even longer,
without affecting the integrity of CPU operation.
Repressible conditions are of three classes: recovery,
alert, and repressible damage. Each class has one or
more subclasses.

A malfunction in the CPU, storage, channels, or
operator facilities, which has been successfully
corrected or circumvented internally without loss of
machine integrity, is called a recovery condition.

11-4 IBM 4300 Processors Principles of Operation

Depending on the model and the type of malfunction,
some or all recovery conditions may be discarded and
not reported. Recovery conditions that are reported
are grouped in one subclass, system recovery.

A machine-check-interruption condition not directly
related to a machine malfunction is called an alert
condition. The alert conditions are grouped in two
subclasses: degradation and warning.

A malfunction resulting in the loss of integrity of a
machine function but not directly affecting sequential
CPU operation is called a repressible-damage
condition. Repressible-damage conditions are divided
into three subclasses, according to the function
affected: interval-timer damage, timing-facility
damage, and external damage.

Programming Note

Classification of a damage condition as repressible
does not imply that the damage is necessarily less
severe than damage classified as an exigent condition.
The distinction is whether action must be taken as
soon as the damage is detected (exigent), or whether
the CPU can continue processing (repressible). For a
repressible condition, the current instruction can be
completed before taking the machine-check
interruption if the CPU is enabled; if the CPU is
disabled for machine checks, the condition can safely
be kept pending until the CPU is again enabled for
machine checks.

For example, the CPU may be disabled for
machine-check interruptions because it is handling an
earlier instruction-processing-damage interruption.

If, during that time, a channel encounters an
independent storage error, which is an
external-damage condition, that condition can be
kept pending because it is not expected to interfere
with the current machine-check processing. If,
however, the CPU also makes a reference to that
damaged area of storage before re-enabling
machine-check interruptions, another
instruction-processing damage condition is created,
which is treated as an exigent condition and causes
the CPU to enter the check-stop state.

Interruption Action

A machine-check interruption causes the PSW
reflecting the point of interruption to be stored as the
machine-check old PSW at location 48. The contents
of other registers are stored in register save areas at
locations 216-231 and 352-511. A failing-storage
address, if any, is stored at location 248. Then a
machine-check-interruption code (MCIC) of eight

bytes is placed at location 232. The new PSW is
fetched from location 112.

If the machine-check-interruption code cannot be
stored successfully or the new PSW cannot be fetched
successfully, the CPU enters the check-stop state.

A repressible machine-check condition can cause a
machine-check interruption only if both PSW bit 13
and the associated subclass mask bit in control
register 14 are ones. When it occurs, the interruption
does not terminate the execution of the current
instruction; the interruption is taken at a normal
point of interruption, and no program or
supervisor-call interruptions are eliminated. If the
repressible machine-check condition occurs during the
execution of a machine function, such as a
CPU-timer update, the machine-check interruption
takes place after the machine function has been
completed.

When the CPU is disabled for a particular
repressible machine-check condition, the condition
remains pending. Only one repressible condition is
held pending for each subclass, regardless of the
number of conditions that may have been detected.

When a repressible machine-check interruption
occurs because the interruption condition is in a
subclass for which the CPU is enabled, pending
conditions in other subclasses may also be indicated
in the same interruption code, even though the CPU
is disabled for those subclasses. All indicated
conditions are then cleared.

If a system-recovery condition is detected during
the execution of the interruption procedure due to a
previous machine-check condition, the
system-recovery condition may be combined with the
other conditions, discarded, or held pending.

An exigent machine check can cause a
machine-check interruption only when PSW bit 13 is
one. When it occurs, the interruption terminates the
execution of the current instruction and may '
eliminate the program and supervisor-call
interruptions, if any, that would have occurred if
execution had continued. Proper execution of the
interruption steps, including the storing of the old
PSW and other information, depends on the nature of
the malfunction. When an exigent machine-check
condition occurs during the execution of a machine
function, such as a CPU-timer update, the sequence
is not necessarily completed. \

If, during the execution of an interruption due to
one exigent machine-check condition, another exigent
machine-check condition is detected, the CPU enters
the check-stop state. If an exigent machine-check

condition is detected during an interruption due to a
repressible machine-check condition, system damage
is reported.

When PSW bit 13 is zero, an exigent machine-check
condition causes the CPU to enter the check-stop
state.

Machine-check-interruption conditions are handled
in the same manner in both the nonwait and wait
states. In the wait state, a machine-check condition
causes an immediate interruption if the CPU is
enabled for that condition.

Machine checks which occur while the rate control
is set to instruction step are handied in the same
manner as when the control is set to process; that is,
recovery and machine-check interruptions occur when
allowed.

Every reasonable attempt is made to limit the side
effects of any machine-check condition and the
associated interruption. Normally, I/O and external
interruptions, as well as the progress of 1/0 data
transfer and the updating of the CPU timer, remain
unaffected. The malfunction, however, may affect
these activities, and, if the currently active PSW has
bit 13 set to one, the machine-check interruption may
terminate the process of switching PSWs that is due
to another type of interruption. In these cases,
system damage will be indicated.

Point of Interruption

The point in the processing which is indicated by the
interruption and used as a reference point by the
machine to determine and indicate the validity of the
status stored is referred to as the point of
interruption.

Only certain points in the processing may be used
as a point of interruption. For repressible machine
checks, the point of interruption must be after one
unit of operation is completed and any associated
program or supervisor-call interruption is taken, and
before the next unit of operation is begun.

Exigent machine-check conditions can occur at any
point during instruction processing. The point of
interruption may be after the unit of operation is
completed but before any associated program or
supervisor-call interruption occurs. . In this case, a
valid PSW is defined as that which would have been
stored in the old PSW for the program or
supervisor-call interruption. Even though all status
may be indicated as valid, damage has occurred
because the associated interruption is lost.

When the point of interruption for an exigent
machine-check condition occurs after an associated

Chapter 11. Machine-Check Handling 11-5

program or supervisor-call interruption, the damage
has not been isolated to a particular program, and
system damage is indicated.

Programming Note

When an exigent machine-check condition occurs, the
point of interruption which is chosen affects the
amount of damage which must be indicated. An
attempt is made, when possible, to choose a point of
interruption which permits the minimum indication of

instruction address which is stored in the
machine-check old PSW is valid.

Machine-Check-Interruption Code

The machine-check-interruption code (MCIC) is an
eight-byte field starting at location 232 and has the
format shown in the figure "Machine-Check
Interruption-Code Format."

Bits in the MCIC which are not assigned, or not
implemented by a particular model, are stored as

All other bits of the MCIC are unassigned and stored as zeros.

Machine-Check Interruption-Code Format

11-6 IBM 4300 Processors Principles of Operation

damage. Zeros.
When all the status information stored as a result of
an exigent machine-check condition does not reflect
the same point, an attempt is made when possible to
choose the point of interruption so that the
S PSTCE D S K WMP I F FGC S
DDRDDDOGW|O0OOOOU OO|DEUGOTETU O|P SMAA|OOPRREOT
1] 9 15 20 27 31
cC C
00 00O0OO0OOOOOOOOOTTC|OO0O0OOOOOOOOOOOOG O
32 46 48 63
Bit 0 System damage (SD)
Bit 1 Instruction-processing damage (PD)
Bit 2 System recovery (SR)
Bit 3 Interval-timer damage (TD)
Bit4 Timing-facility damage (CD)
Bit5 External damage (ED)
Bit 7 Degradation {DG)
Bit 8 Warning (W)
Bit 15 Delayed (D)
Bit 16 Storage error uncorrected (SE)
Bit 18 Storage-key error uncorrected (KE)
- Bit 20 PSW EMWP validity (WP)
Bit 21 PSW mask and key validity (MS)
Bit 22 PSW program-mask and condition-code validity (PM)
Bit 23 PSW instruction-address validity {IA)
Bit 24 Failing-storage-address validity (FA)
Bit 27 Floating-point-register validity (FP)
Bit 28 General-register validity (GR)
Bit 29 Control-register validity (CR)
Bit 31 Storage logical validity {ST)
Bit 46 CPU-timer validity (CT)
Bit47 Clock-comparator validity (CC)

Programming Note

The program should not depend on unassigned bits in
the machine-check-interruption code being zeros, so
as to ensure that existing programs run if and when
new facilities using these bits are defined.

Subclass

Bits 0-5 7, and 8 identify the type of machine-check
condition causing the interruption. At least one of
the defined subclass bits is stored as a one. When
multiple errors have occurred, several of the defined
bits may be set to ones.

System Damage (SD): Bit 0, when one, indicates
that damage has occurred which cannot be isolated to
one or more of the less severe machine-check damage
subclasses. System damage is an exigent condition.

Instruction-Processing Damage (PD): Bit 1, when
one, indicates that a malfunction has been detected in
the processing of an instruction. Detection of such
damage is synchronous with CPU operation.

For damage to be indicated as
instruction-processing damage, the damaged
instruction and the point of interruption must not be
separated by an interruption or by a LOAD PSW
instruction, and the extent of the damage must fall
within one or more of the following catagories:

1. The damaged area still contains invalid CBC.

2. The damaged area lies within the destination
operand of the instruction.

3. The damaged area lies within the general
registers, floating-point registers, control registers,
or PSW.

Instruction-processing damage is an exigent
condition.

System Recovery (SR): Bit 2, when one, indicates
that malfunctions were detected but have been
successfully corrected or circumvented without the
loss of machine integrity. CPU-detected
malfunctions are reported as system recovery only if
the CPU successfully completes the operation or unit
of operation in which the malfunction was detected.
Some I/0-detected malfunctions may result in a
system-recovery condition in addition to an I/O-error
condition. The indication of system recovery does
not imply storage logical validity, or that the fields
stored as a result of the machine-check interruption
are valid. The presence and extent of the
system-recovery capability depend on the model.
System recovery is a repressible condition.

Interval-Timer Damage (TD): Bit 3, when one,
indicates that damage has occurred to the interval
timer or to storage location 80. Interval-timer
damage is a repressible condition.

Timing-Facility Damage (CD): Bit 4, when one,
indicates that damage has occurred to the time-of-day
clock, the CPU timer, or the clock comparator. The
timing-facility-damage machine-check condition is set
whenever any of the following occurs:

1. The time-of-day clock enters the error or
not-operational state.

2. The CPU timer is damaged, and the CPU is
enabled for CPU-timer external interruptions.

3. The CPU timer is damaged, and SET CPU
TIMER or STORE CPU TIMER is executed.

This condition also sets instruction-processing
damage.

4. The clock comparator is damaged, and the CPU
is enabled for clock-comparator external
interruptions.

5. The clock comparator is damaged, and SET
CLOCK COMPARATOR or STORE CLOCK
COMPARATOR is executed. This condition also
sets instruction-processing damage.

Timing-facility damage is a repressible condition.

External Damage (ED): Bit 5, when one, indicates
that damage has occurred to a channel or to storage
during operations not directly associated with
processing the current instruction. Channel
malfunctions are reported as external damage only
when the channel is unable to report the malfunctions
by an 1/0 interruption. Depending on the model and
on the type and extent of the error, an
external-damage condition may be indicated as
system damage instead of external damage.

External damage is a repressible condition.

Degradation (DG): Bit 7, when one, indicates that
continuous degradation of system performance, more
serious than that indicated by system recovery, has
occurred. Degradation may be reported when
system-recovery conditions exceed a
machine-preestablished threshold. The presence and
extent of the degradation-report capability depends
on the model. .

Degradation is a repressible condition.

Warning (W): Bit 8, when one, indicates that

damage is imminent in some part of the system (for
example, that power is about to fail, or that a loss of

Chapter 11. Machine-Check Handling 11-7

cooling is occurring). Whether warning conditions
are recognized depends on the model.
Warning is a repressible condition.

Programming Notes

1. On some models with CPU retry, a CPU-retry
operation may delay the response to a concurrent
1/0 operation, thus causing an I/O overrun or
chaining check and, hence, an I/O-interruption
condition. Consequently, when a
machine-check-interruption condition indicating
system recovery and such an I/O-interruption
condition occur at approximately the same time,
the overrun may be due to a CPU delay rather
than to timing problems with the I/O device and
channel.

2. Timing-facility-damage interruptions for the CPU
timer and the clock comparator are disallowed
when these facilities are not in use. The facilities
are considered not in use when the CPU is
disabled for the corresponding external

_interruptions (PSW bit 7, or the submask bits,
bits 21 and 20 of control register 0, are zero),
and when the corresponding set and store
instructions are not being issued.
Timing-facility-damage interruptions due to
damage to the time-of-day clock cannot be so
disallowed.

Auxiliary Bits

Bits 15, 16, and 18 of the
machine-check-interruption code may occur together
with one or more of the bits in the subclass field to
indicate a delayed condition, an uncorrected storage
error, and an uncorrected key error, respectively.

Delayed (D): Bit 15, when one, indicates that one
or more of the repressible machine-check conditions
being reported were delayed because, at the time a
particular error was detected, the CPU was disabled
for that type of interruption. The bit does not apply
to exigent conditions, which cannot be delayed.

Storage Error Uncorrected (SE): Bit 16, when one,
indicates invalid CBC for the contents of a storage
page that is in the connected or addressable state.

Storage-Key Error Uncorrected (KE): Bit 18, when
one, indicates invalid CBC for the storage key in
lookaside storage which is associated with a storage
page that is in the connected or addressable state.

11-8 IBM 4300 Processors Principles of Operation

Programming Note

The storage-error and storage-key-error bits do not in
themselves indicate the occurrence of damage
because the error detected may not have affected a
result. The accompanying subclass bits of the
interruption code indicate the area affected by the
error.

Machine-Check Interruption-Code Validity Bits

Bits 20-24, 27-29, 31, 46, and 47 of the
machine-check-interruption code are validity bits.
Each bit indicates the validity of a particular field in
storage. With the exception of the
storage-logical-validity bit (bit 31), each bit is
associated with a field stored during the
machine-check interruption. When a validity bit is
one, it indicates that the corresponding storage field
is valid with respect to the indicated point of
interruption and that no error was detected when the
data was stored.

When a validity bit is zero, one or more of the
following conditions may have occurred: the original
information was incorrect, the original information
had invalid CBC, additional malfunctions were
detected while storing the information, or none or
only part of the information was stored. Even
though the information is unpredictable, the machine
will attempt, when possible, to place valid CBC in the
storage field and thus reduce the possibility of
additional machine checks being caused.

PSW EMWP Validity (WP): Bit 20, when one,
indicates that the EMWP bits (bits 12-15) of the
machine-check old PSW are correct.

PSW Mask and Key Validity (MS): Bit 21, when
one, indicates that the system mask and the PSW key
(bits 0-11) of the machine~check old PSW are
correct.

PSW-Program-Mask and Condition-Code Validity
(PM): Bit 22, when one, indicates that the program
mask and condition code of the machine-check old
PSW are correct.

PSW-Instruction-Address Validity (I4): Bit 23, when
one, indicates that the instruction address (bits
40-63) of the machine-check old PSW is correct.

Failing-Storage-Address Validity (FA): Bit 24, when
one, indicates that a correct failing-storage address
has been placed at location 248 after an uncorrected

storage error or storage-key error. When no such
errors are reported, that is, bits 16 and 18 of the
‘machine-check-interruption code are zeros, the
failing-storage address is meaningless, even though it
may be indicated as valid.

Floating-Point-Register Validity (FP): Bit 27, when
one, indicates that the contents of the
floating-point-register save area at locations 352-383
reflect the correct state of the floating-point registers
at the point of interruption.

General-Register Validity (GR): Bit 28, when one,
indicates that the contents of the general-register
save area at locations 384-447 reflect the correct
state of the general registers at the point of
interruption.

Control-Register Validity (CR): Bit 29, when one,
indicates that the contents of the control-register save
area at locations 448-511 reflect the correct state of
the control registers at the point of interruption.

Storage Logical Validity (ST): Bit 31, when one,
indicates that the contents of those storage locations
which are modified by the instructions being executed
contain the correct information relative to the point
of interruption. That is, all stores before the point of
interruption are completed, and all stores, if any,
after the point of interruption are suppressed. When
a store before the point of interruption is suppressed
because of an invalid CBC, the
storage-logical-validity bit may be indicated as one,
provided that the invalid CBC has been preserved as
invalid.

CPU-Timer Validity (CT): Bit 46, when one,
indicates that the CPU timer is not in error and that
the contents of the CPU-timer save area at location
216 reflect the correct state of the CPU timer at the
time the interruption occurred.

Clock-Comparator Validity (CC): Bit 47, when one,
indicates that the clock comparator is not in error and
that the contents of the clock-comparator save area
at location 224 reflect the correct state of the clock
comparator.

Machine-Check Extended Interruption
Information

‘During a machine-check interruption, the current

PSW is stored as the machine-check old PSW at
storage location 48. The current contents of the
other CPU registers, except for the time-of-day clock,
are stored in five register-save areas assigned in
storage. When an uncorrected storage error or
storage-key error is indicated, the failing-storage
address is also saved.

Each of these fields has associated with it one or
more validity bits in the machine-check-interruption
code. If, for any reason, the machine cannot store
one of these fields or cannot store the field validly,
the associated validity bit is set to zero.

Register-Save Areas

The following are the five sets of registers and the
locations in storage where their contents are saved
during a machine check:

Locations Registers

216-223 CPU timer

224-231 Clock comparator

352-383 Floating-point registers 0, 2, 4, 6
384-447 General registers 0-15

448-511 Control registers 0-15

The information stored for unassigned
control-register positions is unpredictable.

Failing-Storage -Address

When an uncorrected storage error or storage-key
error is indicated in the machine-check-interruption
code, the associated address, called the failing-storage
address, is stored in bits 8-31 of the word at location
248. Bits 0-7 of that word are set to zeros.

The failing-storage address may be the address of
any location within the page that is in error or that is
associated with the storage key in error. When an
error is detected in more than one location before the
interruption, the failing-storage address may point to
any of the failing locations.

Machine-Check Masking

The exigent machine-check conditions (system
damage and instruction-processing damage) are
controlled only by the machine-check mask, PSW bit
13. When the mask bit is one, an exigent condition
causes a machine-check interruption. When the mask
is zero, the occurrence of an exigent machine-check
condition causes the CPU to enter the check-stop
state.

Chapter: 11. Machine-Check Handling 11-9

The repressible machine-check conditions (system
recovery, interval-timer damage, timing-facility
damage, external damage, degradation, and warning)
are controlled both by the machine-check mask, PSW
bit 13, and by four subclass mask bits in control -
register 14. If PSW bit 13 is one and one of the
subclass mask bits is one, the associated condition
initiates a machine-check interruption. If the
subclass mask is zero, the associated condition does
not initiate an interruption, but the condition may be
presented with another condition which initiates the
interruption. All conditions presented are then
cleared.

Control Register 14

NN

4

Bits 4-7 of control register 14 are the submasks for
repressible machine-check conditions. In addition,

11-10 IBM 4300 Processors Principles of Operation

bit 0 is initialized to one, but it is otherwise ignored
by the machine. All other bits of control register 14
are unassigned.

Recovery Report Mask (RM): Bit 4 of control
register 14 controls system-recovery-interruption
conditions. This bit is initialized to zero.

Degradation-Report Mask (DM): Bit 5 of control
register 14 controls degradation-interruption
conditions. This bit is initialized to zero.

External-Damage-Report Mask (EM): Bit 6 of
control register 14 controls the following
maching-check-interruption conditions:
interval-timer damage, timing-facility damage, and
external damage. This bit is initialized to one.

Warning Mask (WM): Bit 7 of control register 14
controls warning conditions. This bit is initialized to
zero.

Chapter 12. Input/Output Operations

Contents
Attachment of Input/Output Devices 12-2 Sense 12-40
Input/Output Devices 12-2 Transfer in Channel 12-42
Control Units 12-2) Command Retry 12-42
Channels 12-3 Conclusion of Input/Qutput Operations 12-43
Modes of Operation 12-3 Types of Conclusion 12-43
Types of Channels 12-4 Conclusion at Operation Initiation 12-43
I/0-System Operation 12-5 Immediate Operations 12-44
Compatibility of Operation 12-7 Conclusion of Data Transfer 12-44
Control of Input/OQutput Devices 12-7 Termination by HALT I/0 or HALT DEVICE 1245
Input/Output Device Addressing 12-7 Termination by CLEAR I/0 12-46
States of the Input/Output System 12-8 Termination Due to Equipment Malfunction 12-47
Resetting of the Input/Output System 12-11 Input/Output Interruptions 12-47
1/0 System Reset 12-11 Interruption Conditions 12-47
1/0 Selective Reset 12-11 Channel-Available Interruption 12-48
Effect of Reset on a Working Device 12-11 Priority of Interruptions 12-48
Reset Upon Malfunction 12-12 Interruption Action 12-49
Condition Code 12-12 Channel-Status Word 12-49
Instruction Formats 12-14 Unit Status 12-50
Instructions 12-15 Attention 12-50
CLEAR I/O 12-16 Status Modifier 12-50
HALT DEVICE 12-18 Control-Unit End 12-51
HALT I/0 1221 Busy 12-51
START I/O 12-23 Channel End 12-53
START 1/0 FAST RELEASE 12-23 Device End 12-53
STORE CHANNEL ID 12-26 Unit Check 12-53
TEST CHANNEL 1227 Unit Exception 12-54
TEST I/O 12-27 Channel Status 12-55
Input/Output-Instruction-Exception Handling 12-30 Program-Controlled Interruption 12-55
Execution of Input/Output Operations 12-30 Incorrect Length 12-55
Blocking of Data 12-30 Program Check 12-55
Channel-Address Word 12-30 Protection Check 12-56
Channel-Command Word 12-31 Channel-Data Check 12-56
Command Code 12-32 Channel-Control Check 12-56
Designation of Storage Area 12-32 Interface-Control Check 12-57
Chaining 12-33 Chaining Check 12-57
Data Chaining 12-3§ Contents Of Channel-Status Word 12-57
Command Chaining 12-36 Information Provided by Channel-Status Word 12-57
Skipping 12-36 Subchannel Key 12-58
Program-Controlled Interruption 12-36 CCW Address 12-58
Commands 12-37 Count 12-59
Write 12-39 Status 12-60
Read 12-39 Channel Logout 12-63
Read Backward 12-39 I/0 Communications Area 12-63

Control 12-40

Chapter 12. Input/Output Operations 12-1

The transfer of information to or from main storage,
other than to or from the central processing unit, is
referred to as an input or output operation. An
input/output (I/0) operation involves the use of an
1/0 device. Input/output devices perform 1/0
operations under control of control units, which are
attached to the central processing unit (CPU) by
means of channels.

This portion of the publication describes the
programmed control of I/O devices by the channels
and by the CPU. Formats are defined for the various
types of I/0O control information. The formats apply
to all I/O operations and are independent of the type
of I/0 device, its speed, and its mode of operation.

The formats described include provisions for
functions unique to some I/O device types, such as
an erase gap on a magnetic-tape unit. The way in
which a device makes use of the format is defined in
the System Library (SL) publication for the particular
device.

All main-storage references for I/0 operations are
references to virtual storage. Unless indicated
otherwise, "'storage" means virtual storage, and
"address" means virtual address. The terms ''I/O
address," "channel address," and "device address"
are never abbreviated to "address' in this
publication.

Attachment of Input/Qutput Devices

Input/Output Devices

Input/output devices provide external storage and a
means of communication between data-processing
systems or between a system and its environment.
Input/output devices include such equipment as card
readers, card punches, magnetic-tape units, direct-
access-storage devices (disks and drums), display
units, typewriter-keyboard devices, printers,
teleprocessing devices, and sensor-based equipment.
Most types of 1/0 devices, such as printers, card
equipment, or tape devices, deal directly with
external media, and these devices are physically
distinguishable and identifiable. Other types consist
only of electronic equipment and do not directly
handle physical recording media. The channel-to-
channel adapter, for example, provides a channel-to-
channel data-transfer path, and the data never
reaches a physical recording medium outside main
storage. Similarly, a transmission-control unit
handles transmission of information between the

12-2 IBM 4300 Processors Principles of Operation

data-processing system and a remote station, and its
input and output are signals on a transmission line.
An 1/0 device may be physically distinct equipment,
or it may time-share equipment with other I/0
devices.

An input/output device ordinarily is attached to one
control unit and is accessible from one channel.
Switching equipment is available to make some
devices accessible to two or more channels by
switching devices between control units and control -
units between channels. The time required for
switching occurs during device-selection time and
may be ignored.

Control Units

A control unit provides the logical capabilities
necessary to operate and control an I/0 device and
adapts the characteristics of each device to the
standard form of control provided by the channel.

The control unit accepts control signals from the
channel, controls the timing of data transfer, and
provides indications concerning the status of the
device.

The 1/0 device attached to the control unit may be
designed to perform only certain limited operations,
or it may perform many different operations. A
typical operation is moving the recording medium and
recording data. To accomplish these functions, the
device needs detailed signal sequences peculiar to the
type of device. The control unit decodes the
commands received from the channel, interprets them
for the particular type of device, and provides the
signal sequence required for execution of the
operation.

A control unit may be housed separately, or it may
be physically and logically integral with the I/0
device or the CPU. In the case of most
electromechanical devices, a well-defined interface
exists between the device and the control unit
because of the difference in the type of equipment
the control unit and the device contain. These
electromechanical devices often are of a type where
only one device of a group attached to a control unit
is required to operate at a time (magnetic-tape units
or disk-access mechanisms, for example), and the
control unit is shared among a number of I/0
devices. On the other hand, in some electronic I/0
devices such as the channel-to-channel adapter, the
control unit does not have an identity of its own.

From the programmer’s point of view, most
functions performed by the control unit can be
merged with those performed by the I/0 device.
Therefore, this publication normally does not make
specific mention of the control unit function; the
execution of I/O operations is described as if the 1/0
devices communicated directly with the channel.
Reference is made to the control unit only when
emphasizing a function performed by it or when
describing how sharing of the control unit among a
number of devices affects the execution of I/0
operations.

Channels

A channel directs the flow of information between
1/0 devices and main storage. It relieves the CPU of
the task of communicating directly with the devices
and permits data processing to proceed concurrently
with I/0O operations.

A channel provides a means for connecting
different types of I/0 devices to the CPU and to
storage. It accepts control information from the CPU
in the format supplied by the program and changes it
into a sequence of signals acceptable to a control
unit. After the operation with the device has been
initiated, the CPU is released for other work, and the
channel assembles or disassembles data and
synchronizes the transfer of data bytes with storage
cycles. To accomplish this, the channel maintains
and updates an address and a count that describe the
destination or source of data in storage. Similarly,
when an I/O device provides signals that should be
brought to the attention of the program, the channel
transforms the signals to information that can be used
in the CPU.

A channel contains common facilities for the
control of I/0 operations. When these facilities are
provided in the form of separate autonomous
equipment designed specifically to control I/0O
devices, 1/O operations are completely overlapped
with the activity in the CPU. The only storage cycles
required during I/O operations in such channels are
those needed to transfer data and control information
to or from the final locations in storage. These cycles
do not interfere with the CPU program, except when
both the CPU and the channel concurrently attempt
to refer to the same storage area.

If separate equipment is not provided, facilities of
the CPU are used for controlling I/0O devices. When
the CPU and channels, or the CPU, channels, and
control units, share common facilities, I/O operations
cause interference to the CPU, varying in intensity

from occasional delay of a CPU cycle to a complete
lockout of CPU activity. The intensity depends on
the extent of sharing and on the I/O data rate. The
sharing of the facilities, however, is accomplished
automatically, and the program is not affected by
CPU delays, except for an increase in execution time.
The effects of sharing on the CPU timer and interval
timer are described in Chapter 4, "Control."

Modes of Operation

An I/0 operation occurs in one of two modes: burst
or byte multiplex.

In burst mode, the I/O device monopolizes the
channel and stays logically connected to the channel
for the transfer of a burst of information. No other
device can communicate with the channel during the
time a burst is transferred. The burst can consist of a
few bytes, a whole block of data, a sequence of
blocks with associated control and status information
(the block lengths may be zero), or status
information which monopolizes the channel.

Some channels can tolerate an absence of data
transfer during a burst-mode operation, such as
occurs when reading a long gap on magnetic tape, for
not more than approximately 1/2 minute. Equipment
malfunction may be indicated when an absence of
data transfer exceeds this time.

In byte-multiplex mode, the facilities in the channel
may be shared by a number of concurrently operating
1/0 devices. In this mode, all I/O operations are
split into short intervals of time during which only a
segment of information is transferred. During such
an interval, only one device is logically connected to
the channel. The intervals associated with the
concurrent operation of multiple I/O devices are
sequenced in response to demands from the devices.
The channel controls are occupied with any one
operation only for the time required to transfer a
segment of information. The segment can consist of
a single byte of data, a few bytes of data, a status
report from the device, or a control sequence used for
initiation of a new operation.

Operation in burst and byte-multiplex modes is
differentiated because of the way the channels
respond to I/O instructions. A channel operating a
device in the burst mode appears busy to new I/0
instructions, whereas a channel operating one or more
devices in the byte-multiplex mode is available for
initiating an operation on another device. If a
channel that can operate in either mode happens to
be communicating with an I/0 device at the instant a
new I/O instruction is issued, action on the

Chapter 12. Input/Output Operations 12-3

instruction is delayed by the channel until the current
mode of operation is established. Furthermore, the
new 1/0 operation is initiated only after the channel
has serviced all outstanding requests for data transfer
from devices previously placed in operation.

The distinction between a short burst of data
occurring in the byte-multiplex mode and an
operation in the burst mode is in the length of the
bursts of data. A channel that can operate in either
mode determines its mode of operation by "time-
out." Whenever the burst causes the device to be
connected to the channel for more than
approximately 100 microseconds, the channel is
considered to be operating in the burst mode.

Ordinarily, devices with a high data-transfer rate
operate with the channel in burst mode, and slower
devices run in byte-multiplex mode. Some control
units have a manual switch for setting the mode of
operation.

Types of Channels

A system can be equipped with three types of
channels: selector, byte multiplexer, and block
multiplexer.

The channel facilities required for sustaining a
single 1/O operation are termed a subchannel. The
subchannel consists of internal storage used for
recording the addresses, count, and any status and
control information associated with the I/O
operation. The capability of a channel to permit
multiplexing depends upon whether it has more than
one subchannel.

A selector channel, which contains a minimum of
facilities, has one subchannel and always forces the
I/O device to transfer data in the burst mode. The
burst extends over the whole block of data, or, when
command chaining is specified, over the whole
sequence of blocks. A selector channel cannot
perform any multiplexing and therefore can be
involved in only one I/O operation or chain of
operations at a time. In the meantime, other I/0
devices attached to the channel can be executing
previously initiated operations that do not involve
communication with the channel, such as backspacing
tape. When the selector channel is not executing an
operation or a chain of operations and is not
processing an interruption, it monitors the attached
devices for status information.

A byte-multiplexer channel contains multiple
subchannels and can operate in either byte-multiplex
or burst mode. The channel operates most efficiently
when running I/0 devices that are designed to

12-4 IBM 4300 Processors Principles of Operation

operate in byte-multiplex mode. The mode of
operation is determined by the I/0O device, and the
mode can change at any time. The data transfer
associated with an operation can occur partially in
the byte-multiplex mode and partially in the burst
mode.

A block-multiplexer channel contains multiple
subchannels and can only operate in burst mode.
The channel operates most efficiently when running
devices that are designed to operate in burst mode.
When multiplexing is not inhibited, the channel
permits multiplexing during operations with an I/0O
device, between bursts, or when command retry is
performed. On most models, the burst is forced to
extend over the block of data, and multiplexing is
permitted between blocks of data when command
chaining is specified. Whether or not multiplexing
occurs depends on the design of the channel and I/0
device and on the state of the block-multiplexing-
control bit.

When the block-multiplexing-control bit, bit 0 of
control register 0, is zero, multiplexing is inhibited;
when it is one, multiplexing is allowed.

Whether a block-multiplexer channel executes an
1/0 operation with multiplexing inhibited or allowed
is determined by the state of the block-multiplexing-
control bit at the time the operation is initiated by
START I/0 or START I/0O FAST RELEASE and
applies to that operation until the involved
subchannel becomes available.

Both byte-multiplexer and block-multiplexer
channels vary in the number of subchannels they
contain. When multiplexing, they can sustain
concurrently one 1/O operation per subchannel,
provided that the total load on the channel does not
exceed its capacity. Each subchannel appears to the
program as an independent selector channel, except
in those aspects of communication that pertain to the
physical channel (for example, individual subchannels
on a multiplexer channel are not distinguished as such
by the TEST CHANNEL instruction or by the masks
controlling I/0O interruptions from the channel).
When a multiplexer channel is not servicing an I/0
device, it monitors its devices for data and for status
information.

Subchannels on a multiplexer channel may be either
nonshared or shared.

A subchannel is referred to as nonshared if it is
associated with and can be used only by a single I/0
device. A nonshared subchannel is used with devices
that do not have any restrictions on the concurrency
of channel-program operations, such as the IBM 3211

Printer Model 1 or one drive of an IBM 3330 Disk
Storage.

A subchannel is referred to as shared if data
transfer to or from a set of devices implies the use of
the same subchannel. Only one dcvice associated
with a shared subchannel may be involved in data
transmission at a time. Shared subchannels are used
with devices, such as magnetic-tape units or some
disk-access mechanisms, that share a control unit.
For such devices, the sharing of the subchannel does
not restrict the concurrency of I/O operations since
the control unit permits only one device to be
involved in a data-transfer operation at a time. I/O
devices may share a control unit without necessarily
sharing a subchannel. For example, each
transmission line attached to the IBM 2702
Transmission Control is assigned a nonshared
subchannel, although all of the transmission lines
share the common control unit.

Programming Notes

A block-multiplexer channel can be made to operate
as a selector channel by the appropriate setting of the
block-multiplexing-control bit. However, since a
block-multiplexer channel inherently can interleave
the execution of multiple I/O operations and since
the state of the block-multiplexing-control bit can be
changed at any time, it is possible to have one or
more operations that permit multiplexing and an
operation that inhibits multiplexing being executed
simultaneously by a channel.

Therefore, to ensure complete compatibility with
selector channel operation, all operational
subchannels on the block-multiplexer channel must be
available or operating with multiplexing inhibited
when the use of that channel as a selector channel is
begun. All subsequent operations should then be
initiated with the block-multiplexing~control bit
inhibiting multiplexing.

1/0-System Operation

Input/output operations are initiated and controlled
by information with two types of formats:
instructions and channel-command words (CCWs).
Instructions are decoded by the CPU and are part of
the CPU program. CCWs are decoded and executed
by the channels and I/O devices and initiate 1/0
operations, such as reading and writing. One or more
CCWs arranged for sequential execution form a
channel program. Both instructions and CCWs are
fetched from storage and their formats are common
for all types of 1/0 devices, although the modifier

bits in the command code of a CCW may specify
device-dependent operations.

The CPU program initiates I/O operations with the
instruction START I/O or START I/0 FAST
RELEASE. These instructions identify the channel
and device and cause the channel to fetch the
channel-address word (CAW) from a fixed location
in storage. The CAW contains the subchannel key
and designates the location in storage from which the
channel subsequently fetches the first CCW. The
CCW specifies the command to be executed and the
storage area, if any, to be used.

When the CAW has been fetched, some channels
consider the execution of START I/O FAST
RELEASE complete. The results of the execution of
the instruction to that point are indicated by setting
the condition code in the program-status word (PSW)
and, in certain situations, by storing pertinent
information in the channel-status word (CSW).

If the channel is not operating in burst mode and if
the subchannel associated with the addressed I/0
device is available, the channel attempts to select the
device by sending the address of the device to all
control units attached to the channel. A control unit
that recognizes the address connects itself logically to
the channel and responds to its selection by returning
the address of the selected device. The channel
subsequently sends the command-code part of the
CCW to the control unit, and the device responds
with a status byte indicating whether it can execute
the command.

At this time, the execution of START I/0 and of
START I/0 FAST RELEASE, if not previously
considered complete, is completed. The results of the
attempt to initiate the execution of the command are
indicated by setting the condition code in the PSW
and, in certain situations, by storing pertinent
information in the CSW.

If the operation is initiated at the device and its
execution involves transfer of data, the subchannel is
set up to respond to service requests from the device
and assumes further control of the operation. In the
case of operations that do not require any data to be
transferred to or from the device, the device may
signal the end of the operation immediately on
receipt of the command code.

An I/0 operation may involve transfer of data to
one storage area, designated by a single CCW, or to a
number of noncontiguous storage areas. In the latter
case, generally a list of CCWs is used for execution
of the I/O operation, each CCW designating a
contiguous storage area, and the CCWs are said to be

Chapter 12. Input/Output Operations 12-5

coupled by data chaining. Data chaining is specified
by a flag in the CCW and causes the channel to fetch
another CCW upon the exhaustion or filling of the
storage area designated by the current CCW. The
storage area designated by a CCW fetched on data
chaining pertains to the I/O operation already in
progress at the I/0 device, and the I/O device is not
notified when a new CCW is fetched. Provision is
made in the CCW format for the programmer to
specify that, when the CCW is decoded, the channel
request an I/O interruption as soon as possible,
thereby notifying the CPU program that chaining has
progressed at least as far as that CCW.

The conclusion of an I/O operation normally is
indicated by channel end and device end. Channel
end indicates that the I/O device has received or
provided all data associated with the operation and
no longer needs channel facilities. Device end
indicates that the I/0O device has concluded execution
of the operation. Device end can occur concurrently
with channel end or later.

Operations that keep the control unit busy after
releasing channel facilities may, in some situations,
cause a third indication called control-unit end.
Control-unit end may occur only concurrently with or
after channel end and indicates that the control unit
has become available for initiation of another
operation.

Concurrent with channel end, both the channel and
the device can provide indications of unusual
situations. Control-unit end and device end can be
accompanied by error indications from the device.

The indication of the conclusion of an I/0
operation can be brought to the attention of the
program by I/O interruptions or, when the CPU is
disabled for I/0O interruptions from the channel, by
programmed interrogation of the I/O device. An
indication that will result in an interruption or that
can be observed through interrogation is called an
interruption condition. In either case, a CSW is
stored, which contains additional information
concerning the execution of the operation. When
channel end is indicated in the CSW, the CSW
identifies the last CCW used and provides its residual
byte count, thus indicating the extent of storage used.

Facilities are provided for the program to initiate
the execution of a chain of 1/0O operations with a
single START I/0 or START I/0 FAST RELEASE.
When the chaining flags in the current CCW specify
command chaining and no unusual conditions have
been detected in the operation, the receipt of the
device-end signal causes the channel to fetch a new

12-6 IBM 4300 Processors Principles of Operation

CCW and to initiate a new command at the device.
A chained command is initiated in the same way as
the first operation. Channel end and device end are
not presented to the program when chaining causes
another operation to follow. However, unusual
situations can cause premature termination of
command chaining and generation of an interruption
condition.

Activities that cause I/O-interruption conditions are
asynchronous to activity in the CPU, and more than
one interruption condition can exist at the same time.
The channel and the CPU establish priority among
the conditions so that only one condition is presented
to the CPU at a time. The conditions are preserved
in the I/O devices or subchannels until accepted by
the CPU.

The execution of an I/0 operation or chain of
operations thus involves up to four levels of
participation:

1. Except for the effects caused by the integration
of CPU and channel equipment, the CPU is busy
for the duration of execution of START I/0O or
START I/0 FAST RELEASE, which lasts at
most until the addressed 1/0 device responds to
the first command.

2. The subchannel is busy with the execution from
the initiation of the operation at the 1/0 device
until the interruption condition caused by the
signal that terminates the last operation of the
command chain is accepted by the CPU.

3. The control unit may remain busy after the
subchannel has been released and may generate
control-unit end when it becomes free.

4. The I/0 device is busy from the initiation of the
first operation until the interruption condition
caused by the device end associated with the
operation is accepted or cleared by the CPU.

An interruption condition caused by device end
makes the device appear busy, but normally does not
affect the state of any other part of the system. An
interruption condition caused by control-unit end
normally blocks communications through the control
unit to any device attached to it, and an interruption
condition caused by channel end normally blocks all
communications through the subchannel.

Compatibility of Operation

The organization of the I/O system provides for a
uniform method of controlling I/O operations. The
capability of a channel, however, depends on its use
and on the CPU model to which it is attached.
Channels are provided with different data-transfer
capabilities, and an I/O device designed to transfer
data only at a specific rate (a magnetic-tape unit or a
disk storage, for example) can operate only on a
channel that can accommodate at least this data rate.

The data rate a channel can accommodate depends
also on the way the I/O operation is programmed.
The channel can sustain its highest data rate when no
data chaining is specified. Data chaining reduces the
maximum allowable rate, and the extent of the
reduction depends on the frequency at which new
CCWs are fetched and on the address resolution of
the first byte in each new storage area. Furthermore,
since a channel shares storage with the CPU and
other channels, activity in the rest of the system
affects the accessibility of storage and, hence, the
instantaneous load the channel can sustain.

In view of the dependence of channel capacity on
programming and on activity in the rest of the
system, an evaluation of the ability of elements in a
specific I/0O configuration to function concurrently
must be based on a consideration of both the data
rate and the way the I/O operations are programmed.
Two systems employing identical complements of 1/0
devices may be able to execute certain programs in
common, but it is possible that other programs
requiring, for example, data chaining, may not run on
one of the systems because of the increased load
caused by the data chaining.

Control of Input/QOutput Devices

The CPU controls I/O operations by means of eight
1/0 instructions: START I/0, START I/0 FAST
RELEASE, TEST 1I/0, CLEAR 1/0, HALT I/0,
HALT DEVICE, TEST CHANNEL, and STORE
CHANNEL ID.

The instructions TEST CHANNEL and STORE
CHANNEL ID address a channel; they do not
address an I/0 device. Thz other six I/O
instructions address a channel and a device on that
channel.

Input/Output Device Addressing

An I/O device and the associated access path are
designated by an I/O address. The 16-bit I/O
address consists of two parts: a channel address in
the leftmost eight bit positions and a device address
in the rightmost eight bit positions.

The channel address provides for identifying up to
256 channels. Channels are numbered 0-255.
Channel 0 is a byte-multiplexer channel, and each of
channels 1-255 may be either a multiplexer or a
selector channel.

The number and type of channels and subchannels
available, as well as their address assignment, depend
on the system model and the particular installation.

The device address identifies the particular I/O
device and control unit on the designated channel.
The address identifies, for example, a particular
magnetic-tape drive, disk-access mechanism, or
transmission line. Any number in the range 0-255
can be used as a device address, providing facilities
for addressing up to 256 devices per channel. An
exception is some multiplexer channels that provide
fewer than the maximum configuration of
subchannels and hence eliminate the corresponding
unassignable device addresses.

Devices that do not share a control unit with other
devices may be assigned any device address in the
range 0-255, provided the address is not recognized
by any other control unit. Logically, such devices are
not distinguishable from their control unit, and both
are identified by the same address.

Devices sharing a control unit (for example,
magnetic-tape drives or disk-access mechanisms) are
assigned addresses within sets of contignous numbers.
The size of such a set is equal to the maximum
number of devices that can share the control unit, or
16, whichever is smaller. Furthermore, such a set
starts with an address in which the number of low-
order zeros is at least equal to the number of bit
positions required for specifying the set size. The
high-order bit positions of an address within such a
set identify the control unit, and the low-order bit
positions designate the device on the control unit.

Control units designed to accommodate more than
16 devices may be assigned nonsequential sets of
addresses, each set consisting of 16, or the number
required to bring the total number of assigned
addresses equal to the maximum number of devices
attachable to the control unit, whichever is smaller.
The addressing facilities are added in increments of a
set so that the number of device addresses assigned to

Chapter 12. Input/Output Operations 12-7

a control unit does not exceed the number of devices
attached by more than 15.

The control unit does not respond to any address
outside its assigned set or sets. For example, if a
control unit is designed to control devices having only
bits 0000-1001 in the low-order positions of the
device address, it does not recognize addresses
containing 1010-1111 in these bit positions. On the
other hand, a control unit responds to all addresses in
the assigned set, regardless of whether the device
associated with the address is installed. If no control
unit responds to an address, the I/O device appears
not operational. If a control unit responds to an
address for which no device is installed, the absent
device appears in the not-ready state.

Input/output devices accessible through more than
one channel have a distinct address for each path of
communications. This address identifies the channel
and the control unit. For sets of devices connected
to two or more control units, the portion of the
address identifying the device on the control unit is
fixed, and does not depend on the path of
communications.

The assignment of channel and device addresses is
arbitrary, subject to the rules described and any
model-dependent restrictions. The assignment is
made at the time of installation, and the addresses
normally remain fixed thereafter.

12-8 IBM 4300 Processors Principles of Operation

States of the Input/Output System

The state of the I/O system identified by an I/0O
address depends on the collective state of the
channel, subchannel, and I/0O device. Each of these
components of the I/O system can have up to four
states, as far as the response to an I/0 instruction is
concerned. These states are listed in the figure
"Input/Output-System States." The name of the
state is followed by its abbreviation and a brief
definition.

A channel, subchannel, or I/O device that. is
available, interruption-pending, or working is called
"operational." A channel, subchannel, or I/0 device
that is interruption-pending, working, or not-
operational is called "not available."

In the case of a multiplexer channel, the channel
and subchannel are easily distinguishable and, if the
channel is operational, any combination of channel
and subchannel states is possible. Since the selector
channel can have only one subchannel, the channel
and subchannel are functionally coupled, and certain
states of the channel are related to those of the
subchannel. In particular, the working state can
occur only concurrently in both the channel and
subchannel and, whenever an interruption condition
is pending in the subchannel, the channel also is in
the same state. The channel and subchannel,
however, are not synonymous, and an interruption
condition not associated with data transfer, such as
attention, does not affect the state of the subchannel.
Thus, the subchannel may be available when the
channel has an interruption condition pending.
Consistent distinction between the subchannel and
channel permits selector and multiplexer channels to
be covered uniformly by a single description.

Name

Abbreviation and Definition

Channel

Available
Interruption pending
Working

Not operational

Subchannel

Available
Interruption pending
Working

Not operational

1/0 Device

Available
Interruption pending
Working

Not operational

2~ > 2% T >

zs->»

Input/OQutput-System States

None of the following states

Interruption condition immediately available from channel
Channel operating in burst mode

Channel not operational

None of the following states

Information for CSW available in subchannel
Subchannel executing an operation
Subchannel not operational

None of the following states
{nterruption condition in device
Device executing an operation
Device not operational

Chapter 12. Input/Output Operations

129

The device referred to in the figure
"Input/Output-System States" includes both the
device proper and its control unit. For some types of
devices, such as magnetic-tape units, the working and
the interruption-pending states can be caused by
activity in the addressed device or control unit. A
"not available" shared control unit imposes its state
on all devices attached to the control unit. The states
of the devices are not related to those of the channel
and subchannel.

When the response to an I/0 instruction is
determined by the state of the channel or subchannel,
the components further removed are not interrogated.
Thus, 10 composite states may be distinguished as
conditions for the execution of I/O instructions.
Each composite state is identified by three letters.
The first letter specifies the state of the channel, the
second letter specifies the state of the subchannel,
and the third letter specifies the state of the device.
Each letter may be A, I, W, or N, denoting the state
of the component. The letter X indicates that the
state of the corresponding component is not
significant for the execution of the instruction.

Available (44A4): The addressed channel,
subchannel, control unit, and I/O device are-
operational, are not engaged in the execution of any
previously initiated operations, and do not contain
any pending interruption conditions.

Because of internal activity, some block-multiplexer
channels may at times appear to be working even
though they are not engaged in the execution of a
previously initiated operation and do not contain any
interruption condition. This will result in a WXX
state instead of the AAA state.

Interruption Pending in Device (4AI) or Device
Working (AAW): The addressed channel and
subchannel are available. The addressed control unit
or I/O device is executing a previously initiated
operation or contains an interruption condition.
These situations are possible:

1. The device is executing an operation, such as
rewinding magnetic tape or seeking on a disk file,
after signaling channel end.

2. The control unit associated with the device is
executing an operation, such as backspacing file
on a magnetic-tape unit, after signaling channel
end.

3. The device or control unit is executing an
operation on another subchannel or channel.

12-10 IBM 4300 Processors Principles of Operation

4. The device or control unit contains the device-
end, control-unit-end, or attention condition or a
channel-end condition associated with a
terminated operation.

Device Not Operational (AAN): The addressed
channel and subchannel are available. The addressed
I/0 device is not operational. A device appears not
operational when no control unit recognizes the
address. This occurs when the control unit is not
provided in the system, when power is off in the
control unit, or when the control unit has been
logically disconnected from the system. The not-
operational state is indicated also when the control
vnit is provided and is designed to attach the device,
but the device has not been installed and the address
has not been assigned to the control unit. (See also
the section "Input/OQutput Device Addressing" in this
chapter.)

If the addressed device is not installed or has been
logically removed from the control unit, but the
associated control unit is operational and the address
has been assigned to the control unit, the device is
said to be not ready. When an instruction is
addressed to a device in the not-ready state, the
control unit responds to the selection and indicates
unit check whenever the not-ready state precludes a
successful execution of the operation. (See the
section "Unit Check" in this chapter.)

Interruption Pending in Subchannel (AIX): The
addressed channel is available. An interruption
condition is pending in the addressed subchannel.
The subchannel is able to provide information for a
CSW. The interruption condition can indicate
concluding of an operation at the addressed 1/0
device or at another device on the subchannel. The
state of the addressed device is not significant, except
when TEST 1/0 is addressed to the device associated
with the interruption condition, in which case the
CSW contains status information provided by the
device.

The state AIX does not occur on the selector
channel. On the selector channel, the existence of an
interruption condition in the subchannel immediately
causes the channel to assign to this condition the
highest priority for I/O interruptions and, hence,
leads to the state IIX.

Subchannel Working (AWX): The addressed channel
is available. The addressed subchannel is executing a
previously initiated operation or chain of operations

and has not yet received channel end for the last
operation. The state of the addressed device is not
significant, except when HALT I/0O or HALT
DEVICE is issued. During HALT 1/0 and HALT
DEVICE, the state of the device may be interrogated
and will then be indicated in either the CSW or the
condition code.

The subchannel-working state does not occur on the
selector channel since all operations on the selector
channel are executed in the burst mode and cause the
channel to be in the working state (WWX).

Subchannel Not Operational (ANX): The addressed
channel is available. The addressed subchannel on
the multiplexer channel is not operational. A
subchannel is not operational when it is not provided
in the system. This state cannot occur on the selector
channel.

Interruption Pending in Channel (IXX): The
addressed channel is not working and has established
which device will cause the next I/O interruption
from this channel. The state where the channel
contains an interruption condition is distinguished
only by the instruction TEST CHANNEL. This
instruction does not cause the subchannel and I/0O
device to be interrogated. The other I/O
instructions, with the exception of STORE
CHANNEL ID, consider the channel available when
it contains an interruption condition. A channel with
an interruption condition may be considered to be
working by the instruction STORE CHANNEL ID.
When the channel assigns priority for interruptions
among devices, the interruption condition is preserved
in the I/O device or subchannel. (See the section
"Interruption Conditions' in this chapter.)

Channel Working (WXX): The addressed channel is
operating in the burst mode. In the case of the
multiplexer channel, a burst of bytes is currently
being handled. In the case of the selector channel,
an operation or a chain of operations is currently
being executed, and the channel end for the last
operation has not yet been signaled. The states of
the addressed device and, in the case of the
multiplexer channel, of the subchannel are not
significant. In addition, because of internal activity,
some block-multiplexer channels may at times appear
to be working even though they are not operating in
burst mode. Depending on the model and the
channel type, TEST I/O and HALT DEVICE may
.consider the channel to be available when the

channel is working with a device other than the
addressed device.

Channel Not Operational (NXX): The addressed
channel is not operational. A channel is not
operational when it is not provided in the system,
when power is off in the channel, or when it is not
configured to the CPU. The states of the addressed
1/0 device and subchannel are not significant.

Resetting of the Input/Output System

Two types of resetting can occur in the I/O system:
an I/O system reset and an I/O selective reset. The
response of each type of I/O device to the two kinds
of reset is specified in the SL publication for the
device.

I/0 System Reset

1/0 system reset is performed when the CPU
performs a program reset, initial-program reset, clear
reset, or power-on reset, and when a power-on
sequence i8 performed by the channel.

I/0 system reset causes the channel to conclude
operations on all subchannels. Status information
and all interruption conditions in all subchannels are
reset, and all operational subchannels are placed in
the available state. The channel signals system reset
to all I/0 devices attached to it.

I/0 Selective Reset

The I/0 selective reset is performed by some
channels when they detect certain equipment
malfunctions.

I/0 selective reset causes the channel to signal
selective reset to the device that is connected to the
channel at the time the malfunction is detected. No
subchannels are reset.

Effect of Reset on a Working Device

With either type of reset, if the device is currently
communicating with a channel, the device
immediately disconnects from the channel. Data
transfer and any operation using the facilities of the
control unit are immediately concluded, and the I/0
device is not necessarily positioned at the beginning
of a block. Mechanical motion not involving the use
of the control unit, such as rewinding magnetic tape
or positioning a disk-access mechanism, proceeds to
the normal stopping point, if possible. The device
appears in the working state until the termination of
mechanical motion or the inherent cycle of operation,

Chapter 12. Input/Output Operations 12-11

if any, whereupon it becomes available. Status
information in the device and control unit is reset,
but an interruption condition may be generated upon
completing any mechanical operation.

Reset Upon Malfunction

When a malfunction occurs and the program is
alerted by an I/0O interruption, or when a
malfunction occurs during the execution of an I/O
instruction and the program is alerted by the setting
of a condition code, then an I/0 selective reset may
have been performed. A CSW is stored identifying
the cause of the malfunction.

The device addressed by the 1/0 instruction is not
necessarily the device that is reset.

When a malfunction occurs and the program is
alerted by a machine-check interruption, then an I/0
selective reset may have been performed. This may
or may not be accompanied by an I/0 interruption.
When no I/O interruption occurs, a CSW is not
stored and a device is not identified.

12-12 IBM 4300 Processors Principles of Operation

Condition Code

The results of certain tests by the channel and device,
and the original state of the addressed part of the
I/0 system are used during the execution of an I/O
instruction to set one of four condition codes in the
PSW. The condition code is set at the time the
execution of the instruction is concluded, that is, the
time the CPU is released to proceed with the next
instruction. The condition code ordinarily indicates
whether or not the function specified by the
instruction has been performed and, if not, the reason
for the rejection. In the case of START I/O FAST
RELEASE executed independent of the device, a
condition code 0 may be set that is later superseded
by a deferred condition code stored in the CSW.

The figure "Condition-Code Settings for I/O States
and Instructions" lists the I/O-system status and the
corresponding condition codes for each I/0
instruction. The I/O-system states and associated
abbreviations were defined in the section "States of
the Input/Output System" earlier in this chapter.

The digits in the figure represent the decimal value of
the code. The instructions START I/O and START
I/0 FAST RELEASE can set condition code 0 or 1
for the AAA state, depending on the type of
operation initiated. Equipment malfunctions and
programming errors generally cause condition code 1
to be set and the CSW to be stored.

Condition-Code Settings

sio

1/0O-System States 1/0 State SIOF TIO CLRIO HIO HDV TCH STIDC
Available AAA 0,1*@ 0 0 1 1* 0 0
Interruption pending in device AAI 1*@ 1* 0 1* 1* 0 0
Device working AAW 1*@ 1*] 1~ 1* 0 0
Device not operational AAN 3@ 3 (4] 3 3 0 [¢]
Interruption pending in subchannel AlX

For the addressed device 2 1* 1* 0 0 0 0

For another device 2 2 0 1] (] 0 0
Subchannel working AWX

With the addressed device 2 2 1 1 1# 0 0

With another device 2 2 0 1*# 0 0 0
Subchannel not operational ‘ ANX 3 3 3 3 3 0 1]
Interruption pending in channel IXX See Note 1 #HH#
Channel working : WXX

With the addressed device 2 2 ik 2 + 2 ##

With another device 2 2e * 2 # 2 HH#

Internal activity 2 2e *x 2 # 2 H##
Channel not operational NXX 3 3 3 3 3 3 3
Explanation:

* Whenever condition code 1 is set, the CSW or its status
portion is stored at location 64 during execution of the
instruction.

** When CLEAR /0 encounters the WX X state, either
condition code 2 is set, or the channel is treated as
available and the condition code is set according to the
state of the subchannel. When the channel is treated as
available, the condition codes for the WXX states are the
same as for the AXX states.

*#**Condition code 1 (with the CSW stored) or 2 may be
set, depending on the channel.

The condition code depends on the state of the subchannel,
the channel type, and the system model. If the sub-
channel is not operational, a condition code 2 or 3 is set.

If the subchannel is available or working with the
addressed device, condition code 2 is set. ‘Otherwise, a
condition code O or 2 is set.

When a “device not operational’* response is received in
selecting the addressed device, condition code 3 is set.

@ START I/O FAST RELEASE may cause the same
condition code to be set as for START 1/0 or may cause
condition code O to be set.

Condition-Code Settings for I/O States and Instructions

+ |If the channel ascertains that the device received the signal
to terminate, condition code 1 is set and the CSW stored.
Otherwise, condition code 2 is set.

When the channel is unable to store the channel ID because of
the working or interruption-pending state, condition code 2
is set. |f the working or interruption-pending state does not
preclude storing the channel 1D, condition code O is set.

e If the subchannel is interruption pending for the addressed
device, condition code 1 may be set depending on the channel
type.

Note: For the purpose of executing START 1/0, START 1/O
FAST RELEASE, TEST 1/O, CLEAR /O, HALT DEVICE, and
HALT /0O, a channel containing an interruption condition
appears the same as an available channel, and the condition-code
setting depends on the states of the subchannel and device. The
condition codes for the { XX states are the same as for the AXX
states, where the Xs represent the states of the subchannel and the
device. As an example, the condition code for the IAW state is
the same as for AAW.

Chapter 12. Iaput/Output Operations 12-13

The available state is indicated only when no errors
are detected during the execution of the I/O
instruction.

When a subchannel on a multiplexer channel
contains an interruption condition (state AIX), the
1/0 device associated with the concluded operation
normally is in the interruption-pending state. When
the channel detects during the execution of TEST
1/0 that the device is not operational, condition code
3 is set. Similarly, condition code 3 is set when
HALT I/0 or HALT DEVICE is addressed to a
subchannel in the working state (state AWX), but the
device is not operational.

Error conditions, including all equipment or
programming errors detected by the channel or the
1/0 device during execution of the I/0O instruction,
generally cause the CSW to be stored. However,
when the nature of the error causes a machine-check
interruption but no I/O interruption to occur, the
CSW is not stored. Three types of errors can occur:

Channel-Equipment Error: The channel can detect

the following equipment errors during execution of

START I/0, START 1/0 FAST RELEASE, TEST

1/0, CLEAR 1/0, HALT 1/0, and HALT DEVICE:

1. The channel received an address from the device
during initial selection that either had a parity
error or was not the same as the one the channel
sent out. Some device other than the one
addressed may be malfunctioning.

2. The unit-status byte that the channel received
during initial selection had a parity error.

3. A signal from the I/O device occurred at an
invalid time or had invalid duration.

4. The channel detected an error in its control
equipment. (This is also true for STORE
CHANNEL ID and TEST CHANNEL.)

The channel may perform an I/0 selective reset or
may generate a halt signal, depending on the type of"
error and the model. If a CSW is stored, channel-
control check or interface-control check is indicated,
depending on the type of error.

Channel-Programming Error: The channel can
detect the following programming errors during
execution of START I/0 or START I/0 FAST
RELEASE. All of the errors are indicated during
START 1/0, and during START 1/0 FAST
RELEASE when it is executed as START 1/0, by the
condition-code setting and by the status portion of
the CSW. When the SIOF function is performed, the
first two errors are indicated as for START 1/0, and

12-14 IBM 4300 Processors Principles of Operation

the remaining errors are indicated in a subsequent
interruption.
Invalid CCW-address specification in CAW
Invalid CAW format
Storage location of first CCW not provided
First-CCW location in a disconnected page
First-CCW location protected against fetching
First CCW specifies transfer in channel
Invalid command code in first CCW
Invalid count in first CCW
. Invalid format for first CCW

The CSW indicates program check, except for items
4 and 5, for which protection check is indicated.

VPG YW

Device Error: Programming or equipment errors
detected by the device during the execution of
START I/0, or START I/0O FAST RELEASE are
indicated by unit check or unit exception in the CSW.

The causes of unit check and unit exception for
each type of 1/0 device are detailed in the SL
publication for the device.

Instruction Formats
All I/0 instructions use the following S format:

Op Code B, Dy

0 16 20 31

Except for STORE CHANNEL ID, bit positions
8-14 of these instructions are ignored. Bit position
15 is ignored by the instruction TEST CHANNEL
but is decoded as part of the operation code for
START 1/0, START I/0 FAST RELEASE, TEST
1/0, CLEAR 1/0, HALT 1/0, and HALT DEVICE.

The second-operand address specified by the B,
and D, fields is not used to designate data but
instead is used to identify the channel and I/0O
device. Address computation follows the rules of
address arithmetic. The address has the following
format:

7

8 16 24 31

Chn Addr Dev Addr

Bit positions 16-31 contain the 16-bit I/O address.
Bit positions 8-15 are ignored.

Instructions

All I/0 instructions cause a serialization function to
be performed. See the section ''Serialization' in
Chapter S, "Program Execution."

The names, mnemonics, format, and operation
codes of the I/O instructions are listed in the figure
"Input/Output Instructions." The figure also
indicates that all I/O instructions cause a program
interruption when they are encountered in the

problem state, and that all I/O instructions set the
condition code.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic operand
designation for the assembler language are shown
with each instruction. In the case of START I/0,
for example, SIO is the mnemonic and D (B ,) the
operand designation.

Name Mnemonic Characteristics Code
CLEAR I/O CLRIO S C M $ 9DOo1*
HALT DEVICE HDV S C M $ 9EO01*
HALT 1/0 HIO S C M $ 9E00*
START I/O SI0 S C M $ 9C00*
START I/0 FAST RELEASE SIOF S C M $ 9Cco1*
STORE CHANNEL ID STIDC S C M $ B203
TEST CHANNEL TCH S [} M $ 9F00#
TEST1/0 TIO S C M $ 9000*
Explanation:

C Condition code is set.

M Privileged-operation exception.

S S instruction format.

*

Bits 8-14 of the operation code are ignored.
Bits 8-15 of the operation code are ignored.
Causes serialization.

U

[nput/Output Instructions

Chapter 12. Input/Output Operations 12-15

Programming Note

The instructions START I/0, START 1I/0 FAST
RELEASE, TEST I/0, CLEAR 1/0, HALT 1/0,
HALT DEVICE, and STORE CHANNEL ID cause a
CSW to be stored. To prevent the contents of the
CSW stored by the instruction from being destroyed
by an immediately following I/O interruption, the
CPU must be disabled for all I/0O interruptions
before START I/0, START I/0 FAST RELEASE,
TEST 1/0, CLEAR 1/0, HALT 1I/0, HALT
DEVICE, or STORE CHANNEL ID is issued and
must remain disabled until the information in the
CSW provided by the instruction has been acted upon
or stored elsewhere for later use.

CLEAR 1/0
CLRIO D»(B;) [s]
'9D01" B, D,
0 16 20 | 31

Either a TIO or CLRIO function is performed,
depending on the block-multiplexing control, bit 0 of
control register 0. The TIO function is performed
when the block-multiplexing-control bit is zero.

The TIO function is described in the definition of
the instruction TEST 1/0.

Bits 8-14 of the instruction are ignored. Bit
positions 16-31 of the second-operand address
identify the channel, subchannel, and I/O device to
which the instruction applies.

The CLRIO function causes the current operation
with the addressed device to be discontinued and the
state of the operation at the time of the
discontinuation to be indicated in the stored CSW.

When the subchannel is available, interruption-
pending with another device, or working with another
device, no channel action is taken, and condition
code 0 is set. Channels not capable of determining
subchannel states while in the working state may
instead set condition code 2.

When the subchannel is either working with the
addressed device or interruption-pending with the
addressed device, the CLRIO function causes the
channel to discontinue the operation with the
addressed device by storing the status of the
operation in the CSW and making the subchannel
available. When the channel is working with the
addressed device, the device is signaled to terminate

12-16 IBM 4300 Processors Principles of Operation

the current operation. Some channels may, instead,

indicate busy and cause no channel action.

When any of the following conditions occurs, the
CLRIO function causes the CSW at location 64 to be
stored. The contents of the entire CSW pertain to
the I/0O device addressed by the instruction.

1. The channel is available or interraption-pending,
and the subchannel contains an interruption
condition for the addressed device or is working
with the addressed device. The subchannel-key,
command-address, and count fields describe the
state of the operation at the time of the execution
of the instruction.

2. The channel is working with the addressed
device. The subchannel-key, command-address,
and count fields describe the state of the
operation at the time the instruction is executed.
(Some channels alternatively indicate busy under
this condition.)

3. The channel is working with a device other than
the one addressed, and the subchannel contains
an interruption-pending condition for the
addressed device or is working with the addressed
device. The subchannel-key, command-address,
and count fields describe the state of the
operation at the time CLEAR I/0 is executed.
(Some channels alternatively indicate busy under
these conditions.)

4. The channel detected an equipment error during
the execution of the instruction.. The CSW
identifies the error condition. The states of the
channel and the I/O operations in progress are
unpredictable. The limited channel logout, if
stored, indicates a sequence code of 000.

When CLEAR 1/0 cannot be executed because of
a pending logout that affects the operational
capability of the channel, a full CSW is stored. The
fields in the CSW are all set to zeros, with the
exception of the logout-pending and channel-
control-check bits, which are set to ones. No channe
logout is associated with this status.

Program Exceptions:
Privileged Operation

Resulting Condition Code:

0 No operation in progress for the addressed devic
1 CSW stored
2 Channel busy
3 Not operational

The condition code set by the CLRIO function for
all possible states of the 1/0 system is shown in the

figure ""Condition Codes Set By CLEAR 1/0." See
the section "States of the Input/Output System" in
this chapter for a detailed definition of the A, I, W,

1/0 causes the TIO function to be performed is

shown in the figure "Condition Codes Set By TEST
I/O" in the definition of the instruction TEST 1/0.

and N states. The condition code set when CLEAR

Channel k- A } ! — w# {w#+ N 4
+H 3
Subchannel LA =|# !I# lw#{w#ﬂ%A%#{ I#!W#+W#ILN A !.laéllii,[w#j,w#%N |
0 1'0 1= '3'0 0 1* 0 a*'3 F * FF f it TH

A Auvailable
Interruption pending

1# = Interruption pending for a device other than
the one addressed
1#=Interruption pending for the addressed device
w Working
W# = Working with a device other than the one

addressed
W#= Working with the addressed device

Not operational
* CSW stored

Condition Codes Set By Clear I/O

T In the WAAX, WA #X, and WAN#X states, a ;
condition code O or 2 may be set, depending on the
channel.

T In the WH# X, WAWH X, and WH XX states, a
condition code 1 (with the CSW stored) or 2 may be set,
depending on the channel.

Tt In the W#NX state, a condition code 2 or 3 may be set,

depending on the channel.

Note: Underscored codes pertain to situations that can
occur only on the multiplexer channel.

Chapter 12. Input/Output Operations

12-17

Programming Notes

1. Since some channels cause a condition code 2 to
be set when the instruction is received and the
channel is working, it may be useful to issue a
halt instruction and then CLEAR I/0 to the
desired address. Using HALT DEVICE will
ensure that condition code 2 is received on the
CLEAR I/0 only when the channel is working
with a device other than the one addressed.
Using HALT I/0 will ensure that the current
working state, if any, is terminated without
regard for the address.

2. Because of the inability of CLEAR I/0 to
terminate operations on some channels when in
the working state, the instruction is not a suitable
substitute for HALT I/0 or HALT DEVICE.

3. The combination of HALT DEVICE followed by
CLEAR I/0 can be used to clear out all activity
on a channel by executing the two instructions
for all device addresses on the channel.

HALT DEVICE
HDV D, (By) (s}
‘9EO01” By D2
0 16 20 31

The current I/0 operation at the addressed I/0
device is terminated. The subsequent state of the
subchannel depends on the type of channel. Bits
8-14 of the instruction are ignored. '

Bits 16-31 of the second-operand address identify
the channel, the subchannel, and the I/O device to
which the instruction applies.

When the channel is either available or
interruption-pending with the subchannel available or
working with the addressed device, HALT DEVICE
causes the addressed device to be selected and to be
signaled to terminate the current operation, if any. If
the subchannel is working with the addressed device,
HALT DEVICE also causes the subchannel to signal
termination of the device operation the next time the
device requests or offers a byte of data, if any. If
chaining is indicated for the I/O operation using the
subchannel, it is suppressed. If the subchannel is
available, the subchannel is not affected.

When the channel is either available or
interruption-pending with the subchannel either
working with a device other than the one addressed
or interruption-pending, no action is taken.

12-18 IBM 4300 Processors Principles of Operation

When the channel is working in burst mode with the
addressed device, data transfer for the operation is
immediately terminated, and the device immediately
disconnects from the channel. If chaining is
indicated for the I/O operation using the subchannel,
it is suppressed.

When the channel is working in burst mode with a
device other than the one addressed, and the
subchannel is available, interruption-pending, or
working with a device other than the one addressed,
no action is taken. If the subchannel is working with
the addressed device, the subchannel signals
termination of the device operation the next time the
device requests or offers a byte of data, if any. If
chaining is indicated for the 1/O operation using the
subchannel, it is suppressed.

When the channel is working in burst mode with a
device other than the one addressed and the
subchannel is not operational, is interruption-pending,
or is working with a device other than the one
addressed, the resulting condition code may, in some
channels, be determined by the subchannel state.

Termination of a burst operation by HALT
DEVICE on a selector channel causes the channel
and subchannel to be placed in the interruption-
pending state. Generation of the interruption
condition is not contingent on the receipt of status
information from the device. When HALT DEVICE
causes a burst operation on a byte-multiplexer
channel to be terminated, the subchannel associated
with the burst operation remains in the working state
until the device provides ending status, whereupon
the subchannel enters the interruption-pending state.
The termination of a burst operation by HALT
DEVICE on a block-multiplexer channel may,
depending on the model and the type of subchannel,
take place as for a selector channel or may allow the
subchannel to remain in the working state until the
device provides ending status.

When any of the three situations numbered below
occurs, HALT DEVICE causes the 16-bit unit-status
and channel-status portion of the CSW to be replaced
by a new set of status bits. The contents of the other
fields of the CSW are not changed. The CSW stored
by HALT DEVICE pertains only to the execution of
HALT DEVICE and does not describe the I/0
operation, at the addressed subchannel, that is
terminated. The extent of data transfer, and the
status at the termination of the operation at the
subchannel, are provided in the CSW associated with
the interruption condition caused by the termination.
The three situations are:

1. The addressed device is selected and signaled to
terminate the current operation, if any. The
CSW then contains zeros in the status field unless
a machine malfunction is detected.

2. The control unit is busy and the device cannot be
given the signal to terminate the operation. The
CSW unit-status field contains ones in the busy
and status-modifier bit positions. The channel-
status field contains zeros unless a machine
malfunction is detected.

3. The channel detects a machine malfunction
during the execution of HALT DEVICE. The
status bits in the CSW then identify the type of
malfunction. The state of the channel and the
progress of the I/O operation are unpredictable.

When HALT DEVICE cannot be executed because
of a pending logout which affects the operational
capability of the channel or subchannel, a full CSW is
stored. The fields in the CSW are all set to zeros,
with the exception of the logout-pending bit and the
channel-control-check bit, which are set to ones. No
channel logout occurs in this case.

When HALT DEVICE causes data transfer to be
terminated, the control unit associated with the
operation remains not available until the data-
handling portion of the operation in the control unit
is concluded. Conclusion of this portion of the
operation is signaled by the generation of channel
end. This may occur at the normal time for the
operation, or earlier, or later, depending on the
operation and type of device. If the control unit is
shared, all devices attached to the control unit appear
in the working state on that channel until the
shannel-end condition is accepted by the CPU. The
[/O device executing the terminated operation
‘emains in the working state until the end of the

inherent cycle of the operation, at which time device
end is generated. If blocks of data at the device are
defined, as in read-type operations on magnetic tape,
the recording medium is advanced to the beginning of
the next block.

When HALT DEVICE is issued at a time when the
subchannel is available and no burst operation is in
progress, the effect of the HALT DEVICE signal
depends partially on the type of device and its state.
In all cases, the HALT DEVICE signal has no effect
on devices that are not in the working state or are
executing a mechanical operation in which data is not
transferred, such as rewinding tape or positioning a
disk-access mechanism. If the device is executing a
type of operation that is unpredictable in duration, or
in which data is transferred, the device interprets the
signal as one to terminate the operation. Pending
attention or device-end conditions at the device are
not reset.

Program Exceptions:
Privileged Operation

Resulting Condition Code:

0 Subchannel busy with another device or
interruption pending

1 CSW stored
2 Channel working
3 Not operational

The condition code set by HALT DEVICE for all
possible states of the I/O system is shown in the
figure ''Condition Codes Set by HALT DEVICE."
See the section '"'States of the Input/Output System'
in this chapter for a detailed definition of the A, I,
W, and N states.

Chapter 12. Input/Output Operations 12-19

Channel I a8 ,
@ 3
A W4 WH# N A I W w# N(A [| WEWH N
| [A] il LN A Gy Ty i

Subchannel I 'g'g' |§1 TO{ET Iglzlil+llzl:';
Control Unit |AII|WIN| AIIIW|N| A‘I|W N IA I|W|N|
— Device 1% 1* 1* 3 1 1*1* 3 1*1* 1* 3 111 3
A Available @ Inthe WH# XX state, either condition code 1 {with CSW
! Interruption pending stored) or condition code 2 may be set, depending on
W Working the channel. However, condition code 1 (with CSW

W+# = Working with a device other than the one stored) can be set only if the control unit has received

the signal to terminate or if control-unit-busy status is
received by the channel.

+ In the W#IX and W#W#X states, either condition code 0
or 2 may be set.

addressed
W# = Working with the addressed device

N Not operational

* W
CSW stored e In the W#NX state, either condition code 2 or 3 may be

set, depending on the model and the channel type.

Note: Underscored condition codes pertain to situations
that can occur only on the multiplexer channel.

Condition Codes Set By HALT DEVICE

12-20 IBM 4300 Processors Principles of Operation

Programming Note

The execution of HALT DEVICE always causes data
transfer between the addressed device and the
channel to be terminated. The condition code and
the CSW (when stored) indicate whether the control
unit was signaled to terminate its operation during
the execution of the instruction. If the control unit
was not signaled to terminate its operation, the
condition code and the CSW (when stored) imply the
situations under which the execution of a HALT
DEVICE for the same address will cause the control
unit to be signaled to terminate.

Condition Code 0 indicates that HALT DEVICE
cannot signal the control unit until an interruption
condition on the same subchannel is cleared.

Condition Code 1 with Control-Unit-Busy Status in
the CSW indicates that HALT DEVICE cannot
signal the control unit until the control-unit-end
status is received from that control unit.

Condition Code 1 with Zeros in the Status Field of
the CSW indicates that the addressed device was
selected and signaled to terminate the current
operation, if any.

Condition Code 2 indicates that the control unit
cannot be signaled until the channel is not working.
The end of the working state can be detected by
noting an interruption from the channel or by noting
the results of repeatedly executing HALT DEVICE.

Condition Code 3 indicates that manual
intervention is required in order to allow HALT
DEVICE to signal the control unit to terminate.

HALT 1/0
HIO D2(B5) [S]
"8E00’ By D2
(1] 16 20 31

Execution of the current I/O operation at the
addressed I/O device, subchannel, or channel is
terminated. The subsequent state of the subchannel
depends on the type of channel. Bits 8-14 of the
instruction are ignored.

Bits 16-31 of the second-operand address identify
the channel and, when the channel is not working,
identify the subchannel and the I/O device to which
the instruction applies.

When the channel is either available or
interruption-pending, with the subchannel either
available or working, HALT I/0O causes the

addressed device to be selected and to be signaled to
terminate the current operation, if any. If the
subchannel is available, its state is not affected. If,
on the byte-multiplexer channel, the subchannel is
working, data transfer is immediately terminated, but
the subchannel remains in the working state until the
device provides the next status byte, whereupon the
subchannel is placed in the interruption-pending
state.

When HALT I/0 is issued to a channel operating in
the burst mode, data transfer for the burst operation
is terminated, and the device performing the burst
operation is immediately disconnected from the
channel. The subchannel and I/0O-device address in
the instruction, in this case, is ignored. '

The termination of a burst operation by HALT I/0
on the selector channel causes the channel and
subchannel to be placed in the interruption-pending
state. Generation of the interruption condition is not
contingent on the receipt of a status byte from the
device. When HALT I/0 causes a burst operation
on the byte-multiplexer channel to be terminated, the
subchannel associated with the burst operation
remains in the working state until the device signals
channel end, whereupon the subchannel enters the
interruption-pending state. The termination of a
burst operation by HALT I/0 on a block-multiplexer
channel may, depending on the model and the type of
subchannel, take place as for a selector channel or
may allow the subchannel to remain in the working
state until the device provides ending status.

On the byte-multiplexer channel operating in the
byte-multiplex mode, the device is selected and the
instruction executed only after the channel has
serviced all outstanding requests for data transfer for
previously initiated operations, including the
operation to be halted. If the control unit does not
accept the HALT 1/0 signal because it is in the not-
operational or control-unit-busy state, the subchannel,
if working, is set up to signal termination of device
operation the next time the device requests or offers
a byte of data. If command chaining is indicated in
the subchannel and the device presents status next,
chaining is suppressed.

When the addressed subchannel is interruption-
pending, with the channel available or interruption-
pending, HALT I/0 does not cause any action.

When any of the following conditions occurs,
HALT I/O causes the status portion, bits 32-47, of
the CSW to be replaced by a new set of status bits.
The contents of the other fields of the CSW are not
changed. The CSW stored by HALT I/O pertains

Chapter 12. Input/Output Operations 12-21

only to the execution of HALT I/0 and does not

describe the I/O operation, at the addressed

subchannel, that is terminated. The extent of data
transfer, and the status at the termination of the
operation at the subchannel, are provided in the CSW
associated with the interruption condition due to the
termination.

1. The addressed device was selected and signaled
to terminate the current operation. The CSW
contains zeros in the status field unless an
equipment error is detected.

2. The channel attempted to select the addressed
device, but the control unit could not accept the
HALT I/0O signal because it is executing a
previously initiated operation or had an
interruption condition associated with a device
other than the one addressed. The signal to
terminate the operation has not been transmitted
to the device, and the subchannel, if in the
working state, will signal termination the next
time the device identifies itself. The CSW unit-
status field contains ones in the busy and status-
modifier bit positions. The channel-status field
contains zeros unless an equipment error is
detected.

3. The channel detected an equipment malfunction
during the execution of HALT I/0. The status
bits in the CSW identify the error condition. The
state of the channel and the progress of the I/0
operation are unpredictable.

When HALT I/O cannot be executed because of a
pending logout which affects the operational
capability of the channel or subchannel, a full CSW is
stored. The fields in the CSW are all set to zeros,
with the exception of the logout-pending bit and the
channel-control-check bit, which are set to ones. No
channel logout occurs in this case.

When HALT I/0 causes data transfer to be
terminated, the control unit associated with the
operation remains unavailable until the data-handling
portion of the operation in the control unit is
terminated. Termination of the data-transfer portion

12-22 IBM 4300 Processors Principles of Operation

of the operation is signaled by the generation of
channel end, which may occur at the normal time for
the operation, earlier, or later, depending on the
operation and type of device. If the control unit is
shared, all devices attached to the control unit appear
in the working state until the channel-end signal is
accepted by the CPU. The I/0O device executing the
terminated operation remains in the working state
until the end of the inherent cycle of the operation,
at which time device end is generated. If blocks of
data at the device are defined, such as reading on
magnetic tape, the recording medium is advanced to
the beginning of the next block.

When HALT 1/0 is issued at a time when the
subchannel is available and no burst operation is in
progress, the effect of the HALT 1/0 signal depends
on the type of device and its state and is specified in
the SL publication for the device. The HALT I/0
signal has no effect on devices that are not in the
working state or are executing a mechanical operation
in which data is not transferred, such as rewinding
tape or positioning a disk-access mechanism. If the
device is executing a type of operation that is variable
in duration, the device interprets the signal as one to
terminate the operation. Attention or device-end
signals at the device are not reset.

Program Exceptions:
Privileged Operation

Resulting Condition Code:

0 Interruption pending in subchannel
1 CSW stored
2 Burst operation terminated
3 Not operational

The condition code set by HALT I/O for all
possible states of the I/O system is shown in the
figure "Condition Codes Set By HALT I/0." See
the section "States of the Input/Output System" in
this chapter for a detailed definition of the A, I, W,
and N states.

W
Channel } —+ — |
2 3
A I W, N A 1 W N
Subchannel - R —
o 1# 3 0 1*# 3
Control Unit pAlL W N, (AW
— Device [1*r1i'1*13 t [1*|1*l1*
A Available
1 Interruption pending
w Working
N Not operational
* CSW stored
When a device-not-operational response is received in selecting the addressed device,

a condition code 3 is set.

Note: Underscored condition codes pertain to situations that can occur only on the multiplexer channel.

Condition Codes Set by HALT 1/0

Programming Note

The instruction HALT I/O provides the program with
a means of terminating an 1/0 operation before all
data specified in the operation has been transferred
or before the operation at the device has reached its
normal ending point. It permits the program to
immediately free the selector channel for an
operation of higher priority. On the byte-multiplexer
channel, HALT I/O provides a means of controlling
real-time operations and permits the program to
terminate data transmission on a communication line.

START I/0
S10 D»(B2) [S]
‘9C00’ By D>
0 16 20 31

START I/O FAST RELEASE
SIOF D(B,) [S]

‘9Co01’ B D>

0 16 20 31

A write, read, read backward, control, or sense
operation is initiated with the addressed I/O device
and subchannel. Bits 8-14 of the instruction are
ignored.

Either an SIO or SIOF function is performed,
depending on the instruction, the channel, and the
block-multiplexing control, bit O of control register 0.
The instruction START I/O always causes the SIO
function to be performed, as does START I/0O FAST
RELEASE when the block-multiplexing-control bit is
zero. When the bit is one, START 1/O FAST
RELEASE may, depending on the channel, cause
either the SIO or the SIOF function to be performed.

Bits 16-31 of the second-operand address identify
the channel, subchannel, and I/O device to which the
instruction applies. The CAW, at location 72,
contains the subchannel key and the address of the
first CCW. This CCW specifies the operation to be
performed, the storage area to be used, and the
action to be taken when the operation is completed.

For the SIO function, the I/O operation is initiated
if the addressed I/O device and subchannel are
available, the channel is available or interruption-
pending, and errors or exceptional situations have not
been detected. The I/O operation is not initiated
when the addressed part of the I/0 system is in any
other state or when the channel or device detects any
error or exceptional situations during execution of the
instruction.

For the SIOF function, the 1/O operation is
initiated if the subchannel is available, the channel is
available or interruption-pending, and errors or
exceptional situations have not been detected. The
I/0 operation is not initiated when the subchannel
and channel are in any other state or when the
channel or device détects any error or exceptional
situation during execution of the instruction. The

Chapter 12. Input/Output Operations 12-23

device state or device-detected errors are not relevant

during instruction execution but are indicated in a

CSW stored during a subsequent interruption.

When the channel is available or interruption-
pending, and the subchannel is available before the
execution of the instruction, the following situations
cause a CSW to be stored. How the CSW is stored
depends on whether an SIO or SIOF function is
performed. The SIO function causes the status
portion of the CSW to be replaced by a new set of
status bits. The status bits pertain to the device
addressed by the instruction. The contents of the
other fields of the CSW are not changed. When the
SIOF function is performed, the first situation causes
the same action as for the SIO function; also, the
control-unit state may be tested, and so situation 5
may cause the same action as for the SIO function, or
the situation may be indicated in a subsequent
interruption during which the entire CSW will be
stored. The remaining situations for the SIOF
function will be indicated in a subsequent
interruption, during which the entire CSW will be
stored.

1. The channel detects a programming error in the
contents of the CAW or detects an equipment
error during execution of the instruction. The
CSW identifies the error. The channel-end and
busy bits are zeros, unless, for the SIO function,
the error was detected after the device was
selected, and the device was found to be busy, in
which case the busy bit, as well as any bits
indicating interruption conditions, are ones. The
interruption conditions indicated in the CSW
have been cleared at the device. The 1/0
operation is not initiated. No interruption
conditions are generated at the I/0 device or
subchannel. The state of the PCI bit in the CSW
is unpredictable.

2. The channel detects a programming error
associated with the first CCW or, for the SIOF
function, the channel detects an equipment error
after completion of the instruction. The CSW
identifies the error. The channel-end and busy
bits are zeros, unless the error was detected after
the device was selected, and the device was found
to be busy, in which case the busy bit, as well as
any bits indicating interruption conditions, are
ones. The interruption conditions indicated in
the CSW have been cleared at the device. The
1/0 operation is not initiated. No interruption
conditions are generated at the I/0O device or

12-24 IBM 4300 Processors Principles of Operation

subchannel. The state of the PCI bit in the CSW
is unpredictable.

An immediate operation was executed, and either
(a) no command chaining is specified and no
command retry occurs, or.(b) chaining is
suppressed because of unusual situations detected
during the operation. In the CSW, the channel-
end bit is one, the busy bit is zero, and other
status may be indicated. The PCI bit is one if
PCI was specified in the first CCW. The I/0
operation is initiated, but no information has
been transferred to or from the storage area
designated by the CCW. No interruption
conditions are generated at the subchannel, and
the subchannel is available for a new I/0O
operation. If device end is not indicated, the
device remains busy, and a subsequent device-end
condition is generated.

The I/0 device is interruption-pending, or the
control unit is interruption-pending for the
addressed device. The CSW unit-status field
contains one in the busy-bit position, identifies
the interruption condition, and may contain other
bits provided by the device or control unit. The
interruption condition is cleared. The I/0
operation is not initiated. The channel-status
field indicates any errors detected by the channel,
and the PCI bit is one if PCI was specified in the
first CCW.

The I/0 device or the control unit is executing a
previously initiated operation, or the control unit
is interruption-pending for a device other than
the one addressed. The CSW unit-status field
contains one in the busy-bit position or, if the
control unit is busy, the busy and status-modifier
bits are ones. The I/O operation is not initiated.
The channel-status field indicates any errors
detected by the channel, and the PCI bit is one if
specified in the first CCW.

The I/0 device or control unit detected an
equipment or programming error during the
initiation, or the addressed device is not ready.
The CSW identifies the error. The channel-end
and busy bits are zeros, unless the device was
busy, in which case the busy bit, as well as any
bits causing interruption conditions, are ones.
The interruption conditions indicated in the CSW
have been cleared at the device. The I/0
operation is not initiated. No interruption
conditions are generated at the I/0O device or
subchannel. The PCI bit in the CSW is one if
PCI was specified in the first CCW.

When the SIO or SIOF function cannot be executed
because of a pending logout which affects the
operational capability of the channel or subchannel, a
full CSW is stored. The fields in the CSW are all set
to zeros, with the exception of the logout-pending bit
and the channel-control-check bit, which are set to
ones. No channel logout occurs in this case.

When the SIOF function causes condition code 0 to
be set and subsequently a situation is encountered
which would have caused a condition code 1 to be set
had the function been SIO, a deferred-condition-
code-1i1/O-interruption condition is generated.
When the SIOF function causes condition code 0 to
be set and, subsequently, it is determined that the
device is not operational, a deferred-condition-code-3
I/O-interruption condition is generated. In both of
the above cases, in the resulting I/O interruption, a
full CSW is stored, and the deferred condition code
appears in the CSW.

On the byte-multiplexer channel, both the SIO and
SIOF functions cause the addressed device to be

selected and the operation to be initiated only after
the channel has serviced all outstanding requests for
data transfer for previously initiated operations.

Program Exceptions:
Privileged Operation

Resulting Condition Code:

0 I/0 operation initiated and channel proceeding
with its execution

1 CSW stored

2 Channel or subchannel busy

3 Not operational

The condition code set by START I/O and START
1/0 FAST RELEASE for all possible states of the
I/0O system is shown in the figure "Condition Codes
Set By START 1/0 and START I/0 FAST
RELEASE." See the section "States of the
Input/Output System" in this chapter for a detailed
definition of the A, I, W, and N states.

L A | ! | W | NJ
Channel } t T3
Subchannel | A (LW, N, A PP W N

I 2T 21 31 2127 31
Control Unit tAp L { W Ny LA W N
— Device '# li+el1*e! 3@! 'z h=eli*elzel
A Auvailable # e When a nonimmediate |/O operation has been initiated,
1 Interruption pending and the channel is proceeding with its execution,

. condition code O is set.
W Working
] e When an immediate operation has been initiated, and no

N Not operational command chaining or command retry is taking place, or
* CSW stored the device is not ready, or an error has been detected
@ The SIOF function may cause condition code 0 to be set, by the control unit or device, for the SIO function

in which case the other condition code shown will be
specified as a deferred condition code.

Note: Underscored condition codes pertain to situations
that can occur only on the multiplexer channel.

condition code 1 is set, and the CSW is stored. Under
the same circumstances, for the SIOF function, condi-
tion code O is set, and a deferred-condition-code 1
1/O-interruption condition is generated.

Condition Codes Set by START I/0 and START I/0 FAST RELEASE

Chapter 12. Input/Output Operations 12-25

Programming Notes

1. The instruction START I/O FAST RELEASE
has the advantage over START I/O that the CPU
can be released after the CAW is fetched, rather
than after completion of the lengthy device-
selection procedure. Thus, the CPU is freed for
other activity earlier. A disadvantage, however,
is that if a deferred condition code is presented,
the resultant CPU execution time may be greater
than that required in executing START 1/0.

2. When the channel detects a programming error
during execution of the SIO function, the
addressed device contains an interruption
condition, and the channel and subchannel are
available, the instruction may or may not clear
the interruption condition, depending on the type
of error and the model. If the instruction has
caused the device to be interrogated, as indicated
by the presence of the busy bit in the CSW, the
interruption condition has been cleared, and the
CSW contains program or protection check, as
well as the status from the device.

3. Two major differences exist between the SIO and
SIOF functions:

a. Unchained immediate commands on certain
channels (that is, those which execute SIOF
independent of the device) result in a
condition code 0 for the SIOF function,
whereas condition code 1 is set for the SIO
function. See also Programming Note 2 in
the section ""Command Retry" of this
chapter.

b. Condition code O is set by these certain
channels for the SIOF function, even though
the addressed device is not available or the
command is rejected by the device. The
device information will be supplied by means
of an interruption.

STORE CHANNEL ID
STIDC Dy(B,) [S]

"B203" B, D2

0 16 20 31

Information identifying the designated channel is
stored in the four-byte field at storage location 168.
Bits 16-23 of the second-operand address identify
the channel to which the instruction applies. Bit
positions 24-31 of the address are ignored.

12-26 IBM 4300 Processors Principles of Operation

The format of the information stored at location
168 is:

Type | Channel Model 0000000000000000

0 4 16 31

Bits 0-3 specify the channel type. When a channel
can operate as more than one type, the code stored
identifies the channel type at the time the instruction
is executed. The following codes are assigned:

0000 Selector
0001 Byte multiplexer
0010 Block multiplexer

A block-multiplexer channel operates as a selector
channel if the most recently initiated yet uncompleted
1/0 operation in the channel had block multiplexing
inhibited at the time the I/O operation was initiated.

Bits 4-15 identify the channel model. When the
channel model is implied by the channel type and the
CPU model, zeros are stored in the field.

Bits 16-31 are set to zeros.

When the channel detects an equipment
malfunction during the execution of STORE
CHANNEL ID, the channel causes the status portion,
bits 32-47, of the CSW to be replaced by a new set
of status bits. With the exception of the channel-
control-check bit (bit 45), which is stored as a one,
all bits in the status field are stored as zeros. The
contents of the other fields of the CSW are not
changed.

When STORE CHANNEL ID cannot be executed
because of a pending logout which affects the
operational capability of the channel, a full CSW is
stored. The fields in the CSW are all set to zero,
with the exception of the logout-pending bit and the
channel-control-check bit, which are set to ones. No
channel logout occurs in this case.

Program Exceptions:
Privileged Operation

Resulting Condition Code:

0 Channel ID correctly stored
1 CSW stored
2 Channel activity prohibited storing ID
3 Not operational

The condition code set by STORE CHANNEL ID
for all possible states of the I/0O system is shown
graphically as follows. See ''States of the

Input/Output System' for a detailed definition of the
A, I, W, and N states.

1 w
Channel - +— } t 4
. 0] . 3
Available
Interruption pending
Working

Not operational

When the thannel is unable to store the channel 1D because
of its working state or because it contains a pending inter-
ruption condition, a condition code 2 is set. If the working
or interruption pending state does not preclude the storing
of the channel 1D, a condition code O is set.

23— >

Condition Codes Set by STORE CHANNEL ID

TEST CHANNEL
TCH D1(B>) [S]

‘9F00’ By D,

0 16 20 31

The condition code in the PSW is set to indicate the
state of the addressed channel. The state of the
channel is not affected, and no action is caused. Bits
8-15 of the instruction are ignored.

Bits 16-23 of the second-operand address identify
the channel to which the instruction applies. Bit
positions 24-31 of the address are ignored.

The instruction TEST CHANNEL inspects only the
state of the addressed channel. It tests whether the
channel is operating in the burst mode, is
interruption-pending, or is not operational. When the
channel is operating in the burst mode and contains
an interruption condition, the condition code is set as
for operation in the burst mode. When none of these
situations exist, the available state is indicated. No
device is selected, and, on the multiplexer channel,
the subchannels are not interrogated.

Program Exceptions:
Privileged Operation

Resulting Condition Code:

0 Channel available
1 Interruption or logout condition in channel
2 Channel operating in burst mode
3 Channel not operational
The condition code set by TEST CHANNEL for all
possible states of the addressed channel is shown in

the figure ""Condition Codes Set by TEST
CHANNEL." See the section "States of the
Input/Output System" in this chapter for a detailed
definition of the A, I, W, and N states.

Channel —_s W N
0 1 2 3

A Available

| Interruption pending

w Working

N Not operational

Condition Codes Set by TEST CHANNEL

TEST 1/0
TIO D2(B:) [s]
‘9D00’ B> D>
0 16 20 31

The state of the addressed channel, subchannel, and
device is indicated by setting the condition code in
the PSW and, in certain situations, by storing the
CSW. Interruption conditions may be cleared. Bits
8-14 of the instruction are ignored.

Bits 16-31 of the second-operand address identify
the channel, subchannel, and I/O device to which the
instruction applies.

The TIO function is performed by the instruction
TEST 1I/0 and, under certain circumstances, by
CLEAR 1/0.

When the channel is operating in burst mode and
the addressed subchannel contains an interruption
condition, the TIO function causes condition code 1
or 2 to be set, depending on the model and channel
type. If condition code 1 is set, the CSW is stored at
location 64 to identify the interruption condition, and
the interruption condition is cleared.

When the situation described in the following
paragraph occurs with the channel either available or
interruption-pending or, on some channels, working,
the TIO function causes the CSW to be stored. The
contents of the entire CSW pertain to the I/O device
addressed by the instruction.

The subchannel contains an interruption
condition due to a terminated operation at the.
addressed device. The CSW identifies the
interruption condition, and the interruption
condition is cleared. The subchannel key, CCW

Chapter 12. Input/Output Operations 12-27

address, and count fields contain the final values
for the I/0 operation, and the status field may
include bits provided by the channel and the
device. The interruption condition in the
subchannel is not cleared, and the CSW is not
stored if the channel is working and has not yet
accepted the interruption condition from the
device.

When any of the following situations occurs with
the channel either available or interruption-pending,
the TIO function causes the CSW to be stored. The
contents of the entire CSW pertain to the I/O device
addressed by the instruction.

1. The subchannel is available, and the I/O device
contains an interruption condition or the control
unit contains control-unit end for the addressed
device. The CSW unit-status field identifies the
interruption condition and may contain other bits
provided by the device or control unit. The
interruption condition is cleared. The busy bit in
the CSW is zero. The other fields of the CSW
corntain zeros unless an equipment error is
detected.

2. The subchannel is available, and the I/O device
or the control unit is executing a previously
initiated operation or the control unit has an
interruption condition associated with a device
other than the one addressed. The CSW
unit-status field contains one in the busy-bit
position or, if the control unit is busy, the busy
and status-modifier bits are ones. Other fields of
the CSW contain zeros unless an equipment error
is detected.

3. The subchannel is available, and the I/O device
or channel detected an equipment error during
execution of the instruction or the addressed
device is not ready and does not have any
interruption condition. The CSW identifies the
error. If the device is not ready, unit check is
indicated. No interruption conditions are
generated at the I/0O device or the subchannel.

When TEST I/0 cannot be executed because of a
pending logout which affects the operational
capability of the channel or subchannel, a full CSW is
stored. The fields in the CSW are all set to zeros,
with the exception of the logout-pending bit and the
channel-control-check bit, which are set to ones. No
channel logout is associated with this status.

When the TIO function is used to clear an
interruption condition from the subchannel and the
channel has not yet accepted the condition from the
device, the function causes the device to be selected

1228 IBM 4300 Processors Principles of Operation

and the interruption condition in the device to be
cleared. During certain I/O operations, some types
of devices cannot provide their current status in
response to TEST I/0O. Some magnetic-tape control
units, for example, are in such a state when they have
provided channel end and are executing the
backspace-file operation. When TEST I/0 is issued
to a control unit in such a state, the unit-status field
of the CSW has the busy and status-modifier bits set
to ones, with zeros in the other CSW fields. The
interruption condition in the device and in the
subchannel is not cleared.

On some types of devices, the device never provides
its current status in response to TEST 1/0, and an
interruption condition can be cleared only by
permitting an I/O interruption. When TEST I/0 is
issued to such a device, the unit-status field has the
status-modifier bit set to one, with zeros in the other
CSW fields. The interruption condition in the device
and in the subchannel, if any, is not cleared.

However, at the time the channel assigns the

_highest priority for interruptions to a-condition

associated with an operation at the subchannel, the
channel accepts the status from the device and clears
the corresponding condition at the device. When the
TIO function is addressed to a device for which the
channel has already accepted the interruption
condition, the device is not selected, and the
condition in the subchannel is cleared regardless of
the type of device and its present state. The CSW
contains unit status and other information associated
with the interruption condition.

On the byte-multiplexer channel, the TIO function
causes the addressed device to be selected only after
the channel has serviced all outstanding requests for
data transfer for previously initiated operations.

Program Exceptions:
Privileged Operation

Resulting Condition Code:

0 Available
1 CSW stored
2 Channel or subchannel busy
3 Not operational

The condition code set by the TIO function for all
possible states of the I/O system is shown in the
figure "Condition Codes Set by TEST I/0." See the
section "States of the Input/Output System" in this
chapter for a detailed definition of the A, I, W, and
N states.

Channel b } } t —
23
|] w
Subchannel i A i¢= I JIN+ A =|¢;| :W'LN=A 1# I{WINII
2 112 3 2 1*°2°3 2 2 @ 2 2

Control Unit lLA) T'W: N | Al W N
or Device o 1 1* 3 o 1* 1* 3
A Available
| Interruption pending

I# Interruption pending for a device other than the one addressed

\# Interruption pending for the addressed device
w Working

W# Working with a device other than the one addressed

W# Working with the addressed device

Not operational
* CSW stored
@ In the W#1 #X state, either condition code 1 may be set with the CSW stored, or condition

code 2 may be set, depending on the channel and the conditions in the channel.
Note: Underscored condition codes pertain to situations that can occur only
on the multiplexer channel.
Condition Codes Set by TEST I/0

Chapter 12. Input/Output Operations

12-29

Programming Netes

1. Disabling the CPU for I/O interruptions provides
the program with a means of controlling the
priority of I/0 interruptions selectively by
channels. The priority of devices attached on a
channel cannot be controlled by the program.
The instruction TEST I/0 permits the program to
clear interruption conditions selectively by I/O
device.

2. When a CSW is stored by the TIO function, the
interface-control-check and
channel-control-check indications may be due to
an interruption condition already existing in the
channel or may be due to an interruption
condition created by the TIO function. Similarly,
the unit-check bit set to one with the
channel-end, control-unit-end, or device-end bits
set to zeros may be due to a situation created by
the preceding operation, the I/O device being not
ready, or an equipment error detected during the
execution of TEST 1/0. The instruction TEST
1/0 cannot be used to clear an interruption
condition due to the PCI flag while the
subchannel is working.

Input/Output-Instruction-Exception Handling

Before the channel is signaled to execute an I/O
instruction, the instruction is tested for validity by
the CPU. Exceptional situations detected at this time
cause a program interruption.

The following exception may cause a program
interruption:

Privileged Operation: An 1/0 instruction is
encountered when the CPU is in the problem state.
The instruction is suppressed before the channel has
been signaled to execute it. The CSW, the condition
code in the PSW, and the state of the addressed
subchannel and 1I/O device are not affected by the
attempt to execute an I/O instruction while in the
problem state.

Execution of Input/Qutput Operations

The channel can execute six commands: write, read,
read backward, control, sense, and transfer in
channel. Each command except transfer in channel
initiates a corresponding I/O operation. The term
"I/O operation'" refers to the activity initiated by a
command in the I/0O device and associated
subchannel. The subchannel is involved with the

12-30 IBM 4300 Processors Principles of Operation

execution of the operation from the initiation of the
command until the channel-end signal is received or,
in the case of command chaining, until the
device-end signal is received. The operation in the
device lasts until device end is signaled.

Blocking of Data

Data recorded by an I/0 device may be divided into
blocks. The length of a block depends on the device;
for example, a block can be a card, a line of printing,
or the information recorded between two consecutive
gaps on magnetic tape.

The maximum amount of information that can be
transferred in one I/O operation is one block. An
1/0 operation is terminated when the associated
storage area is exhausted or the end of the block is
reached, whichever occurs first. For some operations,
such as writing on a magnetic-tape unit or at an
inquiry station, blocks are not defined, and the
amount of information transferred is controlled only
by the program.

Channel-Address Word

The channel-address word (CAW) specifies the
subchannel key and the address of the first CCW
associated with START 1/0 or START I/0 FAST
RELEASE. The channel refers to the CAW only
during the execution of START I/0 or START I/0
FAST RELEASE. The CAW is fetched from storage
location 72. The pertinent information thereafter is
stored in the subchannel, and the program is free to
change the contents of the CAW. Fetching of the
CAW by the channel does not affect the contents of
the location.

The CAW has the following format:

Key| 0000] CCW Address

0 4 8 31

The fields in the CAW are allocated for the
following purposes:

Subchannel Key: Bits 0-3 form the access key for all
commands associated with START I/0 and START
I/0 FAST RELEASE. This key is matched with a

storage key during an I/O operation, as described in
the section ''Protection Check" later in this chapter.

CCW Address: Bits 8-31 designate the location of
the first CCW in storage.

Bit positions 4-7 of the CAW must contain zeros.
The three low-order bits of the CCW address must be
zeros to specify the CCW on integral boundaries for
doublewords. If any of these restrictions is violated,
or if the CCW address specifies a storage location
which is not provided or is protected against fetching
or is in a disconnected page, START I/O and, in
some cases, START I/O FAST RELEASE, cause the
status portion of the CSW to be stored, with the
protection-check or program-check bit set to one. In
this event, the I/O operation is not initiated.

Programming Note

Bit positions 4-7 of the CAW, which presently must
contain zeros, may in the future be assigned to the
control of new functions. It is, therefore,
recommended that these bit positions not be set to
ones for the purpose of obtaining an intentional
program-check indication.

Channel-Command Word

The channel-command word (CCW) specifies the
command to be executed and, for commands
initiating I/O operations, it designates the storage
area associated with the operation and the action to
be taken whenever transfer to or from the area is
completed. The CCWs can be located anywhere in
storage, and more than one can be associated with a
START I/0 or START I/0 FAST RELEASE.

The first CCW is fetched during the execution of
START I/O or START I/0O FAST RELEASE being
executed as START I/O. When START I/O FAST
RELEASE is executed independent of the device, the
first CCW is fetched subsequent to the execution of
START I/0 FAST RELEASE. Each additional
CCW in the sequence is obtained when the operation
has progressed to the point where the additional
CCW is needed. Fetching of the CCWs by the
channel does not affect the contents of the location
in storage.

The CCW has the following format:

Cmd Code Data Address

32 37 48 63

~N

h S

The fields in the CCW are allocated for the following
purposes: :

Command Code: Bits 0-7 specify the operation to be
performed.

Data Address: Bits 8-31 specify a location in storage.
1t is the first location referred to in the area
designated by the CCW.

Chain-Data (CD) Flag: Bit 32, when one, specifies
chaining of data. It causes the storage area
designated by the next CCW to be used with the
current operation.

Chain-Command (CC) Flag: Bit 33, when one, and
when the CD flag is zero, specifies chaining of
commands. It causes the operation specified by the
command code in the next CCW to be initiated on
normal completion of the current operation.

Suppress-Length-Indication (SLI) Flag: Bit 34
controls whether incorrect-length is to be indicated to
the program. When this bit is one and the CD flag is
zero, the incorrect-length indication is suppressed.
When both the CC and SLI flags are one, command
chaining takes place regardless of any
incorrect-length situation.

Skip (SKIP) Flag: Bit 35, when one, specifies
suppression of the transfer of information to storage
during a read, read backward, or sense operation.

Program-Controlled-Interruption (PCI) Flag: Bit 36,
when one, causes the channel to generate an
interruption condition when the CCW takes control
of the channel. When bit 36 is zero, normal
operation takes place.

Count: Bits 48-63 specify the number of bytes in the
storage area designated by the CCW.

Bit positions 37-39 of every CCW other than one
specifying transfer in channel must contain zeros.
Otherwise, a program-check condition is generated.
When the first CCW designated by the CAW does
not contain the required zeros, the I/O operation is
not initiated, and the status portion of the CSW with
the program-check indication is stored during
execution of START I/0 or START I/0 FAST
RELEASE being executed as START I/0. Detection
of this condition during data chaining causes the 1/0
device to be signaled to conclude the operation.

Chapter 12. Input/Output Operations 12-31

When the absence of these zeros is detected during
command chaining or subsequent to the execution of
START I/0 FAST RELEASE, the new operation is
not initiated, and an interruption condition is
generated.

The contents of bit positions 40-47 of the CCW are
ignored.

Programming Note

Bit positions 37-39 of the CCW, which presently
must contain zeros, may in the future be assigned to
the control of new functions. It is recommended,
therefore, that these bit positions not be set to ones
for the purpose of obtaining an intentional
program-check indication.

Command Code

The command code, bit positions 0-7 of the CCW,
specifies to the channel and the I/0O device the
operation to be performed. A detailed description of
each command appears under ""Commands."

The two low-order bits or, when these bits are 00,
the four low-order bits of the command code identify
the operation to the channel. The channel
distinguishes among the following four operations:

Output forward (write, control)
Input forward (read, sense)
Input backward (read backward)
Branching (transfer in channel)

The channel ignores the high-order bits of the
command code.

Commands that initiate I/O operations (write, read,
read backward, control, and sense) cause all eight
bits of the command code to be transferred to the
I/0 device. In these command codes, the leftmost
bit positions contain modifier bits. The modifier bits
specify to the device how the command is to be
executed. They may, for example, cause the device
to compare data received during a write operation
with data previously recorded, and they may specify
such information as recording density and parity.

For the control command, the modifer bits may
contain the order code specifying the control function
to be performed. The meaning of the modifier bits
depends on the type of I/O device and is specified in
the SL publication for the device.

The command-code assignment is listed in the
following table. The symbol X indicates that the bit
position is ignored; M identifies a modifier bit.

12-32 IBM 4300 Processors Principles of Operation

Code Command
XXXX 0000 Invalid
MMMM MMO1 Write
MMMM MM10 Read
MMMM 1100 Read Backward
MMMM MM11 Control
MMMM 0100 Sense
XXXX 1000 Transfer in Channel

Whenever the channel detects an invalid command
code during the initiation of a command, a program
check is generated. When the first CCW designated
by the CAW contains an invalid command code, the
status portion of the CSW with the program-~check
indication is stored during execution of START I/O
or START I/0O FAST RELEASE being executed as
START I/O. When the invalid code is detected
during command chaining or subsequent to the
execution of START I/0 FAST RELEASE, the new
operation is not initiated, and an interruption
condition is generated. The command code is ignored
during data chaining, unless it specifies transfer in
channel.

Designation of Storage Area

The storage area associated with an I/O operation is
defined by one or more CCWs. A CCW defines an
area by specifying the address of the first byte to be
transferred and the number of consecutive bytes
contained in the area. The address of the first byte
appears in the data-address field of the CCW. The
number of bytes contained in the storage area is
specified in the count field.

In write, read, control, and sense operations, storage
locations are used in ascending order of addresses.

As information is transferred to or from storage, the
address from the address field is incremented, and the
count from the count field is decremented. The
read-backward operation places data in storage in a
descending order of addresses, and both the count
and the address are decremented. When the count
reaches zero, the storage area defined by the CCW is
exhausted.

Any storage location that is provided can be used in
the transfer of data to or from an I/O device, if the
location is in a page that is in the addressable or
connected state and is not protected against the type
of reference. Similarly, a CCW can be located in any
part of storage, if the location is in a page that is in
the addressable or connected state and is not
protected against a fetch-type reference.

When the first CCW is designated by the CAW as
being at a storage location that is not provided, the
1/0 operation is not initiated, and the status portion
of the CSW with the program-check indication is
stored during the execution of START I/0 or
START I/0 FAST RELEASE being executed as
START I/0. When, subsequently, during the
operation or chain of operations, the channel refers
to a storage location that is not provided, an
interruption condition indicating program check is
generated, and the device is signaled to terminate the
operation.

When the first CCW designated by the CAW is in a
disconnected page or in a location that is protected
against a fetch-type reference, the I/0O operation is
not initiated, and the status portion of the CSW with
the protection-check indication is stored during the
execution of START I/0 or START I/0O FAST
RELEASE being executed as START I/0. When,
subsequently, during the I/O operation or chain of
operations, the channel refers to a disconnected page
or a protected location, an interruption condition
indicating protection check is generated, and the
device is signaled to terminate the operation.

During an output operation, the channel may fetch
data from storage before the time the I/0 device
requests the data. Any number of bytes specified by
the current CCW may thus be prefetched. When
data chaining during an output operation, and for
some block-multiplexer channels when data chaining
during an input operation, the channel may prefetch
the next CCW at any time during the execution of
the current CCW.

Prefetching may cause the channel to refer to
storage locations that are protected or not provided
or in disconnected pages. Such errors detected
during prefetching of data or CCWs do not affect the
execution of the operation and do not cause error
indications until the 1/O operation actually attempts
to use the data or until the CCW takes control. If
the operation is concluded by the I/O device or by
HALT I/0, HALT DEVICE, or CLEAR 1I/0 before
the invalid information is needed, no program check
or protection check is generated.

The count field in the CCW can specify any
number of bytes from one to 65,535. Except for a
CCW specifying transfer in channel, which has no
count field, the count field may not contain the value
zero. Whenever the count field in the CCW initially
contains a zero, a program check is generated. When

this occurs in the first CCW designated by the CAW,
the operation is not initiated, and the status portion
of the CSW with the program-check indication is
stored during execution of START I1/0 or START
I/0 FAST RELEASE being executed as START
I/0. When a count of zero is detected during data
chaining, the I/O device is signaled to terminate the
operation. Detection of a count of zero during
command chaining or subsequent to the execution of
START I/0O FAST RELEASE suppresses initiation of
the new operation and generates an interruption
condition.

Chaining

When the channel has performed the transfer of
information specified by a CCW, it can continue the
activity initiated by START I/0 or START I/O
FAST RELEASE by fetching a new CCW. Such
fetching of a new CCW is called chaining, and the
CCWs belonging to such a sequence are said to be
chained.

Chaining takes place between CCWs located in
successive doubleword locations in storage. It
proceeds in an ascending order of addresses; that is,
the address of the new CCW is obtained by adding 8
to the address of the current CCW. Two chains of
CCWs located in noncontiguous storage areas can be
coupled for chaining purposes by a
transfer-in-channel command. All CCWs in a chain
apply to the 1/0 device specified in the original
START I/0 or START 1/0 FAST RELEASE.

Two types of chaining are provided: chaining of
data and chaining of commands. Chaining is
controlled by the chain-data (CD) and
chain-command (CC) flags in conjunction with the
suppress-length-indication (SLI) flag in the CCW.
These flags specify the action to be taken by the
channel upon the exhaustion of the current CCW and
upon receipt of ending status from the device, as
shown in the figure ''Channel-Chaining Action."

The specification of chaining is effectively
propagated through a transfer-in-channel command.
When in the process of chaining a transfer-in-channel
command is fetched, the CCW designated by the
transfer in channel is used for the type of chaining
specified in the CCW preceding the transfer in
channel. The CD and CC flags are ignored in the
transfer-in-channel command. i

Chapter 12. Input/OQutput Operations 12-33

Flags in Current

CCwW

CD cCc sLI
o] 0 0
0 0 1
0 1 1]
[¢] 1 1
1 (4] 4]
1 0 1
1 1 0
1 1 1

Explanation:

Action in Channel upon Exhaustion of Count or Receipt of Channel End

Immediate Operation

End, —
End, —
Chain command
Chain command

End, —
End, —
End, —
End, —

Regular Qperaglion

Stop, IL
Stop, —
Stop, IL
Chain command

Chain data
Chain data
Chain data
Chain data

I Count exhausted, end of block at device not reached. —

1l Count exhausted and channel end from device.
11 Count not exhausted and channel end from device.

End The operation is terminated. If the operation is immediate

Chain
command

Chain data

and has been specified by the first CCW associated with a

START /0, a condition code 1 is set, and the status *
portion of the CSW is stored as part of the execution of the
START 1/0. In all other cases an interruption condition

is generated in the subchannel.

Stop The device is signaled to terminate data transfer, but the
subchannel remains in the working state until channel end
is received; at this time an interruption condition is
generated in the subchannel.

1S Incorrect length is indicated with the interruption condition.

Channel-Chaining Action

12-34 IBM 4300 Processors Principles of Operation

End, — End, IL
End, — End, —
Chain command End, IL

Chain command Chain command

* End, IL
* End, IL
* End, IL
* End, IL

Incorrect length is not indicated.

The channel performs command chaining upon
receipt of device end.

The channel immediately fetches a new CCW for
the same operation.

The situation where the residual count is zero but
data chaining is indicated at the time the device
provides channel end cannot validly occur. When
data chaining is indicated, the channel fetches the
new CCW after transferring the last byte of data
designated by the current CCW but before the
device provides the next request for data or status
transfer. As a result, the channel recognizes the
channel end from the device only after it has
fetched the new CCW, which cannot contain a
count of zero unless a programming error has been
made.

Data Chaining

During data chaining, the new CCW fetched by the
channel defines a new storage area for the original
1/0 operation. Execution of the operation at the
1/0 device is not affected. When all data designated
by the current CCW has been transferred to storage
or to the device, data chaining causes the operation
to continue, using the storage area designated by the
new CCW. The contents of the command-code field
of the new CCW are ignored, unless they specify
transfer in channel.

Data chaining is considered to occur immediately
after the last byte of data designated by the current
CCW has been transferred to storage or to the ‘
device. When the last byte of the transfer has been
placed in storage or accepted by the device, the new
CCW takes over the control of the operation and
replaces the pertinent information in the subchannel.
If the device signals channel end after exhausting the
count of the current CCW but before transferring
any data to or from the storage area designated by
the new CCW, the CSW associated with the
concluded operation pertains to the new CCW.

If programming errors are detected in the new
CCW or during its fetching, the error indication is
generated, and the device is signaled to conclude the
operation when it attempts to transfer data
designated by the new CCW. If the device signals
channel end after the new CCW takes control but
before transferring any data designated by the new
CCW, program check or protection check is indicated
in the CSW associated with the termination. The
contents of the CSW pertain to the new CCW unless
a program check or protection check is generated
while fetching the new CCW or while fetching or
executing an intervening transfer-in-channel
command. A data address which causes a program
check or protection check gives an error indication
only after the 1/O device has attempted to transfer
data to or from the addressed storage location.

When data chaining during an output operation, the
channel may fetch the new CCW from storage ahead
of the time data chaining occurs. Similarly, some
block-multiplexer channels may prefetch the new
CCW when data chaining during input. Any
programming errors in a prefetched CCW, however,
do not affect the execution of the operation until all
data designated by the current CCW has been
transferred to the I/0O device on output or to storage
on input. If the device concludes the operation
before all data designated by the current CCW has
been transferred, or if data chaining is suppressed for

any other reason, the errors associated with the
prefetched CCW are not indicated to the program.

Only one CCW describing a data area may be
prefetched. If the prefetched CCW specifies transfer
in channel, only one more CCW may be fetched
before the exhaustion of the current CCW.

Programming Note

Data chaining may be used to rearrange data as it is
transferred between storage and an I/0 device. Data
chaining permits data to be transferred to or from
noncontiguous areas of storage, and, when used in
conjunction with the skipping function (see the
section "Skipping" later in this chapter), data
chaining enables the program to place in storage
selected portions of a block of data.

When, during an input operation for a channel that
does not prefetch CCWs on input, the program
specifies data chaining to a location into which data
has been placed under the control of the current
CCW, the channel, in fetching the next CCW,
fetches the new contents of the location. This is true
even if the location contains the last byte transferred
under the control of the current CCW. When, on
input, a channel program data-chains to a CCW
placed in storage by the CCW specifying data
chaining, the block is said to be self-describing. A
self-describing block contains one or more CCWs
that specify storage locations and counts for
subsequent data in the same block.

The use of self-describing blocks is equivalent to
the use of unchecked data. An I/O data-transfer
malfunction that affects validity of a block is signaled
only at the completion of data transfer. The error
normally does not prematurely terminate or otherwise
affect the execution of the operation. Thus, there is
no assurance that a CCW read as data is valid until
the operation is completed. If the CCW is in error,
the use of the CCW in the current operation may -
cause subsequent data to be placed in wrong storage
locations with resultant destruction of the contents of
those locations.

Self-describing blocks cannot be used with a
channel that prefetches CCWs when data chaining on
input.

Chapter 12. Input/Output Operations 12-35

Command Chaining

During command chaining, the new CCW fetched by
the channel specifies a new I/0 operation. The
channel fetches the new CCW and initiates the new
operation upon receipt of the device-end signal for
the current operation. When command chaining
takes place, the completion of the current operation
does not generate an interruption condition, and the
count indicating the amount of data transferred
during the current operation is not made available to
the program. For operations involving data transfer,
the new command always applies to the next block at
the device.

Command chaining takes place and the new
operation is initiated only if no unusual situations
have been detected in the current operation. In
particular, the channel initiates a new I/0 operation
by command chaining upon receipt of a status byte
signaling one of the following status combinations:
device end, device end and status modifier, device
end and channel end, device end and channel end
and status modifier. In the former two cases, channel
end must have been signaled before device end, with
all other status bits set to zeros. If status such as
attention, unit check, unit exception, incorrect length,
program check, or protection check has occurred, the
sequence of operations is concluded, and the status
associated with the current operation causes an
interruption condition to be generated. The new
CCW in this case is not fetched. Incorrect length
does not suppress command chaining if the current
CCW has the SLI flag set to one.

An exception to sequential chaining of CCWs
occurs when the 1/0 device presents status modifier
with device end. When command chaining is
specified and no unusual situations have been
detected, the combination of status modifier and
device end causes the channel to fetch and chain to
the CCW whose storage address is 16 higher than
that of the current CCW.

When both command and data chaining are used,
the first CCW associated with the operation specifies
the operation to be executed, and the last CCW
indicates whether another operation follows.

12-36 IBM 4300 Processors Principles of Operation

Programming Note

Command chaining makes it possible for the program
to initiate transfer of multiple blocks by means of a
single START I/0 or START I/0 FAST RELEASE.
It also permits a subchannel to be set up for the
execution of auxiliary functions, such as positioning
the disk-access mechanism, and for data-transfer
operations without interference by the program at the
end of each operation. Command chaining, in
conjunction with the status-modifier condition,
permits the channel to modify the normal sequence of
operations in response to signals provided by the 1/0
device.

Skipping

Skipping is the suppression of storage references
during an I/O operation. It is defined only for read,
read backward, and sense operations and is controllec
by the skip flag, which can be specified individually
for each CCW. When the skip flag is one, skipping
occurs; when zero, normal operation takes place.

The setting of the skip flag is ignored in all other
operations.

Skipping affects only the handling of information by
the channel. The operation at the I/0 device
proceeds normally, and information is transferred to
the channel. The channel keeps updating the count
but does not place the information in storage.
Chaining is not precluded by skipping. In the case of
data chaining, normal operation is resumed if the skip
flag in the new CCW is zero.

When the skip flag is set to one, the data address in
the CCW is not checked.

Programming Note

Skipping, when combined with data chaining, permits
the program to place in storage selected portions of a
block from an I/O device.

Program-Controlled Interruption

The program-controlled-interruption (PCI) function
permits the program to cause an I/O interruption
during the execution of an I/0O operation. The
function is controlled by the PCI flag in the CCW.
The flag can be on either in the first CCW specified
by START I/0 or START 1/0 FAST RELEASE or
in a CCW fetched during chaining. Neither the PCI
flag nor the associated interruption affects the
execution of the current operation.

Whenever the PCI flag in the CCW is one, an
interruption condition is generated in the channel.

When the first CCW associated with an operation
contains the PCI flag, either initially or upon
command chaining, the interruption may occur as
early as immediately upon the initiation of the
operation. The PCI flag in a CCW fetched on data
chaining causes the interruption to occur after all
data designated by the preceding CCW has been
transferred. The time of the interruption, however,
depends on the model and the current activity in the
system and may be delayed even if I/0 interruptions
are allowed. No predictable relationship exists
between the time the interruption due to the PCI flag
occurs and the progress of data transfer to or from
the area designated by the CCW, but the fields
within the CSW pertain to the same instant of time.

If chaining occurs before the interruption due to the
PCI flag has taken place, the PCI interruption
condition is carried over to the new CCW. This
carryover occurs both on data and command chaining
and, in either case, the interruption condition is
propagated through the transfer-in-channel
command. The interruption conditions due to the
PCI flags are not stacked; that is, if another CCW is
fetched with a PCI flag before the interruption due to
the PCI flag of the previous CCW has occurred, only
one interruption takes place.

A CSW containing the PCI bit set to one may be
stored by an interruption while the operation is still
proceeding or by an interruption, TEST I/0, or
CLEAR I/0 upon the termination of the operation.
It cannot be stored by TEST 1/0 while the
subchannel is in the working state.

When the CSW is stored by an interruption before
the operation or chain of operations has been
concluded, the CCW address is 8 greater than the
address of the current CCW, and the count is
unpredictable. All unit-status bits in the CSW are
zero. If the channel has detected any unusual
situations, such as channel-data check, program
check, or protection check by the time the
interruption occurs, the corresponding channel-status
bit is one, although the status in the subchannel is not
reset and is indicated again upon the termination of
the operation. '

A unit-status bit set to one in the CSW indicates
that the operation or chain of operations has been

concluded. The CSW in this case has its regular
format with the PCI bit set to one.

However, when the interruption due to the PCI flag
is delayed until the operation at the subchannel is
concluded, two interruptions from the subchannel
may still take place. The first interruption indicates
and clears the interruption condition due to the PCI
flag, and the second provides the CSW associated
with the ending status. Whether one or two
interruptions occur depends on the model and on
whether the interruption condition due to the PCI
flag has been assigned the highest priority for
interruption at the time of conclusion. TEST I/0 or
CLEAR I/0 addressed to the device associated with
an interruption condition in the subchannel clears the
interruption condition due to the PCI flag, as well as
the one associated with the conclusion.

The setting of the PCI flag is inspected in every
CCW except those specifying transfer in channel,
where it is ignored. The PCI flag is also ignored
during initial program loading.

Programming Notes

1. Since no unit-status bits are set to ones in the
CSW associated with the conclusion of an
operation of a selector channel by HALT I/0 or
HALT DEVICE, unit-status bits and the PCI bit
set to ones are not necessary for the operation to
be concluded. When status in a selector channel
includes PCI at the time the operation is
concluded by HALT I/0 or HALT DEVICE, the
CSW associated with the concluded operation is
indistinguishable from the CSW provided by an
interruption during execution of the operation.

2. Program-controlled interruption provides a means
of alerting the program to the progress of
chaining during an I/O operation. It permits
programmed dynamic storage allocation.

Commands

The figure "Channel-Command Codes" lists the
command codes for the six commands and indicates
which flags are defined for each command. The flags
are ignored for all commands for which they are not
defined.

Chapter 12. Input/Output Operations 12-37

Name Code Flags
Write MMMM MMO1 cb cC sul PCI
Read MMMM MM10 CD CC SsLI SKIP PCI
Read Backward MMMM 1100 Ch CcC SsLI SKIP PCi
Control MMMM MM11 cbh CC sLi PCI
Sense MMMM 0100 CD CC sLI SsKIP PCI
Transfer In Channel XXXX 1000
Explanation:
CcD Chain data
cC Chain command
SLi Suppress length indication
SKIP Skip
PCI Program-controlied interruption
IDA Indirect data addressing
M Modifier bit
X Ignored

Channel-Command Codes

12-38 IBM 4300 Processors Principles of Operation

All flags have individual significance, except that
the CC and SLI flags are ignored when the CD flag
is set to one. The SLI flag is ignored on immediate
operations, in which case the incorrect-length
indication is suppressed, regardless of the setting of
the flag. The PCI flag is ignored during initial
program loading.

Each command is described below, and the format
is illustrated.

Programming Note

A malfunction that affects the validity of data
transferred in an I/O operation is signaled at the end
of the operation by means of unit check or
channel-data check, depending on whether the device
(control unit) or the channel detected the error. In
order to make use of the checking facilities provided
in the system, data read in an input operation should
not be used until the end of the operation has been
reached and the validity of the data has been
checked. Similarly, on writing, the copy of data in
storage should not be destroyed until the program has
verified that no malfunction affecting the transfer
and recording of data was detected.

Write
S
7
MMMMMMO1 Data Address
0 8 31/
//
clelst/]p 7
plc L/C 000 / Count
i I
/;
/32 35 40 48 63

A write operation is initiated at the I1/0 device, and
the subchannel is set up to transfer data from storage
to the I/0 device. Data in storage is fetched in an
ascending order of addresses, starting with the
address specified in the CCW. ‘

A CCW used in a write operation is inspected for
the CD, CC, SLI, and PCI flags. The setting of the
skip flag is ignored. Bit positions 0-5 of the CCW
contain modifier bits.

Programming Note
When writing on devices for which block length is

- not defined, such as a magnetic-tape unit or an

inquiry station, the amount of data written is
controlled only by the count in the CCW. Every
operation terminated under count control causes the
incorrect-length indication, unless the indication is
suppressed by the SLI flag.

Read
/
V4
MMMMMM 10 Data Address
/
) 8 31
/ 4
S
clcisikl|P /
plc|t|i|clo0o0 Count
e, A
< 32 40 48 63

A read operation is initiated at the 1/0 device, and
the subchannel is set up to transfer data from the
device to storage. For devices such as magnetic-tape
units, disk storage, and card equipment, the bytes of
data within a block are provided in the same
sequence as written by means of a write command.
Data is placed in storage in an ascending order of
addresses, starting with the address specified in the
CCW.

A CCW used in a read operation is inspected for
every flag—CD, CC, SLI, SKIP, and PCI. Bit
positions 0-5 of the CCW contain modifier bits.

Read Backward
I 4
MMMM1100 Data Address
/
0 8 31’
£
cle|s|gle / |
Dic|L} |c 000 / Count
p 1Pl
32 40 48 63

A read-backward operation is jnitiated at the I/0
device, and the subchannel is set up to transfer data
from the device to storage. On magnetic-tape units,
read backward causes reading to be performed with
the tape moving backwards. The bytes of data within

Chapter 12. Input/Output Operations 12-39

a block are sent to the channel in a sequence opposite
to that on writing. The channel places the bytes in
storage in a descending order of address, starting
with the address specified in the CCW. The bits
within a byte are in the same order as sent to the
device on writing.

A CCW used in a read-backward operation is
inspected for every flag—CD, CC, SLI, SKIP, and
PCI. Bit positions 0-3 of the CCW contain modifier
bits.

Control
7/
7/
MMMMMM 11 Data Address
0 8 317
ya
clcisVAr /
plc{L{/Ac|o00 / Count
. LA /
" 32 35 40 48 63

A control operation is initiated at the I/O device, and
the subchannel is set up to transfer data from storage
to the device. The device interprets the data as
control information. The control information, if any,
is fetched from storage in an ascending order of
addresses, starting with the address specified in the
CCW. A control command may be used to initiate at
the I/0 device an operation not involving transfer of
data—such as backspacing or rewinding magnetic tape
or positioning a disk-access mechanism.

For many control functions, the entire operation is
specified by the modifier bits in the command code,
and the function is performed as an immediate
operation (see the section ''Immediate Operations"
later in this chapter). If the command code does not
specify the entire control function, the data-address
field of the CCW designates the location containing
the required additional information. This control
information may include a code further specifying the
operation to be performed or an external address,
such as the disk address for the seek function, and is
transferred in response to requests by the device.

A control command code containing zeros for the
six modifier bits is defined as a no-operation. The
no-operation order causes the addressed device to
respond with channel end and device end without
causing any action at the device. The control
command can be executed as an immediate operation,
or the device can delay the status until after the

12-40 IBM 4300 Processors Principles of Operation

initial selection sequence is completed. Other
operations that can be initiated by means of the
control command depend on the type of I/0O device.
These operations and their codes are specified in the
SL publication for the device.

A CCW used in a control operation is inspected for
the CD, CC, SLI, and PCI flags. The setting of the
skip flag is ignored. Bit positions 0-5 of the CCW
contain modifier bits.

Programming Note

Since a CCW (other than transfer in channel) with a
count of zero is invalid, the program cannot use the
CCW count field to specify that no data be
transferred to the I/0O device. Any operation
terminated before data has been transferred causes
the incorrect-length indication, provided the
operation is not immediate and has not been rejected
during the initiation sequence. The incorrect-length
indication is suppressed when the SLI flag is on.

Sense
/
4
MMMMO0100 Data Address
0 8 31’
/ 4
clefsiy|p /
clofL|;]c|o00 / Count
/ Py /
32 40 48 63

A sense operation is initiated at the I/O device, and
the subchannel is set up to transfer data from the
device to storage. The data is placed in storage in an
ascending order of addresses, starting with the
address specified in the CCW.

Data transferred during a sense operation provides
information concerning both unusual conditions
detected in the last operation and the status of the
device. The status information provided by the sense
command is more detailed than that supplied by the
unit-status byte in the CSW and may describe
reasons for the unit-check indication. It may also
indicate, for example, if the device is in the not-ready
state, if the tape unit is in the file-protected state, or
if magnetic tape is positioned beyond the end-of-tape
mark.

For most devices, the first six bits of the sense data
describe situations detected during the last operation.

These bits are common to all devices having this type
of information and are designated as follows:

Bit Designation

Command reject
Intervention required
Bus-out check
Equipment check

Data check

g H W N = O

Overrun

The following is the meaning of the first six bits:

Command Reject: The device has detected a
programming error. A command has been received
which the device is not designed to execute, such as
read backward issued to a direct-access storage
device, or which the device cannot execute because
of its present state, such as write issued to a
file-protected tape unit. Command reject is also
indicated when the program issues an invalid
sequence of commands, such as write to a
direct-access storage device without previous
designation of the block.

Intervention Required: The last operation could not
be executed because of a situation requiring some
type of intervention at the device. This bit indicates
situations such as the hopper in a card punch being
empty or the printer being out of paper. It is also
turned on when the addressed device is not ready, is
in test mode, or is not provided on the control unit.

Bus-Out Check: The device or the control unit has
received a data byte or a command code with an
invalid parity from the channel. During writing,
bus-out check indicates that incorrect data has been
recorded at the device, but this does not cause the
operation to be terminated prematurely. Parity errors
on command codes and control information cause the
operation to be immediately terminated and suppress
checking for situations that would cause command
reject and intervention required.

Equipment Check: During the last operation, the
device or the control unit has detected equipment
malfunctioning, such as an invalid card-hole count or
a printer-buffer parity error.

Data Check: The device or the control unit has
detected a data error other than those included in
bus-out check. Data check identifies errors
associated with the recording medium and includes
errors such as reading an invalid card code or
detecting invalid parity on data recorded on magnetic
tape.

On an input operation, data check indicates that
incorrect data may have been placed in storage. The
control unit forces correct parity on data sent to the
channel. On writing, data check indicates that
incorrect data may have been recorded at the device.
Unless the operation is of a type where the error
precludes meaningful continuation, data errors on
reading and writing do not cause the operation to be
terminated prematurely.

Overrun: The channel has failed to respond on time
to a request for service from the device. Overrun can
occur when data is transferred to or from a
nonbuffered control unit operating with a
synchronous medium, and the total activity initiated
by the program exceeds the capability of the channel.
When the channel fails to accept a byte on an input
operation, the following data transferred to storage
may be used to fill the gap. On an output operation,
overrun indicates that data recorded at the device
may be invalid. The overrun bit is also set to one
when the device receives the new command too late
during command chaining.

All information significant to the use of the device
normally is provided in the first two bytes. Any bit
positions following those used for programming
information contain diagnostic information, which
may extend to as many bytes as needed. The amount
and the meaning of the status information are
peculiar to the type of I/O device and are specified
in the SL publication for the device.

The basic sense command has zero modifier bits.
This command initiates a sense operation on all
devices and cannot cause the command-reject,
intervention-required, data-check, or overrun bit to
be set to one. If the control unit detects an
equipment malfunction, or invalid parity of the sense
command code, the equipment-check or
bus-out-check bit is set to one, and unit check is
indicated in the unit-status byte.

Devices that can provide special diagnostic sense
information or can be instructed to perform other
special functions by use of the sense command may
define modifier bits for the control of these functions.
The special sense operations may be initiated by a

Chapter 12. Input/Output Operations 12-41

unique combination of modifier bits, or a group of
codes may specify the same function. Any remaining
sense command codes may be considered invalid, thus
causing the unit-check indication, or may cause the
same action as the basic sense command, depending
upon the type of device.

The sense information that pertains to the last I/0
operation or other action at a device may be reset
any time after the completion of a sense command
addressed to that device. Any command addressed to
the control unit of a device, other than the
no-operation command and the command which
results from a TEST I/0 instruction, may be allowed
to reset the sense information, provided that the busy
bit is not included in the initial status. The sense
information may also be changed as a result of
asynchronous action, such as when attention or
not-ready-to-ready device-end status is generated.

A CCW used in a sense operation is inspected for
every flag—CD, CC, SLI, SKIP, and PCI. Bit
positions 0-3 of the CCW contain modifier bits.

Transfer in Channel

M 1000 CCW Address

0 31
yi

32

The next CCW is fetched from the location in storage
designated by the data-address field of the CCW
specifying transfer in channel. The transfer-in-
channel command does not initiate any I/O operation
at the channel, and the I/O device is not signaled.
The purpose of the transfer-in-channel command is to
provide chaining between CCWs not located in
adjacent doubleword locations in an ascending order
of addresses. The command can occur in both data
and command chaining.

The first CCW designated by the CAW must not
specify transfer in channel. When this restriction is
violated, no I/O operation is initiated, and a program
check is generated. The error causes the status
portion of the CSW, with the program-check status
bit set to one, to be stored during the execution of
START I/0O or START I/0O FAST RELEASE being
executed as START I/0. When START 1I/0 FAST
RELEASE is executed independent of the device, the
error causes an interruption condition to be
generated.

12-42 IBM 4300 Processors Principles of Operation

To address a CCW on integral boundaries for
doublewords, a CCW specifying transfer in channel
must contain zeros in bit positions 29-31.
Furthermore, a CCW specifying a transfer in channel
must not be fetched from a location designated by an
immediately preceding transfer in channel. When
either of these errors is detected, a program check is
generated.

The contents of the second half of the CCW, bit
positions 32-63, are ignored. Similarly, the contents
of bit positions 0-3 of the CCW are ignored.

Command Retry

Some channels have the capability to perform
command retry, a channel and control-unit procedure
that causes a command to be retried without
requiring an I/O interruption. This retry is initiated
by the control unit presenting either of two status-bit

-combinations by means of a special communication

sequence with the channel. When immediate retry
can be performed, it signals a channel-end, unit-
check, and status-modifier status-bit combination,
together with device end. When immediate retry
cannot be performed, the presentation of device end
is delayed until the control unit is prepared. When
the channel is not capable of performing command
retry, or when any status bit other than device end
accompanies the requested command retry initiation,
the retry is suppressed, and an interruption condition
is generated. The CSW will contain the channel-end,
unit-check, and status-modifier status indications,
along with any other appropriate status.

During command retry, the channel action is similar
to that taken when command chaining. Thus, when
command retry is performed, a START I/0 initiating
an immediate operation for which command chaining
is not indicated in the CCW causes a condition code
0, rather than a condition code 1, to be set. The
subsequent termination of the I/O operation causes
an interruption condition to be generated. During
command retry, the CCW may be refetched.

Programming Note

The following possible results of a command retry

must be anticipated by the program:

1. A CCW with the PCI flag set to one may, if
retried because of command retry, cause multiple
PCI interruptions to occur.

2. A channel program consisting of a single,
unchained CCW specifying an immediate
command may cause a condition code 0 rather

than a condition code 1 to be set. This setting of
the condition code occurs if the control unit
signals command retry at the time initial status is
signaled to the channel. An interruption condition
is generated upon completion of the operation.

3. If a CCW used in an operation is changed before
that operation has been successfully completed,
the results are unpredictable.

4. A CSW stored after the initiation of a retry but
before the presentation of device end, as when an
interruption condition due to the PCI flag is
taken, contains the address of the command to be
retried plus 8. '

5. If a HALT I/0, HALT DEVICE, or CLEAR
I/0 instruction is issued after the initiation of a
retry but before the presentation of device end,
the CSW contains the address of the command to
be retried plus 8.

6. On a multiplexer channel, chained CCWs which
might ordinarily have been executed in a burst
may, upon the occurrence of command retry,
cause multiplexing to occur, with the result that
the channel becomes unexpectedly available.

Conclusion of Input/Qutput Operations

When the operation or sequence of operations
initiated by START I/O or START 1/O FAST
RELEASE is ended, the channel and the device
generate status. Status can be brought to the
attention of the program by means of an I/0O
interruption, by TEST I/O or CLEAR I/0, or, in
certain cases, by START I/0 or START I/O FAST
RELEASE. This status, as well as an address and a
count indicating the extent of the operation sequence,
are presented to the program in the form of a
channel-status word (CSW).

Types of Conclusion

Normally an I/O operation at the subchannel lasts
until the device signals channel end. Channel end
can be signaled during the sequence initiating the
operation, or later. When the channel detects
equipment malfunctioning or an 1/0 system reset is
performed, the channel disconnects the device
without receiving channel end. The program can
force a device to be disconnected prematurely by
issuing CLEAR I/0, HALT I/0, or HALT DEVICE.

Conclusion at Operation Initiation

After the addressed channel and subchannel have
been verified to be in a state where START I/0 or
START I/0O FAST RELEASE can be executed,
certain tests are performed on the validity of the
information specified by the program and on the
availability of the addressed control unit and 1I/0
device. This testing occurs during the execution of
START 1/0, either during or subsequent to the
execution of START 1/0 FAST RELEASE, and
during command chaining.

A data-transfer operation is initiated at the
subchannel and device only when no programming or
equipment errors are detected by the channel and
when the device responds with zero status during the
initiation sequence. When the channel detects or the
device signals any unusual situations during the
initiation of an operation, the command is said to be
rejected.

Rejection of the command during the execution of
START 1/0 or START I/O FAST RELEASE is
indicated by the setting of the condition code in the
PSW. Unless the device is not operational, the
reasons for the rejection are detailed by the portion
of the CSW stored by START I/O or START I/O
FAST RELEASE. The device is not started, no
interruption conditions are generated, and the
subchannel is available subsequent to the initiation
sequence. The device is immediately available for the
initiation of another operation, provided the
command was not rejected because the device was
busy or not operational.

When an unusual situation causes a command to -be
rejected during initiation of an I/0 operation by
command chaining, an interruption condition is
generated, and the subchannel is not available until
the condition is cleared. The reasons for the rejection
are indicated to the program by means of the
corresponding status bits in the CSW. The not-
operational state of the I/O device, which during the
execution of START I/0O and sometimes during the
execution of START I/0 FAST RELEASE causes
condition code 3 to be set, instead causes the
interface-control-check bit to be set to one. The new
operation at the I/O device is not started.

When START I/0 FAST RELEASE is executed by
a channel independent of the addressed device, tests
for most program-specified information, for control-
unit and device availability, for control-unit and
device status, and for most errors are performed
subsequent to the execution of START I/0 FAST
RELEASE. Some situations which would have caused

Chapter 12. Input/Qutput Operations 12-43

a condition code 1 or 3 to be set had the instruction
been START I/0 instead cause an interruption
condition to be generated. The CSW, when stored,
indicates that the interruption condition is a deferred
condition code 1 or 3.

Immediate Operations

Some control commands cause the I/O device to
signal channel end immediately upon receipt of the
command code. An I/0 operation causing channel
end to be signaled during the initiation sequence is
called an immediate operation.

When the first CCW designated by the CAW
during a START I/0 or START I/O FAST
RELEASE executed as a START I/O initiates an
immediate operation with command chaining not
indicated and command retry not occurring, no
interruption condition is generated. In this case,
channel end is brought to the attention of the
program by causing START I/0 or START I/0
FAST RELEASE to store the CSW status portion.
The subchannel is immediately made available to the
program. The I/O operation, however, is initiated,
and, if channel end is not accompanied by device
end, the device remains busy. Device end, when
subsequently provided by the device, causes an
interruption condition to be generated.

An immediate operation initiated by the first CCW
designated by the CAW during a START I/0 FAST
RELEASE executed independent of the addressed
device appears to the program as a nonimmediate
command. That is, any status generated by the
device for the immediate command or for a
subsequent command if command chaining occurs,
causes an interruption condition to be generated.

When command chaining is specified after an
immediate operation and no unusual situations have
been detected during the execution, or when
command retry occurs for an immediate operation,
neither START I/0 nor START I/0 FAST
RELEASE causes the immediate storing of CSW
status. The subsequent commands in the chain are
handled normally, and channel end for the last
operation generates an interruption condition even if
the device provides the signal immediately upon
receipt of the command code.

Whenever immediate completion of an 1/0
operation is signaled, no data has been transferred to
or from the device.

Since a count of zero is not valid, any CCW
specifying an immediate operation must contain a
nonzero count. When an immediate operation is

12-44 IBM 4300 Processors Princinles of Oneratian

executed, however, incorrect length is not indicated
to the program, and command chaining is performed
when so specified.

Programming Note

Control operations for which the entire operation is
specified in the command code may be executed as
immediate operations. Whether the control function
is executed as an immediate operation depends on the
operation and type of device and is specified in the
SL publication for the device.

Conclusion of Data Transfer

When the device accepts a command, the subchannel
is set up for data transfer. The subchannel is in the
working state during this period. Unless the channel
detects equipment malfunctioning or the operation is
concluded by CLEAR 1/0, or, on the selector
channel, the operation is concluded by CLEAR I/0,
HALT 1I/0, or HALT DEVICE, the working state
lasts until the channel receives the channel-end signal
from the device. When no command chaining is
specified or when chaining is suppressed because of
unusual situations, channel end causes the operation
at the subchannel to be terminated and an
interruption condition to be generated. The status bits
in the associated CSW indicate channel end and any
unusual situations. The device can signal channel
end at any time after initiation of the operation, and
the signal may occur before any data has been
transferred.

For operations not involving data transfer, the
device normally controls the timing of channel end.
The duration of data-transfer operations may be
variable and may be controlled by the device or the
channel.

Excluding equipment errors, CLEAR I/0, HALT
DEVICE, and HALT 1/0, the channel signals the
device to conclude data transfer whenever any of the
following events occurs:

1. The storage areas specified for the operation are
exhausted or filled.

2. A program check is detected.

3. A protection check is detected.

4. A chaining check is detected.

The first event occurs when the channel has stepped
the count to zero in the last CCW associated with the
operation. A count of zero indicates that the channel
has transferred all information specified by the
program. The other three events are due to errors and
cause premature conclusion of data transfer. In every
case, the conclusion is signaled in response to a

service request from the device and causes data
transfer to cease. If the device has no blocks defined
for the operation (such as writing from magnetic
tape), it concludes the operation and generates
channel end.

The device can control the duration of an operation
and the timing of channel end. On certain operations
for which blocks are defined (such as reading from
magnetic tape), the device does not provide the
channel-end signal until the end of the block is
reached, regardless of whether or not the device has
been previously signaled to conclude data transfer.

If the initial data address in the CCW refers to a
storage location that is not provided or to a
disconnected or protected page, no data is transferred
during the operation, and the device is signaled to
conclude the operation in response to the first service
request. On writing, devices such as magnetic-tape
units request the first byte of data before any
mechanical motion is started and, if the initial data
address refers to a storage location that is not
provided or to a disconnected or protected page, the
operation is concluded before the recording medium
has been advanced. However, since the operation has
been initiated, the device provides channel end, and
an interruption condition is generated. Whether a
block at the device is advanced when no data is
transferred depends on the type of device and is
specified in the SL publication for the device.

When command chaining takes place, the
subchannel is in the working state from the time the
first operation is initiated until the device signals
channel end for the last operation of the chain. On
the selector channel, the device executing the
operation stays connected to the channel and the
whole channel is in the working state during the
entire execution of the chain of operations. On the
multiplexer channel, an operation in the burst mode
causes the channel to be in the working state only
while transferring a burst of data. If channel end and
device end do not occur concurrently, the device
disconnects from the channel after providing channel
end, and the channel can in the meantime
communicate with other devices.

Any unusual situations cause command chaining to
be suppressed and an interruption condition to be
generated. The unusual situations can be detected by
either the channel or the device, and the device can
provide the indications with channel end, control-unit
end, or device end. When the channel is aware of the
unusual situation by the time the channel-end signal
for the operation is received, the chain is ended as if

the operation during which the situation occurred
were the last operation of the chain. The device-end
signal subsequently is processed as an interruption
condition. When the device signals unit check or unit
exception with control-unit end or device end, the
subchannel terminates the working state upon receipt
of the signal from the device. The channel-end
indication in this case is not made available to the
program.

Termination by HALT I/0 or HALT DEVICE

The instructions HALT I/0 and HALT DEVICE
cause the current operation at the addressed channel
or subchannel to be immediately terminated. The
method of termination differs from that used upon
exhaustion of count or upon detection of
programming errors to the extent that termination by
HALT I/0 or HALT DEVICE is not necessarily
contingent on the receipt of a service request from
the device. ’

When HALT I/0 is issued to a channel operating in
burst mode, the channel issues the halt signal to the
device currently operating with the channel,
regardless of the device address specified with the
HALT I/0O instruction. If the channel is involved in
the data-transfer portion of an operation, data
transfer is immediately terminated, and the device is
disconnected from the channel. If HALT I/0O is
addressed to a selector channel executing a chain of
operations and the device has already provided
channel end for the current operation, the instruction
causes the device to be disconnected and command
chaining to be immediately suppressed.

When HALT DEVICE is issued to a channel
operating in burst mode, the halt signal is issued to
the device involved in the burst-mode operation only
if that device is the one to which the HALT DEVICE
is addressed. If the operation thus terminated is in
the data-transfer portion of the operation, data
transfer is immediately terminated, and the device is
disconnected from the channel. If the terminated
burst involves a selector channel executing a chain of
operations and the device has already provided
channel end for the current operation, HALT
DEVICE causes the device to be disconnected and
command chaining to be immediately suppressed. If,
on a selector channel, the device involved in the burst
is not the one to which the HALT DEVICE is
addressed, no action is taken. If, on a multiplexer
channel, the device involved in the burst is not the
one to which the HALT DEVICE is addressed,
HALT DEVICE causes any operation for the

Chapter 12. Input/Output Operations 12-45

addressed device to be terminated at the addressed
subchannel by suppressing any further data transfer
or command chaining for that device.

When HALT I/0 or HALT DEVICE is issued to a
channel not operating in burst mode, the addressed
device is selected, and the halt signal is issued as the
device responds. On a multiplexer channel, command
chaining, if indicated in the subchannel, is
immediately suppressed.

The termination of an operation by HALT 1/0 or
HALT DEVICE on the selector channel results in up
to four distinct interruption conditions. The first one
is generated by the channel upon execution of the
instruction and is not contingent on the receipt of
status from the device. The channel-status bits
reflect the unusual situations, if any, detected during
the operation. If HALT I/0 or HALT DEVICE is
issued before all data specified for the operation has
been transferred, incorrect length is indicated, subject
to the control of the SLI flag in the current CCW,
The execution of HALT I/0 or HALT DEVICE
itself is not reflected in CSW status, and all status
bits in a CSW due to this interruption condition can
be zero. The channel is available for the initiation of
a new I/O operation as soon as the interruption
condition is cleared.

The second interruption condition on the selector
channel occurs when the control unit signals channel
end. The selector channel handles this condition as
any other interruption condition from the device after
the device has been disconnected from the channel,
and provides zeros in the subchannel-key, CCW-
address, count, and channel-status fields of the
associated CSW. Channel end is not made available
to the program when HALT I/0 or HALT DEVICE
is issued to a channel executing a chain of operations
and the device has already provided channel end for
the current operation.

Finally, the third and fourth interruption conditions
occur when control-unit end, if any, and device end
are signaled. These signals are handled as for any
other I/0O operation.

The termination of an operation by HALT I/0 or
HALT DEVICE on a multiplexer channel causes the
normal interruption conditions to be generated. If the
instruction is issued when the subchannel is in the
data-transfer portion of an operation, the subchannel
remains in the working state until channel end is
signaled by the device, at which time the subchannel
is placed in the interruption-pending state. If HALT
1/0 or HALT DEVICE is issued after the device has
signaled channel end and the subchannel is executing

12-46 IBM 4300 Processors Principles of Operation

a chain of operations, channel-end is not made
available to the program, and the subchannel remains
in the working state until the next status byte from
the device is received. Receipt of a status byte
subsequently places the subchannel in the
interruption-pending state.

The CSW associated with the interruption condition
in the subchannel contains the status byte provided
by the device and the channel. If HALT I/O or
HALT DEVICE is issued before all data areas
associated with the current operation have been
exhausted or filled, incorrect length is indicated,
subject to the control of the SLI flag in the current
CCW. The interruption condition is processed as for
any other type of termination.

The termination of a burst operation by HALT I/0
or HALT DEVICE on a block-multiplexer channel
may, depending on the model and the type of
subchannel, take place as for a selector channel or
may allow the subchannel to remain in the working
state until the device provides ending status.

Programming Note

The count field in the CSW associated with an
operation terminated by HALT I/0 or HALT
DEVICE is unpredictable.

Termination by CLEAR I/0O

The termination of an operation by CLEAR 1/0
causes the subchannel to be set to the available state
and causes a CSW to be stored. The validity of the
CSW fields is defined in the section "CLEAR I/0"
earlier in this chapter.

When CLEAR 1/0 terminates an operation at a
subchannel in the interruption-pending state, up to
three subsequent interruption conditions related to
the operation can occur. Since CLEAR 1/0O causes
the subchannel to be made available, these
interruption conditions will result in only the unit-
status portion of the CSW being indicated.

The first interruption condition arises on a selector
channel when channel end is signaled to the channel.
This occurs only when the interruption-pending states
of the channel and subchannel at the execution of
CLEAR 1/0 were due to the previous execution of
HALT I/O or HALT DEVICE.

The second and third interruption conditions arise
when control-unit end, if any, and device end are
signaled to the channel.

When CLEAR 1/0 terminates an operation at a
subchannel in the working state, up to four
subsequent interruption conditions related to the

operation can occur. For all of these conditions, only
the status portion of the CSW is indicated.

The first interruption condition arises on certain
channels when the terminated operation was in the
midst of data transfer. Since the device is not
signaled to terminate the operation during the
execution of CLEAR I/0 unless the channel is
working with the addressed device when the
instruction is received, the device may, subsequent to
the CLEAR I/0, attempt to continue the data
transfer. The channel responds by signaling the
device to terminate data transfer. Depending on the
channel, the need to signal the device to terminate
data transfer may be ignored or may be considered
an interface-control check which creates an
interruption condition. Only channel status is
indicated in the CSW.

The second interruption condition occurs when
channel-end status is received from the device. The
third and fourth conditions occur when control-unit
end, if any, and device end are presented to the
channel. In these three cases, only unit status is
indicated in the CSW.

Termination Due to Equipment Malfunction

When channel-equipment malfunctioning is detected
or invalid signals are received from a device, the
recovery procedure and the subsequent states of the
subchannels and devices on the channel depend on
the type of error and on the model. Normally, the
program is alerted to the termination by an I/0
interruption, and the associated CSW indicates
channel-control check or interface-control check.
However, when the nature of the malfunction
prevents an I/O interruption, a machine-check
interruption occurs, and a CSW is not stored. A
malfunction may cause the channel to perform the
I/0 selective reset or to generate the halt signal.

Input/Output Interruptions

Input/output interruptions provide a means for the
CPU to change its state in response to conditions that
occur in I/O devices or channels. These conditions
can be caused by the program or by an external event
at the device.

Interruption Conditions

A request for an I/O interruption is called an I/O-
interruption condition, or, in this chapter, simply an
interruption condition. An interruption condition can
be brought to the attention of the program only once
and is cleared when it causes an interruption.
Alternatively, an interruption condition can be
cleared by TEST I/0 or CLEAR 1/0, and conditions
generated by the I/O device following the
termination of the operation at the subchannel can be
cleared by START I/0 or START I/O FAST
RELEASE. The latter include interruption
conditions caused by attention, device end, and
control-unit end, and channel end when provided by
a device after conclusion of the operation. The
device attempts to initiate a request to the channel
for an interruption whenever it detects any of the
following:

Channel end
Control-unit end
Device end
Attention

The channel may also, at command chaining, create
an interruption condition at the device, which can be
due to the following:

Unit check

Unit exception

Busy indication from device
Program check

Protection check

When an operation initiated by command chaining
is terminated because of an unusual situation detected
during the command initiation sequence, the
interruption condition may remain pending within the
channel, or the channel may create an interruption
condition at the device. An interruption condition is
created at the device in response to presentation of
status by the device and causes the device

-subsequently to present the same status for

interruption purposes. The interruption condition at
the device may or may not be associated with unit
status. If the unusual situation is detected by the
device (unit check or unit exception) the unit-status
field of the associated CSW identifies the condition.
In the case of program and protection check, the
identification of the error is preserved in the
subchannel, and appears in the channel-status field of
the associated CSW. If the associated interruption
condition has been queued at the device, the device
provides zero status for interruption purposes. When
command chaining takes place, channel end and

Chapter 12. Input/Output Operations 12-47

device end do not cause an interruption, and are not
made available.
An interruption condition caused by the device may
be accompanied by channel and other unit status.
Furthermore, more than one interruption condition
associated with the same device can be cleared at the
same time. As an example, when channel end is not
cleared at the device by the time device end is
generated, both may be indicated in the CSW and
cleared at the device concurrently.
However, at the time the channel assigns highest
priority for interruptions to an interruption condition
associated with an operation at the subchannel, the
channel accepts the status from the device and clears
the condition at the device. The interruption
condition and the associated status indication are
subsequently preserved in the subchannel. Any
subsequent status generated by the device is not
included when the CSW is stored, even if the status is
generated before the interruption condition is cleared.
When the channel detects any of the following, it
generates an interruption condition without
necessarily communicating with or having received
the status byte from the device:
¢ PCI flag in a CCW
« Execution of HALT I/0 or HALT DEVICE on a
selector channel

« Channel-available interruption (CAI)

o A programming error associated with the CCW or
first IDAW following the SIOF function

The interruption conditions from the channel,
except for CAI, can be accompanied by other
channel-status indications, but none of the device
status bits is on when the channel initiates the
interruption.

Channel-Available Interruption

The channel-available-interruption (CAI) condition is
provided on block-multiplexer channels and causes
the entire CSW to be replaced by a new set of bits.
All fields of the CSW are set to zero. The I/O
address stored contains a zero device address and a
channel address identifying the interrupting channel.

The channel generates the CAI condition only if it
previously had responded with a condition code 2 to
an I/0 instruction other than HALT 1I/0 or HALT
DEVICE and if the working state thus indicated no
longer exists. When the working state which caused
condition code 2 was due to a subchannel busy with a
device other than the one addressed, the conclusion
of the working state is not signaled by a CAI. Since
any other interruption condition (except PCI)

12-48 IBM 4300 Processors Principles of Operation

accomplishes the same function as CAI, a CAI
condition is reset upon the occurrence of any
interruption (except PCI) on that channel. Some
channels also reset a CAI condition when another
interruption condition (except PCI) is cleared by a
TEST I/0 on the same channel. The occurrence of
another channel-working state before the CAI causes
the CAI condition to be suspended until the working
state ends.

Programming Note

The CAI is designed to inform the program that a
channel which previously indicated busy is no longer
busy. The CAI condition pending in a channel does
not cause the rejection of a subsequent START I/0
or START I/0 FAST RELEASE but does cause a
condition code 1 to be returned to TEST CHANNEL.
The CAI can therefore be used as a tool for keeping
1/0 requests in sequence by using it in conjunction
with TEST CHANNEL. A channel which responded
with condition code 2 because the channel was busy
does not subsequently respond with a condition code
0 to a TEST CHANNEL without clearing an
interruption condition in the interim.

Priority of Interruptions
Generation of interruption conditions is asynchronous
to the activity in the CPU, and interruption
conditions associated with more than one I/0 device
can exist at the same time. The priority among
interruption conditions is controlled by two types of
mechanisms-one establishes the priority among
interruption conditions within a channel, and another
establishes priority among interruption conditions
from different channels. A channel requests an I/O
interruption only after it has established priority
among interruption conditions. The status associated
with interruption conditions is preserved in the
devices or channels until accepted by the CPU.
Assignment of priority among requests for
interruption associated with devices on any one
channel is a function of the type of channel, the type
of interruption condition, and the position of the
device on the I/0 interface. A device’s position on
the interface is not related to its address.
Interruption conditions from different devices do not
necessarily occur in the sequence in which they are
generated. However, multiple interruption conditions
for a single device are presented in the sequence in

which they are generated.

The priorities among requests for I/0 interruptions
from different channels depend on channel addresses.

The priorities of channels 1-15 are in the order of
their addresses, with channel 1 having the highest
priority. The priority of byte-multiplexer channel O is
undefined. Its priority may be above, below, or
between those priorities of channels 1-15.

Interruption Action

An I/0 interruption can occur only when the CPU is
enabled for I/0 interruptions. The interruption
occurs at the completion of a unit of operation. If a
channel has established the priority among
interruption conditions, while the CPU is disabled for
1/0 interruptions, the interruption occurs
immediately after the completion of the instruction
enabling the CPU and before the next instruction is
executed. This interruption is associated with the
highest priority condition for the channel. If
interruptions are allowed from more than one channel
concurrently, the interruption occurs from the
channel having the highest priority among those
requesting interruption.

If the priority among interruption conditions has not
yet been established in the channel by the time the
interruption is allowed, the interruption does not
necessarily occur immediately after the completion of
the instruction enabling the CPU. This delay can
occur regardless of how long the interruption
condition has existed in the device or the subchannel.

The interruption causes the current program-status
word (PSW) to be stored as the old PSW at location
56 and causes the CSW associated with the
interruption to be stored at location 64.
Subsequently, a new PSW is loaded from location
120, and processing resumes in the state indicated by
this PSW. The channel and device causing the
interruption are identified by the 1I/0O address which,
in the EC mode, is stored in locations 186-187 and,
in the BC mode, is contained in bits 16-31 of the
1/0 old PSW. The CSW associated with the
interruption identifies the interruption condition
responsible for the interruption and provides further
details about the progress of the operation and the
status of the device.

Programming Note

When a number of I/0 devices on a shared control
unit are concurrently executing operations such as
rewinding tape or positioning a disk-access
mechanism, the initial device-end signals generated
on completion of the operations are provided in the
order of generation, unless command chaining is
specified for the operation last initiated. In the latter

case, the control unit provides the device-end signal
for the last initiated operation first, and the other
signals are delayed until the subchannel is freed.
Whenever interruptions due to the device-end signals
are delayed because the CPU is disabled for I/0
interruptions or the subchannel is busy, the original
order of the signals is destroyed.

Channel-Status Word

The channel-status word (CSW) provides to the
program the status of an I/0 device or the indication
of the reasons for which an I/O operation has been
concluded. The CSW is formed, or parts of it are
replaced, in the process of I/0 interruptions and
possibly during the execution of START I/0, START
I/0 FAST RELEASE, TEST I/0, CLEAR 1/0,
HALT I/0, HALT DEVICE, and STORE
CHANNEL ID. The CSW is stored at location 64
and is available to the program at this location until
the time the next I/O interruption occurs or until
another I/0 instruction causes its contents to be
replaced, whichever occurs first.

The information placed in the CSW by an I/0O
interruption pertains to the device which is identified
by the I/O address stored during the interruption.
The information placed in the CSW by START 1/0,
START I/0 FAST RELEASE, TEST 1I/0, CLEAR
I/0, HALT I/0, or HALT DEVICE pertains to the
device addressed by the instruction.

The CSW has the following format:

7
Key |O|L|CC CCW Address
-
0 4 6 8 31’
’I
Unit Channel Count
Status Status
L
“ 32 40 48 63

The fields in the CSW are allocated as follows:

Subchannel Key: Bits 0-3 form the access key used
in the chain of operations at the subchannel.

Logout Pending (L): Bit 5, when one, indicates that
an I/0 instruction cannot be executed until a logout
has been cleared. Bit 45, channel-control check, will
always be one when bit 5 is one.

Chapter 12. Input/Output Operations 12-49

Deferred Condition Code (CC): Bits 6 and 7
indicate whether situations have been encountered
subsequent to the setting of a condition code O for
START I/0 FAST RELEASE that would have
caused a different condition-code setting for START
1/0. The possible setting of these bits, and their
meanings, are as follows:

Setting of
Bit6 Bit7 Meaning
0 0 Normal 1/0 interruption
0 1 Deferred condition code is 1
1 0 {Reserved)
1 1 Deferred condition code is 3

CCW Address: Bits 8-31 form an address that is 8
higher than the address of the last CCW used.

Status: Bits 32-47 identify the status of the device
and the channel that caused the storing of the CSW.
Bits 32-39, the unit status, are obtained from the
device or control unit and indicate situations detected
by the device or control unit. Bits 40-47, the channel
status, are provided by the channel and indicate
situations associated with the subchannel. The 16 bits
are designated as follows:

Bit Designation

32 Attention

33 Status modifier

34 Control-unit end

35 Busy

36 Channel end

37 Device end

38 Unit check

39 Unit exception

40 Program-controlled interruption
41 Incorrect length

42 Program check

43 Protection check

44 Channel-data check

45 Channel-control check
46 Interface-control check
47 Chaining check

Count: Bits 48-63 form the residual count for the
last CCW used.

Unit Status

The following status indications are generated by the
I/0 device or control unit. The timing and causes of
these status indications for each type of device are
specified in the SL publication for the device.

When the I/O device is accessible from more than
one channel, status due to channel-initiated
operations is signaled to the channel that initiated the

12-50 1IBM 4300 Processors Principles of Operation

associated I/O operation. The handling of status not
associated with I/O operations, such as attention or
device end due to transition from the not-ready to
the ready state, depends on the type of device and
situation and is specified in the SL publication for the
device.

Attention

Attention is signaled when the device detects an
asynchronous situation that is significant to the
program. Attention is interpreted by the program
and is not associated with the initiation, execution, or
conclusion of an I/O operation.

The device can signal attention to the channel when
no operation is in progress at the I/0 device, control
unit, or subchannel. Attention can be signaled with
device end upon completion of an operation, and it
can be signaled to the channel during the initiation of
a new 1/0 operation. Otherwise, the handling and
presentation of attention to the channel depends on
the type of device.

When the device signals attention during the
initiation of an operation, the operation is not
initiated. Attention causes command chaining to be
suppressed.

Status Modifier

Status modifier is generated by the device when the
device cannot provide its current status in response to
TEST 1/0, when the control unit is busy, when the
normal sequence of commands has to be modified, or
when command retry is to be initiated.

When status modifier is signaled in response to
TEST 1/0 and status modifier is the only status bit
that is set to one, this indicates that the device
cannot execute the instruction and has not provided
its current status. The interruption condition, which
may be pending at the device or subchannel, has not
been cleared, and the CSW stored by TEST I/0O
contains zeros in the subchannel-key, CCW-address,
and count fields.

When the status-modifier bit in the CSW is set to
one together with the busy bit, it indicates that the
busy status pertains to the control unit associated
with the addressed I/O device. The control unit
appears busy when it is executing a type of operation
that precludes the acceptance and execution of any
command or the instructions TEST 1/0, HALT 1/0,
and HALT DEVICE or when it contains an
interruption condition for a device other than the one
addressed. The interruption condition may be due to
control-unit end, due to channel end following the

execution of CLEAR 1/0, or, on the selector
channel, due to channel end following the execution
of HALT 1/0 or HALT DEVICE. The busy state
occurs for operations such as backspace file, in which
case the control unit remains busy after providing
channel end, for operations concluded by CLEAR
1/0, and for operations concluded on the selector
channel by HALT I/0 or HALT DEVICE, and
temporarily occurs on the 2702 Transmission Control
after initiation of an operation on a device
accommodated by the control unit. A control unit
accessible from two or more channels appears busy
when it is communicating with another channel.

Presence of status modifier and device end means
that the normal sequence of commands must be
modified. The handling of this status combination by
the channel depends on the operation. If command
chaining is specified in the current CCW and no
unusual situations have been detected, presence of
status modifier and device end causes the channel to
fetch and chain to the CCW whose storage address is
16 higher than that of the current CCW. If the I/0
device signals status modifier at a time when no
command chaining is specified, or when any unusual
situations have been detected, no action is taken in
the channel, and the status-modifier bit is set to one
in the CSW.

Status modifier is set to one in combination with
unit check and channel end to initiate the
command-retry procedure.

Control-Unit End

Control-unit end indicates that the control unit has
become available for use for another operation.

Control-unit end is provided only by control units
shared by 1/0 devices or control units accessible by
two or more channels, and only when one or both of
the following have occurred:

1. The program had previously caused the control
unit to be interrogated while the control unit was
in the busy state. The control unit is considered
to have been interrogated in the busy state when
a command or the instructions TEST I/0, HALT
1/0, or HALT DEVICE had been issued to a
device on the control unit, and the control unit
had responded with busy and status modifier in
the unit-status byte. See the section "Status
Modifier" earlier in this chapter.

2. The control unit detected an unusual situation
during the portion of the operation after channel
end had been signaled to the channel. The

‘indication of the unusual situation accompanies

control-unit end.
If the control unit remains busy with the execution of
an operation after signaling channel end but has not
detected any unusual situations and has not been
interrogated by the program, control-unit end is not
generated. Similarly, control-unit end is not provided
when the control unit has been interrogated and
could perform the indicated function. The latter case
is indicated by the absence of busy and status
modifier in the response to the instruction causing the
interrogation.

When the busy state of the control unit is
temporary, control-unit end is included with busy and
status modifier in response to the interrogation even
though the control unit has not yet been freed. The
busy condition is considered to be temporary if its
duration is commensurate with the program time
required to handle an I/O interruption. The 2702
Transmission Control is an example of a device in
which the control unit miay be busy temporarily and
which includes control-unit end with busy and status
modifier.

Control-unit end can be signaled with channel end,
with device end, or between the two. When
control-unit end is signaled by means of an I/O
interruption in the absence of any other status, the
interruption may be identified by any address
assigned to the control unit. A control-unit end
causes the control unit to appear busy for initiation of
new operations.

Busy

Busy indicates that the 1/0O device or control unit
cannot execute the command or instruction because
(1) it is executing a previously initiated operation,
(2) it contains an interruption condition, (3) it is
shared by channels or I/O devices and the shared
facility is not available, or (4) a self-initiated
function is being performed. The status associated
with the interruption condition for the addressed
device, if any, accompanies the busy status. If busy
applies to the control unit, busy is accompanied by
status modifier.

The figure "Indications of Busy in CSW" lists the
situations for devices connected to only one channel
when the busy bit is set to one in the CSW and when
busy is accompanied by status modifier. For devices
shared by more than one channel, operations related
to one channel may cause the control unit or device
to appear busy to the other channels.

Chapter 12. Input/Output Operations 12-51

CSW Status Stored By

Condition SiQ or SIOF ¥ TIO CLRIO+ HIO or HDV 1/0 Interruption #
Subchannel available

DE or attention in device B, cl —, ¢ * * —,cl

Device working, CU available B B * * B
CU end or channel end in CU:

for the addressed device B, cl —, cl - * -, cl

for another device B, SM B, SM - * —,cl

CU working B, SM B8, SM — * B, SM

Interruption condition in subchannel for
the addressed device because of:

chaining terminated by busy * B, cl —,cl * B, cl

other type of termination * —,ct —,cl * —, cl
Subchannel working

CU available * * - - *

CU working * * — B, SM *

Explanation:

B Busy bit in CSW is one.

cl Interruption condition cleared; status is placed in CSW.

CU Control unit.

DE Device end.

SM Status-modifier bit appears in CSW.

* CSW not stored, or 1/0 interruption cannot occur.

— Busy bit is zero.

When a channel executes START 1/O FAST RELEASE as START 1/0, the CSW status
stored for the two instructions is identical. When START 1/O FAST RELEASE is
executed independently of the device, the same status is stored by an /O interruption
with the CSW also indicating deferred condition code 1.

Except when the I/O interruption is caused by a deferred condition code 1 for
START I/O FAST RELEASE.

+ The entries in this column apply only when the CLRIO function is executed. When CLEAR 1/0
causes the T10 function to be executed, the entries in the TIO column apply.

Indications of Busy in CSW

12-52 IBM 4300 Processors Principles of Operation

Channel End

Channel end is caused by the completion of the
portion of an I/O operation involving transfer of
data or control information between the I/0 device
and the channel. The condition indicates that the
subchannel has become available for use for another
operation.

Each I/O operation causes channel end to be
signaled, and there is only one channel end for an
operation. Channel end is not signaled when
‘programming errors or equipment malfunctions are
detected during initiation of the operation. When
command chaining takes place, only the channel end
of the last operation of the chain is made available to
the program. Channel end is not made available to
the program when a chain of commands is
prematurely concluded because of an unusual
situation indicated with control-unit end or device
end or during the initiation of a chained command.

The instant within an 1/O operation when channel
end is signaled depends on the operation and the type
of device. For operations such as writing on
magnetic tape, channel end occurs when the block
has been written. On devices that verify the writing,
channel end may or may not be delayed until
verification is performed, depending on the device.
When magnetic tape is being read, channel end
occurs when the gap on tape reaches the read-write
head. On devices equipped with buffers, channel end
occurs upon completion of data transfer between the
channel and the buffer. During control operations,
channel end is generated when the control
information has been transferred to the devices,
although for short operations channel end may be
delayed until completion of the operation.

Operations that do not cause any data to be
transferred can provide channel end during the
initiation sequence.

Channel end in the control unit causes the control
unit to appear busy for the initiation of new
operations. '

Channel end is presented in combination with status
modifier and unit check to initiate the command-retry
procedure.

Device End

Device end is caused by the completion of an 1/0
operation at the device. On some devices, it is also
caused by manually changing the device from the
not-ready to the ready state. Device end normally
indicates that the I/O device has become available
for use in another operation.

Each I/0 operation causes device end, and there is
only one device end to an operation. Device end is
not generated when any programming or equipment
malfunction is detected during initiation of the
operation. When command chaining takes place,
only the device end of the last operation of the chain
is made available to the program unless an unusual
situation is detected during the initiation of a chained
command, in which case the chain is concluded
without device end.

Device end associated with an I/O operation is
generated either simultaneously with channel end or
later. For data-transfer operations on devices such as
magnetic-tape units, the device concludes the
operation at the time channel end is generated, and
both device end and channel end occur together. On
buffered devices, device end occurs upon completion
of the mechanical operation. For control operations,
device end is generated at the completion of the
operation at the device. The operation may be
completed at the time channel end is generated or
later.

When command chaining is specified, receipt of the
device-end signal, in the absence of any unusual
situations, causes the channel to initiate a new I/0
operation.

Unit Check

Unit check indicates that the I/0O device or control
unit has detected an unusual situation that is detailed
by the information available to a sense command..
Unit check may indicate that a programming or
equipment error has been detected, that the
not-ready state of the device has affected the
execution of the command or instruction, or that an
exceptional situation other than the one identified by
unit exception has occurred. The unit-check bit
provides a summary indication of the sense data.

An error causes the unit-check indication only when
it occurs during the execution of a command or TEST
1/0, or during some activity associated with an I/0
operation. Unless the error pertains to the activity
initiated by a command and is of immediate
significance to the program, the error does not cause
the program to be alerted after device end has been

Chapter 12. Input/Output Operations 12-53

cleared; a malfunction may, however, cause the
device to become not ready.

Unit check is indicated when the existence of the
not-ready state precludes a satisfactory execution of
the command, or when the command, by its nature,
tests the state of the device. When no interruption
condition is pending for the addressed device at the
control unit, the control unit signals unit check when
TEST 1/0 or the no-operation control command is
issued to a not-ready device. In the case of
no-operation, the command is rejected, and channel
end and device end do not accompany unit check.

Unless the command is designed to cause unit
check, such as rewind and unload on magnetic tape,
unit check is not indicated if the command is properly
executed even though the device has become not
ready during or as a result of the operation.
Similarly, unit check is not indicated if the command
can be executed with the device not ready. Selection
of a device that is not ready does not cause a unit
check when the sense command is issued or when an
interruption condition is pending for the addressed
device at the control unit.

If the device detects during the initiation sequence
that the command cannot be executed, unit check is
signaled to the channel without channel end,
control-unit end, or device end. Such unit status
indicates that no action has been taken at the device
in response to the command. If the situation
precluding proper execution of the operation occurs
after execution has been started, unit check is
accompanied by channel end, control-unit end, or
device end, depending on when the situation was
detected. Any errors associated with an operation,
but detected after device end has been cleared, are
indicated by signaling unit check with attention.

Errors, such as invalid command code or invalid
command-code parity, do not cause unit check when
the device is working or contains an interruption
condition at the time of selection. Under these
circumstances, the device responds by providing busy
status and indicating the interruption condition, if
any. The command-code invalidity is not indicated.

Concluding an operation with the unit-check
indication causes command chaining to be suppressed.

Unit check is presented in combination with
channel end and status modifier to initiate the
command-retry procedure.

12-54 IBM 4300 Processors Principles of Operation

Programming Notes

1. If a device becomes not ready upon completion of
a command, the ending interruption condition can
be cleared by TEST I/0 without generation of
unit check due to the not-ready state, but any
subsequent TEST 1/0 issued to the device causes
a unit-check indication.

2. In order that sense indications set in conjunction
with unit check are preserved by the device until
requested by a sense command, some devices
inhibit certain functions until a command other
than test I/O or no-operation is received.
Furthermore, any command other than sense, test
1/0, or no-operation causes the device to reset
any sense information. To avoid degradation of
the device and its control unit and to avoid
inadvertent resetting of the sense information, a
sense command should be issued immediately to
any device signaling unit check.

Unit Exception

Unit exception is caused when the 1/O device detects
a situation that usually does not occur. Unit
exception includes situations such as recognition of a
tape mark and does not necessarily indicate an error.
It has only one meaning for any particular command
and type of device.

Unit exception can be generated only when the
device is executing an I/0O operation, or when the
device is involved with some activity associated with
an I/0 operation and the situation is of immediate
significance to the program. If the device detects
during the initiation sequence that the operation
cannot be executed, unit exception is presented to the
channel and appears without channel end,
control-unit end, or device end. Such unit status
indicates that no action has been taken at the device
in response to the command. If the situation
precluding normal execution of the operation occurs
after the execution has been started, unit exception is
accompanied by channel end, control-unit end, or
device end, depending on when the situation was
detected. Any unusual situation associated with an
operation, but detected after device end has been
cleared, is indicated by signaling unit exception with
attention.

A command does not cause unit exception when the
device responds with busy status to the command
during the initial selection.

Concluding an operation with the unit-exception
indication causes command chaining to be suppressed.

Channel Status

The following status bits are generated by the
channel. Except for the status bits resulting from
equipment malfunction, they can occur only while the
subchannel is involved with the execution of an I/O
operation.

Program-Controlled Interruption

A program-controlled interruption occurs when the
channel fetches a CCW with the

program-controlled-interruption (PCI) flag set to one.

The I/0 interruption due to the PCI flag takes place
as soon as possible after the CCW takes control of
the operation but may be delayed an unpredictable
amount of time because I/O interruptions are
disallowed or because of other activity in the system.

The interruption condition due to the PCI flag does
not affect the progress of the I/0O operation.

Incorrect Length

Incorrect length occurs when the number of bytes
contained in the storage areas assigned for the I/O
operation is not equal to the number of bytes
requested or offered by the I/0 device. Incorrect
length is indicated for one of the following reasons:

Long Block on Input: During a read,
read-backward, or sense operation, the device
attempted to transfer one or more bytes to storage
after the assigned storage areas were filled. The
extra bytes have not been placed in storage. The
count in the CSW is zero.

Long Block on Output: During a write or control
operation, the device requested one or more bytes
from the channel after the assigned storage areas
were exhausted. The count in the CSW is zero.

Short Block on Input: The number of bytes
transferred during a read, read-backward, or sense
operation is insufficient to fill the storage areas
assigned to the operation. The count in the CSW is
not zero.

Short Block on Output: The device terminated a
write or control operation before all information
contained in the assigned storage areas was
transferred to the device. The count in the CSW is
not zero.

Incorrect length is not indicated when the current
CCW has the SLI flag set to one and the CD flag set
to zero. The indication does not occur for immediate

operations and for operations rejected during the

" initiation sequence.

When incorrect length occurs, command chaining is
suppressed, unless the SLI flag in the CCW is one or
unless the operation is immediate. See the figure
"Channel-Chaining Action' in this chapter for the
effect of the CD, CC, and SLI flags on the indication
of incorrect length.

Programming Note

The setting of incorrect length is unpredictable in the
CSW stored during CLEAR 1/0.

Program Check

Program check occurs when programming errors are
detected by the channel. Program check can be due
to the following causes:

Invalid CCW-Address Specification: The CAW or
the transfer-in-channel command does not designate
the CCW on integral boundaries for doublewords.
The three rightmost bits of the CCW address are not
Zeros.

CCW Location Not Provided: The channel has
attempted to fetch a CCW from a storage location
that is not provided. This may occur because the
program has specified in the CAW or in the
transfer-in-channel command a page address (bits
8-20) equal to or greater than the page-capacity
count (PCC), or because on chaining the channel has
attempted to fetch a CCW from a page with a page
address equal to PCC.

Invalid Command Code: The command code in the
first CCW designated by the CAW or in a CCW
fetched on command chaining has four low-order
zeros. The command code is not tested for validity
during data chaining.

Invalid Count: A CCW other than a CCW
specifying transfer in channel contains the value zero
in bit positions 48-63.

Data Location Not Provided: The channel has
attempted to transfer data to or from a storage
location that is not provided. This may occur
because the program has specified in the CCW a page
address (bits 8-20) equal to or greater than the
page-capacity count (PCC) or because the channel
attempts during data transfer to access a page with a
page address equal to PCC.

Chapter 12. Input/Output Operations 12-55

Invalid CAW Format: The CAW does not contain
zeros in bit positions 4-7.

Invalid CCW Format: A CCW other than a CCW
specifying transfer in channel does not contain zeros
in bit positions 37-39.

Invalid Sequence: The first CCW designated by the
CAW specifies transfer in channel, or the channel
has fetched two successive CCWs both of which
specify transfer in channel.

Detection of program check during the initiation of
an operation causes execution of the operation to be
suppressed. When program check is detected after
the device has been started, the device is signaled to
conclude the operation the next time it requests or
offers a byte of data. Program check causes
command chaining to be suppressed.

Protection Check

Protection check occurs when the channel attempts a
storage access that is prohibited by key-controlled
storage protection. Protection applies to the fetching
of CCWs and output data, and to the storing of input
data. Storage accesses associated with each I/0
operation are performed using the subchannel key
provided in the CAW associated with that operation.
For details, see the section "Key-Controlled
Protection" in Chapter 3, "Storage."

Protection check also occurs when it is detected that
the channel has attempted to access a CCW or data
from a page that is in the disconnected state. For
details, see the section "Page States' in Chapter 3,
"Storage."

When protection check occurs during the fetching
of a CCW that specifies the initiation of an I/O
operation, the operation is not initiated. When
protection check is detected after the device has been
started, the device is signaled to conclude the
operation the next time it requests or offers a byte of
data. Protection check causes command chaining to
be suppressed.

Channel-Data Check

Channel-data check indicates that a machine error
has been detected in the information transferred to or
from storage during an I/O operation, or that a
parity error has been detected on the data on bus-in
during an input operation. This information includes
the data read or written, as well as the information
transferred as data during a sense or control
operation. The error may have been detected in the

12-56 IBM 4300 Processors Principles of Operation

channel, in storage, or on the path between the two.
Channel-data check may be indicated for data with

an invalid checking-block code in storage when the

data is referred to by the channel but the data does

not participate in the operation.

Whenever a parity error on 1/0 input data is
indicated by means of channel-data check, the
channel forces correct parity on all data received
from the 1/0 device, and all data placed in storage
has valid checking-block code. When, on an input
operation, the channel attempts to store less than a
complete checking block, and invalid checking-block
code is detected on the checking block in storage, the
contents of the location remain unchanged with
invalid checking-block code. On an output operation,
whenever a channel-data check is indicated, all bytes
that came from a checking block with invalid
checking-block code have been transmitted with
parity errors.

Channel-data check causes command chaining to be
suppressed but does not affect the execution of the
current operation. Data transfer proceeds to normal
completion, if possible, and an interruption condition
is generated when the device presents channel end.
A logout may be performed, depending on the
channel. Accordingly, the detection of the error may
affect the state of the channel and the device.

Channel-Control Check

Channel-control check is caused by machine
malfunction affecting channel controls. It may be
caused by invalid checking-block code on CCW and
data addresses and invalid checking-block code on
the contents of the CCW. Channel-control check
may also include those channel-detected errors
associated with data transfer that are not indicated as
channel-data check, as well as those 1/0 interface
errors detected by the channel that are not indicated
as interface-control check. Errors responsible for
channel-control check may cause the contents of the
CSW to be invalid and conflicting. The CSW as
generated by the channel has valid checking-block
code.

Detection of channel-control check causes the
current operation, if any, to be immediately
concluded.

Channel-control check is set whenever CSW bit 5,
logout pending, is set to one.

In some situations, machine malfunctions affecting
channel control may instead be reported as an
external-damage or system-damage machine-check
condition.

Interface-Control Check

Interface-control check indicates that an invalid
signal has been received by the channel when
communicating with a control unit or device. It is
detected by the channel and usually indicates
malfunctioning of an I/O device. It can be due to
the following:

1. The address or status byte received from a device
has invalid parity. ’

2. A device responded with an address other than
the address specified by the channel during
initiation of an operation.

3. During command chaining the device appeared
not operational.

4. A signal from a device occurred at an invalid
time or had invalid duration.

5. A device signaled I/0 error alert.

Detection of interface-control check causes the
current operation, if any, to be immediately
concluded.

Chaining Check

Chaining check is caused by channel overrun during
data chaining on input operations. Chaining check
occurs when the I/0 data rate is too high to be
handled by the channel and by storage under current
conditions. Chaining check cannot occur on output
operations.

Chaining check causes the I/O device to be
signaled to conclude the operation. It causes
command chaining to be suppressed.

Contents Of Channel-Status Word

The contents of the CSW depend on the reason the
CSW was stored and on the programming method by
which the information is obtained. The status portion
always identifies the reason the CSW was stored.

The subchannel-key, CCW-address, and count fields
may contain information pertaining to the last
operation or may be set to zero, or the original
contents of these fields at location 64 may be left
unchanged.

Information Provided by Channel-Status Word

Interruption conditions resulting from the execution
or conclusion of an operation at the subchannel cause
the whole CSW to be replaced. Such a CSW can be
stored only by an I/O interruption or by TEST 1/0
or CLEAR I/0. Except for situations associated
with command chaining and equipment
imalfunctioning, the storing can be caused by PCI or

channel end and by the execution of HALT I/0 or
HALT DEVICE on the selector channel. The
contents of the CSW are related to the current values
of the corresponding quantities, although the count is
unpredictable after program check, protection check,
and chaining check, and after an interruption due to
the PCI flag.

A CSW stored upon the execution of a chain of
operations pertains to the last operation which the
channel executed or attempted to initiate.
Information concerning the preceding operations is
not preserved and is not made available to the
program.

When an unusual situation causes command
chaining to be suppressed, the premature conclusion
of the chain is not explicitly indicated in the CSW.

A CSW associated with a conclusion due to a
situation occurring at channel-end time contains
channel end and identifies the unusual situation.
When the device signals the unusual situation with
control-unit end or device end, the channel-end
indication is not made available to the program, and
the channel provides the current subchannel key,
CCW address, and count, as well as the unusual
indication, with control-unit end or device end in the
CSW. The CCW-address and count fields pertain to
the operation that was executed.

When the execution of a chain of commands is
concluded by an unusual situation detected during
initiation of a new operation, the CCW-address and
count fields pertain to the rejected command. Except
for situations resulting from equipment
malfunctioning, conclusion at initiation time can
occur because of attention, unit check, unit
exception, or program check, and causes both the
channel-end and device-end bits in the CSW to be
set to zeros.

A CSW associated with status signaled after the
operation at the subchannel has been concluded
contains zeros in the subchannel-key, CCW-address,
and count fields, provided the status is not cleared
during START I/0 or START I/O FAST RELEASE
and provided logout pending is not indicated. This
status includes attention, control-unit end, and device
end (and channel end when it occurs after the
conclusion of an operation on the selector channel by
HALT I/0 or HALT DEVICE).

When the above status indications, other than
logout pending, are cleared during START I/O or
START I/O FAST RELEASE, only the status
portion of the CSW is stored, and the original
contents of the subchannel-key, CCW-address,

Chapter 12. Input/Output Operations 12-57

deferred-condition-code, logout-pending, and count
fields in location 64 are preserved. Similarly, only
the status bits of the CSW are changed when the
command is rejected or the operation at the
subchannel is concluded during the execution of
START I/O or START I/O FAST RELEASE or
whenever HALT I/0 or HALT DEVICE causes
CSW status to be stored.

Errors detected during execution of the 1/0
operation do not affect the validity of the CSW
unless channel-control check or interface-control
check are indicated. Channel-control check indicates
that equipment errors have been detected which can
cause any part of the CSW, as well as the I/0
address, to be invalid. Interface-control check
indicates that the address identifying the device or
the status bits received from the device may be
invalid. The channel forces correct parity on invalid
CSW fields. The validity of these fields can be
ascertained by inspecting the limited channel logout.

When any I/0 instruction cannot be executed
because of a pending logout which affects the
operational capability of the channel or subchannel, a
full CSW is stored. The fields in the CSW are all set
to zeros, with the exception of the logout-pending bit
and the channel-control-check bit, which are set to
ones.

12-58 IBM 4300 Processors Principles of Operation

Subchannel Key

A CSW stored to reflect the progress of an operation
at the subchannel contains the subchannel key used
in that operation. The contents of this field are not
affected by programming errors detected by the
channel or by the situations causing termination of
the operation.

CCW Address

When the CSW is formed to reflect the progress of
the I/0 operation at the subchannel, the CCW
address is normally 8 higher than the address of the
last CCW used in the operation.

The figure "Contents of the CCW-Address Field in
the CSW" lists the contents of the CCW-address
field for all situations that can cause the CSW to be
stored. They are listed in order of priority; that is, if
two situations occur, the CSW appears as indicated
for the situation higher on the list. When a CSW has
been stored and the situation exists that a
command-retry request has been recognized but the
CCW has not been re-executed, the "last-used CCW
+ 8" is the CCW that is to be retried. When a
program check is caused by two CCWs in sequence
both of which specify transfer in channel, the second
CCW is the one considered invalid. In the figure, the
three cases of disconnected location and the two
cases of invalid key are all protection checks.

Situations

Channel-control check

Status stored by START 1/0 or START 1/O FAST RELEASE
Status stored by HALT /O or HALT DEVICE

Program check because CCW location in TIC not provided
Program check (all others)

Disconnected CCW location in TIC

Disconnected CCW location generated

Disconnected data location

Invalid key on CCW fetch

Invalid key on data access

Chaining check

Termination under count control

Termination by 1/O device

Termination by HALT {/0

Termination by CLEAR 1/O

Suppression of command chaining due to unit check
or unit exception with device end or control-unit end

Termination on command chaining by busy, unit check,
or unit exception

Deferred condition code 1 for START 1/0 FAST RELEASE
PCI1 fiag in CCW

Interface-control check

Channel end after HALT /O on selector channel

Channel end after CLEAR 1/0O

Control-unit end

Device end

Attention

Busy

Status modifier

Contents of the CCW-Address Field in the CSW

Count

The residual count, in conjunction with the original
count specified in the last CCW used, indicates the
number of bytes transferred to or from the area
designated by the CCW. When an input operation is
concluded, the difference between the original count
in the CCW and the residual count in the CSW is
equal to the number of bytes transferred to storage;

Contents of Field

Unpredictable

Unchanged

Unchanged

Address of TIC + 8

Address of invalid CCW + 8
Address of TIC +8

First invalid CCW address + 8
Address of invalid CCW + 8
Address of protected CCW + 8
Address of current CCW + 8
Address of last-used CCW + 8
Address of last-used CCW + 8
Address of last-used CCW + 8
Address of last-used CCW + 8
Address of last-used CCW + 8
Address of last CCW used in the completed operation + 8

Address of CCW specifying the new operation + 8

Address of CCW specifying the new operation + 8
Address of last-used CCW + 8

Unpredictable

Zero

Zero

Zero

Zero

Zero

Zero

Zero

on an output operation, the difference is equal to the

number of bytes transferred to the I/0 device.

The figure ""Contents of the Count Field in the
CSW" lists the contents of the count field for all

situations that can cause the CSW to be stored.
are listed in the order of priority; that is, if two

They

situations occur, the CSW appears as for the situation

higher on the list.

Chapter 12. Input/Output Operations

12-59

Situations

Contents of Field

Channel-control check

Status stored by START 1/O or START I/O FAST RELEASE
Status stored by HALT 1/0 or HALT DEVICE

Program check

Protection check

Chaining check

Termination under count control

Termination by 1/0O device

Termination by HALT 1/0 or HALT DEVICE

Termination by CLEAR 1/0

Suppression of command chaining due to unit check or unit
exception with device end or control-unit end

Termination on command chaining by busy, unit check,

or unit exception

Deferred condition code 1 or 3 for START I/0 FAST
RELEASE

Unpredictable
Unchanged
Unchanged
Unpredictable
Unpredictable
Unpredictable
Correct
Correct
Unpredictable
Unpredictable

Correct. Residual count of last CCW used in the completed
operation.

Correct. Original count of CCW specifying the new operation.

Correct. Original count of CCW specifying the new operation.

PCI fiag in CCW Unpredictable
interface-control check Unpredictable
Channel end after HALT 1/0 on selector channel Zero
Channel end after CLEAR 1/O Zero
Control-unit end Zero
Device end Zero
Attention Zero
Busy Zero
Status modifier Zero

Contents of the Count Field in the CSW

Status

The status bits identify the situations that have been
detected during the I/O operation, that have caused a
command to be rejected, or that have been generated
by external events.

When the channel detects several errors, all
corresponding status bits in the CSW may be set to
ones or only one may be set, depending on the error
and model. Errors associated with equipment
malfunctioning have precedence, and whenever
malfunctioning causes an operation to be terminated,
channel-control check, interface-control check, or
channel-data check is indicated, depending on the
error. When an operation is concluded by program
check, protection check, or chaining check, the
channel identifies the situation responsible for the
conclusion and may or may not indicate incorrect
length. When a data error has been detected and the
operation is concluded prematurely because of a
program check, protection check, or chaining check,

12-60 IBM 4300 Processors Principles of Operation

both data check and the programming error are
identified.

If the CCW fetched on command chaining has the
PCI flag set to one but a programming error in the
contents of the CCW precludes the initiation of the
operation, whether the PCI bit is one in the CSW
associated with the interruption condition is
unpredictable. Similarly, if a programming error in
the contents of the CCW causes the command to be
rejected during execution of START I/O or START
I/0 FAST RELEASE, the CSW stored by the
instruction may or may not have the PCI bit set to
one. Furthermore, when the channel detects a
programming error in the CAW or in the first CCW,
the PCI bit is unpredictable in a CSW stored by
START I/0 or START I/O FAST RELEASE when
the PCI flag is zero in the first CCW associated with
the instruction.

However, if the CCW fetched on command
chaining has the PCI flag set to one but an unusual
situation detected by the device precludes the

initiation of the operation, the PCI bit is one in the
CSW associated with the interruption condition.
Likewise, if device status causes the command to be
rejected during execution of START I/O or START
I/0 FAST RELEASE, the CSW stored by the
instruction contains the PCI bit set to one.

Situations detected by the channel are not related to
those identified by the I/O device.

The figure "Contents of the CSW Status Fields"
summarizes the handling of status bits. The figure
lists the states and activities that can cause status
indications to be created and the methods by which
these indications can be placed in the CSW.

Chapter 12. Input/Output Operations 12-61

Upon Termination

of Operation at

When When : During BY By 1/0
1/0 Is Subchannel Sub- Control 1/O Command SI0 By By HIO Inter-
Status ldle Is Working channel Unit Device Chaining or SIOF By TIO CLRIO+ or HDV ruption

Attention c* c* c* S S S S
Status modifier (o4 (o4 CS CS S CS S
Control-unit end Cc* CS Cs S CS S
Busy C CS CS S CS S
Channel end c* C*H C*# CS# S S S
Device end Cc* c* Cc# CS# S S S
Unit check C C C C c* CS CS S CS
Unit exception Cc C C c* Cs S S S
Program-controlied
interruption c* Cc* C CS S S S
Incorrect length Cc C S S S
Program check C C c* CS S S S
Protection check C C Cc* (o] S S S
Channel-data check C C S S S
Channel-control check c* c* Cc* c* Cc* c* cs CS Ccs CS Ccs
Interface-control check C* c* c* c* c* c* Ccs Cs CS Cs CS
Chaining check C C S S S
Deferred cond code 1 C*# S S S
Deferred cond code 3 c# S S S
Explanation:

C The channel or device can create or present status at the
indicated time. A CSW or its status protion is not
necessarily stored at this time.

Status such as channel end or device end is created at the
indicated time. Other status bits may have been created
previously but are made accessible to the program only at
the indicated time. Examples of such status bits are pro-
gram check and channel-data check, which are detected
while data is transferred but are made available to the pro-
gram only with channel end, uniess the PCl flag or an equip-
ment malfunction has caused an interruption condition to be
generated earlier.

S The status indication is stored in the CSW at the indicated
time.

An S appearing alone indicates that the status has been
created previously. The letter C appearing with the S
indicates that the status did not necessarily exist previously
in the form that causes the program to be alerted, and may
have been created by the 1/O instruction or 1/O interruption.
For example, an equipment malfunction may be detected
during an 1/O interruption, causing channel-control or
interface-contro! check to be indicated; or a device such as
the 2702 may signal control-unit busy in response to in-
terrogation by an 1/0O instruction, causing status modifier,
busy, and control-unit end to be indicated in the CSW.

Contents of the CSW Status Fields

12-62 IBM 4300 Processors Principles of Operation

The status generates an interruption condition.

Channel end and device end do not result in interruption
conditions when command chaining is specified and no
unusual situations have been detected.

This indication is created at the indicated time only by an
immediate operation.

Applies only to SIOF.

When an operation on the selector channel has been con-
cluded by HALT DEVICE or HALT 1/0, or an operation
has been concluded by CLEAR 1/O, channel end indicates
the conclusion of the data-handling portion of the operation
at the control unit. :
The entries in this column apply only when the CLR10
function is executed. When CLEAR 1/O causes the T10
function to be executed, the entries in the TIO column
apply.

Channel Logout

When a channel stores a CSW that indicates
channel-control check in the absence of logout
pending, or interface-control check, or, on some
channels, channel-data check, a limited channel
logout accompanies the storing of the CSW. Such a
logout is useful for error recovery.

The limited channel logout contains
model-independent information and is stored at
locations 176-179. When it is stored, bit O of the
logout is always stored as a zero.

I/0 Communications Area

Storage locations 160-191 comprise a permanently
assigned area of storage used for I/O, designated the
1/0 communications area (IOCA). (See the figure
"1/0 Communications Area.")

Locations 160-167, 172-175, 180-184, and
188-191 are reserved for future I/O use.

Channel ID (Locations 168-171): Locations
168-171, when stored during the execution of a
STORE CHANNEL ID instruction, contain
information which describes the addressed channel.

160

164

168 Channel ID

172

176 Limited Channel Logout {LCL)

180

184 00000000 1/0 Address

188

I/O0 Communications Area

Limited Channel Logout (Locations 176-179): The
limited-channel-logout field (locations 176-179)
contains model-independent information related to
equipment errors detected by the channel. This
information is used to provide detailed machine status
when errors have affected I/O operations. The field
may be stored only when the CSW or a portion of the
CSW is stored.

The bits of the field are defined as follows:

4-7

8-12

This bit is always stored as a zero when a
limited channel logout (LCL) is stored. If
the program ensures that this bit is set to one
and any channel-control check,
interface-control check, or channel-data
check occurs, a test of this bit can determine
if the LCL was stored by the channel. The
LCL cannot be stored by a channel unless
one of these three channel-status bits is set to
one.
Identity of the storage-control unit (SCU)
identifies the SCU through which storage
references were directed when an error was
detected. This identity is not necessarily the
identity of the storage unit involved with the
transfer. When only one physical path exists
between channel and storage, the
storage-control unit has the identity of the
CPU. If more than one path exists, the
storage-control unit has its own identity.
When bit 3 is zero, bits 1 and 2 are-
undefined. In this case, the SCU identity is
implied to be the same as the CPU identity.
When bit 3 is one, the binary value of bits 1
and 2 identifies a physical SCU. Each SCU
in the system has a unique identity.
Detect field identifies the type of unit that
detected the error. At least one bit is present
in this field, and multiple bits may be set
when more than one unit detects the error.
Bit 4 — CPU
Bit 5 — Channel
Bit 6 — Main-storage control
Bit 7 — Main storage

Source field indicates the most likely source
of the error. The determination is made by
the channel on the basis of the type of error
check, the location of the checking station,
the information flow path, and the success or
failure of transmission through previous check
stations.

Normally, only one bit will be present in
this field. However, when interunit
communication cannot be resolved to a single
unit, such as when the interface between
units is at fault, multiple bits (normally two)
may be set to ones in this field. When a
reasonable determination cannot be made, all
bits in this field are set to zeros.

If the detect and source fields indicate
different units, the interface between them
can also be considered suspect.

Chapter 12. Input/Output Operations 12-63

13-18
19-23

24-25

26-27
28

29-31

12-64

Bit8 - CPU

Bit 9 — Channel

Bit 10 — Main-storage control
Bit 11 — Main storage

Bit 12 — Control unit

Reserved. Stored zero.
Field-validity flags. These bits indicate the
validity of the information stored in the
designated fields. When the validity bit is set
to one, the field is stored and usable. When
the validity bit is set to zero, the field is not
usable.

The fields designated are:

Bit 19 — Sequence code

Bit 20 — Unit status

Bit 21 — CCW address and subchannel key
in CSW

Bit 22 — Channel address

Bit 23 — Device address

Type of termination that has occurred is
indicated by these two bits.

This encoded field has meaning only when
a channel-control check or an
interface-control check is indicated in the
CSW. When neither of these two checks is
indicated, no termination has been forced by
the channel.

00 Interface disconnect

01 Stop, stack, or normal termination

10 Selective reset

11 Reserved

Reserved. Stored zero.

I/0 error alert. This bit, when set to one,
indicates that the limited channel logout
resulted from the signaling of I/0 error alert
by the indicated unit. The I/O-error-alert
signal indicates that the control unit has
detected a malfunction which prevents it from
communicating properly with the channel.
The channel, in response, performs a
malfunction reset and causes interface-control
check to be set.

Sequence code identifies the 1/O sequence in
progress at the time of error. It is
meaningless if stored during the execution of
HALT I/0 or HALT DEVICE.

For all cases, the CCW address in the
CSW, if validly stored and nonzero, is the
address of the current CCW plus 8.

The sequence code assignments are:

IBM 4300 Processors Principles of Operation

000

001

010

011

100

101

A channel-detected error occurred
during the execution of a TEST I/O or
CLEAR 1/0 instruction.
Command-out with a nonzero
command byte on bus-out has been
sent by the channel, but device status
has not yet been analyzed by the
channel. This code is set with a
command-out response to address-in
during initial selection.
The command has been accepted by the
device, but no data has been
transferred. This code is set by a
service-out or command-out response to
status-in during an initial selection
sequence, if the status is either channel
end alone, or channel end and device
end, or channel end, device end, and
status modifier, or all zeros.
At least one byte of data has been
transferred between the channel and
the device. This code is set with a
service-out response to service-in and,
when appropriate, may be used when
the channel is in an idle or polling
state.
The command in the current CCW has
either not yet been sent to the device o
else was sent but not accepted by the
device. This code is set when one of
the following situations occurs:
1. When the CCW address is updated
during command chaining or a
START 1/0.

2. When service-out or command-out

is raised in response to status-in
during an initial selection sequence
with the status on bus-in including
attention, control-unit end, unit
check, unit exception, busy, status
modifier (without channel end and
device end), or device end (withou
channel end).

3. When a short, control-unit-busy

sequence is signaled.

4. When command retry is signaled.
5. When the channel issues a test-1/C

command rather than the comman
in the current CCW.
The command has been accepted, but
data transfer is unpredictable. This
code applies from the time a device

110

comes on the interface until the time it
is determined that a new sequence code
applies. It may thus be used when a
channel goes into the polling or idle
state and it is impossible to determine
that code 010 or 011 applies. It may
also be used at other times when a
channel cannot distinguish between
code 010 or O11.

Reserved.

111 Reserved.

Reserved (Location 185): Zéro is stored at location
185 whenever an 1/0 address is stored at locations
186-187.

/0 Address (Locations 186-187): A two-byte field

is provided for storing the I/O address on each 1/O
interruption in the EC mode.

Chapter 12. Input/Output Operations 12-65

Chapter 13. Operator Facilities

Contents

Basic Operator Facilities 13-1
Address-Compare Controls 13-1
Alter-and-Display Controls 13-2
Check Control 13-2
Check-Stop Indicator 13-2
IML Controls 13-2
Interrupt Key 13-2
Interval-Timer Control 13-3
Load Indicator 13-3
Load-Clear Key 13-3
Load-Normal Key 13-3
Load-Unit-Address Controls 13-3
Machine-Save Key 13-3
Maunual Indicator 13-3
Mode Indicator 13-3

The operator facilities provide functions for the
manual operation and control of the machine. The
functions include operator-to-machine
communication, indication -of machine status, control
over the setting of the time-of-day clock, initial
program loading, resets, and other manual controls
for operator intervention in normal machine
operation.

A model may provide additional operator facilities
which are not described in this chapter. Examples
are the means to indicate specific error conditions in
the equipment, to change equipment configurations,
and to facilitate maintenance. Furthermore, controls
covered in this chapter may have additional settings
which are not described here. Such additional
facilities and control settings are contained in the
appropriate System Library (SL) publication.

Most models provide, in association with the
operator facilities, a console device which may be
used as an 1/0 device for operator communication
with the program; this console device may also be
used to implement some or all of the facilities
described in this chapter.

The operator facilities may be implemented on a
particular model in various technologies and
configurations. On some models, more than one set
of physical representations of some keys, controls,
and indicators may be provided, such as on multiple

Power Controls 13-4

Rate Control 13-4

Restart Key 13-4

Save Indicator 13-4

Start Key 13-4

Stop Key 13-4

Storage-Size Control 13-4
System Indicator 13-5
System-Reset-Clear Key 13-5
System-Reset-Normal Key 13-5
Test Indicator 13-5
TOD-Clock Control 13-5
Wait Indicator 13-5

local or remote operating stations, which may be
effective concurrently.

A machine malfunction that prevents a manual
operation from being performed correctly, as defined
for that operation, may cause the CPU to enter the
check-stop state or give some other indication to the
operator that the operation has failed. Alternatively,
a machine malfunction may cause a
machine-check-interruption condition to be
recognized.

Basic Operator Facilities

Address-Compare Controls

The address-compare controls provide a way to stop
the CPU when a preset address matches the address
used in a specified type of main-storage reference.

One of the address-compare controls is used to set
up the address to be compared with the storage
address.

Another control provides at least two settings to
specify the action, if any, to be taken when the
address match occurs. The two settings are normal
and stop. When this control is set to stop, the test
indicator is turned on.

The normal setting disables the address-compare
operation.

The stop setting causes the CPU to enter the
stopped state on an address match. Depending on

Chapter 13. Operator Facilities 13-1

the model and the type of reference, pending 1/0,
external, and machine-check interruptions may or
may not be taken before entering the stopped state.

A third control may specify the type of storage
reference for which the address comparison is to be
made. A model may provide one or more of the
following settings, as well as others:

The any setting causes the address comparison to be
performed on all storage references.

The data-store setting causes address comparison to
be performed when storage is addressed to store data.

The 1/0 setting causes address comparison to be
performed when storage is addressed by a channel to
transfer data or to fetch a channel-command word.
Whether references to the channel-address word or
the channel-status word cause a match to be
indicated depends on the model.

The IC setting causes address comparison to be
performed when storage is addressed to fetch an
instruction. The rightmost bit of the address setting
may or may not be ignored. The match is indicated
only when the first byte of the instruction is fetched
from the selected location. It depends on the model
whether a match is indicated when fetching the target
instruction of EXECUTE.

Alter-and-Display Controls

The operator facilities provide controls and
procedures to permit the operator to alter and display
the contents of addressable locations in main storage,
the storage keys, the page bits, the general,
floating-point, and control registers, and the PSW.
Information in storage can only be altered or
displayed if the storage pages containing the
information are in the connected or addressable state.
Before alter-and-display operations may be
performed, the CPU must first be placed in the
stopped state. During alter-and-display operations,
the manual indicator may be turned off temporarily,
and the start and restart keys may be inoperative.

Check Control

The check control has at least two settings, stop and

normal. If the control is set to stop, the CPU enters

the check-stop state when either

1. A machine-check condition is detected and not
corrected

2. A channel check occurs which would cause
information to be stored in a channel-logout area
at locations 176-179

Whether information is actually stored in assigned
storage locations as a result of the machine check or

13-2 IBM 4300 Processors Principles of Operation

channel check, the indications given for the cause of
the stoppage, and the manner of resuming CPU
operation depend on the model.

If the check control is set to normal, the action
resulting from the detection of a machine check or
channel check is the same as described in Chapter
11, "Machine-Check Handling," or in Chapter 12,
"Input/Output Operations," respectively.

The test indicator is on while the check control is
set to stop.

Programming Note

Except that recovery from a machine check or a
channel check with logout is not possible, the check
control permits a System/360 program, which uses
assigned storage locations above 128 as ordinary
storage, to be run in the BC mode.

Check-Stop Indicator

The check-stop indicator is on when the CPU is in
the check-stop state. Reset operations normally
cause the CPU to leave the check-stop state and thus
turn off the indicator. The manual indicator may
also be on in the check-stop state.

IML Controls

The IML. controls perform initial microprogram
loading (IML). The IML operation selects the
ECPS:VSE mode or the System/370 mode of
operation.

When the IML operation is completed, the state of
the affected CPU, channels, storage, and operator
facilities is the same as if a power-on reset had been
performed, except that the value and state of the
time-of-day clock are not reset.

The IML controls are effective while the power is
on.

Interrupt Key

When the interrupt key is activated, an
external-interruption condition indicating the
interrupt key is generated. (See the section
"Interrupt Key' in Chapter 6, "Interruptions.')

The interrupt key is effective when the CPU is in
the operating or stopped state. It depends on the
model whether the interrupt key is effective when the
CPU is in the load state.

Interval-Timer Control

The interval-timer control disables or enables
operation of the interval timer. Disabling the interval
timer does not affect any other facility.

When the control is set to disable the interval timer,
updating of assigned storage locations 80-83 ceases.
The contents of locations 80-83 remain at the last
value to which they were updated, unless changed by
a subsequent store operation. Any already pending
interval-timer-interruption condition is kept pending
without regard to the state of the external mask, PSW
bit 7, and the interval-timer mask, bit 24 of control
register 0.

When the control is set to enable the interval timer,
updating of locations 80-83 is resumed using the
current contents. If an interval-timer-interruption
request existed and was kept pending when the
interval-timer control was last set to disable, that
condition remains pending until the CPU is enabled
for the interruption.

The test indicator may or may not be turned on
when the interval-timer control is set to disable.

Programming Note

Disabling the interval timer allows execution of a
program which uses locations 80-83 as ordinary
storage. A program which does not use the interval
timer will function correctly with the interval timer
disabled, even when the interval timer fails.

Load Indicator

The load indicator is on during initial program
loading, indicating that the CPU is in the load state.
The indicator goes on when the load-clear or
load-normal key is activated and the corresponding
operation is started. It goes off after the new PSW is
loaded successfully.

Load-Clear Key

Activating the load-clear key causes a clear-reset
operation to be performed and initial program loading
to be started using the I/O device specified by the
load-unit-address controls. For details, see the
sections "Resets" and "Initial Program Loading" in
Chapter 4, "Control."

The load-clear key is effective when the CPU is in
the operating, stopped, load, or check-stop state.

Load-Normal Key

Activating the load-normal key causes an
initial-program-reset operation to be performed and
initial program loading to be started using the 1/0
device specified by the load-unit-address controls.
For details, see the sections '"Resets' and "Initial
Program Loading" in Chapter 4, "Control."

The load-normal key is effective when the CPU is
in the operating, stopped, load, or check-stop state.

Load-Unit-Address Controls

The load-unit-address controls select three
hexadecimal digits, which provide the 12 rightmost
I/0 address bits used for initial program loading.

Machine-Save Key

Activating the machine-save key initiates a
machine-save operation. (See the section ''Machine
Save" in Chapter 4, "Control.”") The save indicator
is turned on when the operation is completed
successfully. .

The machine-save key is effective only when the
CPU is in the stopped state.

Operation Note

The machine-save operation may be used in
conjunction with a standalone dump program for the
analysis of major program malfunctions. For such an
operation, the following sequence would be called
for:
1. Activation of the stop or system-reset-normal key
2. Activation of the machine-save key
3. Activation of the load-normal key to enter a
standalone dump program

The system-reset-normal key must be activated in
step 1 when the stop key is not effective because a
continuous string of interruptions occurs or the CPU
is in the check-stop state.

Manual Indicator

The manual indicator is on when the CPU is in the
stopped state. Some functions and several manual
controls are effective only when the CPU is in the
stopped state.

Mode Indicator

The mode indicator shows the architectural mode of
operation selected by the last IML operation.

Chapter 13. Operator Facilities 13-3

Power Controls

The power controls are used to turn the power on
and off.

The CPU, storage, channels, operator facilities, and B

I/0 devices may all have their power turned on and
off by common controls, or they may have separate
power controls. When a particular unit has its power
turned on, that unit is reset. The sequence is
performed so that no instructions or I/O operations
are performed until explicitly specified. The controls
may also permit power to be turned on in stages, but
the machine does not become operational until
power-on is complete. ~

When the power is completely turned on, an IML
operation is performed. A power-on reset is then
initiated (see the section ''Resets" in Chapter 4,
"Control"). It depends on the model whether the
architectural mode of operation can be selected when
the power is turned on, or whether the IML controls
have to be used to change the mode after the power
is on.

Rate Control

The setting of the rate control determines the effect
of the start function and the manner in which
instructions are executed.

The rate control has at least two settings. The
normal setting is process. When the rate control is
set to process and the start function is performed, the
CPU starts operating at normal speed. When the rate
control is set to instruction step, one instruction or,
for interruptible instructions, one unit of operation is
executed each time that the start function is
performed. For details, see the section "Stopped,
Operating, Load, and Check-Stop States'' in Chapter
4, "Control."

The test indicator is on while the rate control is not
set to process.

If the setting of the rate control is changed while
the CPU is in the operating or load state, the results
are unpredictable.

Restart Key

Activating the restart key initiates a restart
interruption. (See the section ''Restart Interruption"
in Chapter 6, "Interruptions.'")

The restart key is effective when the CPU is in the
operating or stopped state. The key is not effective
when the CPU is in the check-stop state. It depends
on the model whether the restart key is effective
when the CPU is in the load state.

13-4 IBM 4300 Processors Principles of Operation

Save Indicator

The save indicator is turned on when a machine-save
operation has been successfully completed. It is
turned off when the load-clear, load-normal, restart,
start, system-reset-clear, or system-reset-normal key
is activated. It may also be turned off when other
controls are activated. The indicator is off after a
power-on reset. If an error is encountered during the
machine-save operation, the indicator remains off.

Start Key

Activating the start key causes the CPU to perform
the start function. (See the section ''Stopped,
Operating, Load, and Check-Stop States" in Chapter
4, "Control.")

The start key is effective only when the CPU is in
the stopped state. The effect is unpredictable when
the stopped state has been entered by a reset.

Stop Key

Activating the stop key causes the CPU to perform
the stop function. (See the section "Stopped,
Operating, Load, and Check-Stop States" in Chapter
4, "Control.")

The stop key is effective only when the CPU is in
the operating state.

Operation Note

Activating the stop key has no effect when a
continuous string of interruptions occurs or when the
CPU is in the check-stop state.

Storage-Size Control

The storage-size control is provided when a model
permits more than one size of virtual storage. The
control determines the storage size and, hence, the
value of the page-capacity count. The number of
storage-size settings of the control depends on the
model. (See the section "'Storage Size' in Chapter 3,
"Storage.'")

A new setting of the storage-size control becomes
effective only as part of the IML operation performed
when turning the power on or when activating the
IML controls.

System Indicator

The system indicator is on when the customer or
customer-engineer usage meter of the central
processing complex is running.

In general, the system indicator is on when the CPU
is not in the wait state and not in the stopped or
check-stop state, or when the I/O system is working,
or both.

System-Reset-Clear Key

Activating the system-reset-clear key causes a
clear-reset operation to be performed. For details,
see the section "Resets' in Chapter 4, "'Control."

The system-reset-clear key is effective when the
CPU is in the operating, stopped, load, or check-stop
state.

System-Reset-Normal Key

Activating the system-reset-normal key causes a
program-reset operation to be performed. For
details, see the section "Resets" in Chapter 4,
"Control."

The system-reset-normal key is effective when the
CPU is in the operating, stopped, load, or check-stop
state.

Test Indicator

The test indicator is on when a manual control for
operation or maintenance is in an abnormal position
that can affect the normal operation of a program.

Setting the address-compare controls or the check
control to stop or setting the rate control to
instruction step turns on the test indicator. Setting
the interval-timer control to disable may or may not
turn on the test indicator.

The test indicator may be on when one or more
‘diagnostic functions under the control of DIAGNOSE
are activated, or when other abnormal conditions
occur.

Operation Note

If a manual control is left in a setting intended for
maintenance purposes, such an abnormal setting may,
among other things, result in false machine-check
indications or cause actual machine malfunctions to
be ignored. It may also alter other aspects of
machine operation, including instruction execution,
channel operation, and the functioning of operator
controls and indicators, to the extent that operation
of the machine does not comply with that described
in this manual.

TOD-Clock Control

When the TOD-clock control is not activated, that is,
the control is set to secure, the value of the
time-of-day (TOD) clock is protected against
unauthorized or inadvertent change by not permitting
the instruction SET CLOCK to change the value.

When the TOD-clock control is activated, that is,
the control is set to enable set, alteration of the clock
value by means of SET CLOCK is permitted. This
setting is temporary, and the control automatically
returns to secure.

Wait Indicator

The wait indicator is on when the CPU is in the wait
state.

Operation Note

The manual indicator, system indicator, and wait
indicator may be used by the operator to determine
the status of the system. The following figure shows
the possible conditions when power is on and the
CPU is not in the load or check-stop state.

I Indi Sy Indi ! Wait Indi CPU State State of 1/0 System?
off off off M *
off off on Operating, Wait Not Working
off on off Operating Undetermined
off on on Operating, Wait ~ Working
on off off Stopped Not Working
on off on Stopped, Wait Not Working
on on oft Stopped Working
on on on Stopped, Wait Working

Explanation:

* Abnormal condition.
1 When the system indicator is turned on, it remains on for a minimum of approximately 1 second.
2 The operation of the console 1/0 device is included here as an 1/0 operation.

System-Status Indications

Chapter 13. Operator Facilities 13-5

Appendix A. Number Representation
and Instruction-Use Examples

Contents

Number Representation A-2
Binary Integers A-2
Signed Binary Integers A-2
Unsigned Binary Integers A-3
Decimal Integers A-3
Floating-Point Numbers A-4
Conversion Example A-§
Instruction-Use Examples A-5
Machine Format A-§
Assembler-Language Format A-5
General Instructions A-6
ADD HALFWORD (AH) A-6
AND (N, NR, NI, NC) A-6
AND (NI) A-6
BRANCH AND LINK (BAL, BALR) A-7
BRANCH ON CONDITION (BC, BCR) A-7
BRANCH ON COUNT (BCT, BCTR) A-8
BRANCH ON INDEX HIGH (BXH) A-8
BRANCH ON INDEX LOW OR EQUAL (BXLE) A9
COMPARE HALFWORD (CH) A-9
COMPARE LOGICAL (CL, CLR, CLI, CLC) A9
Compare Logical (CLR) A-9
Compare Logical (CLI) A-9
Compare Logical (CLC) A-10
COMPARE LOGICAL CHARACTERS UNDER
MASK (CLM) A-10
COMPARE LOGICAL LONG (CLCL) A-11
CONVERT TO BINARY (CVB) A-12
CONVERT TO DECIMAL (CVD) A-12
DIVIDE (D,DR) A-13
EXCLUSIVE OR (X, XR, XI, XC) A-13
Exclusive Or (XI) A-13
Exclusive Or (XC) A-13
EXECUTE (EX) A-14 :
INSERT CHARACTERS UNDER MASK (ICM) -~ A-15
LOAD (L, LR) A-16
LOAD ADDRESS (LA) A-16
LOAD HALFWORD (LH) A-16
MOVE (MVI) A-17
MOVE (MVC) A-17
MOVE LONG (MVCL) A-18

Appendix A. Number Representation and Instruction-Use Examples

MOVE NUMERICS (MVN) A-18
MOVE WITH OFFSET (MVO) A-19
MOVE ZONES (MVZ) A-19
MULTIPLY (M, MR) A-20
MULTIPLY HALFWORD (MH) A-20
OR (O, OR, OI, OC) A-21
Oor (0 A-21
PACK (PACK) A-21
SHIFT LEFT DOUBLE (SLDA) A-21
SHIFT LEFT SINGLE (SLA) A-22
STORE CHARACTERS UNDER MASK (STCM)
STORE MULTIPLE (STM) A-23
TEST UNDER MASK (TM) A-23
TRANSLATE (TR) A-23
TRANSLATE AND TEST (TRT) A-24
UNPACK (UNPK) A-25
Decimal Instructions A-25
ADD DECIMAL (AP) A-26
COMPARE DECIMAL (CP) A-26
DIVIDE DECIMAL (DP) A-26
EDIT (ED) A-27
EDIT AND MARK (EDMK) A-28
MULTIPLY DECIMAL (MP} A-28
SHIFT AND ROUND DECIMAL (SRP) A-29
Decimal Left Shift A-29
Decimal Right Shift A-29
Decimal Right Shift and Round = A-29
Multiplying by a Variable Power of 10 A-30
ZERO AND ADD (ZAP) A-30
Floating-Point Instructions A-30

A-22

ADD NORMALIZED (AE, AER, AD, ADR) A-30

ADD UNNORMALIZED (AU, AUR, AW, AWR)
COMPARE (CE, CER, CD, CDR) A-31
Multiprogramming and Multiprocessing Examples
Example of a Program Failure Using
OR Immediate A-32

COMPARE AND SWAP (CS, CDS) A-32

Setting a Single Bit A-33

Updating Counters A-33

A-31

A-32

A-1

Number Representation
Binary Integers

Signed Binary Integers

Signed binary integers are most commonly repre-
sented as halfwords (16 bits) or fullwords (32 bits).
In both lengths, the leftmost bit (bit 0) is the sign of
the number. The remaining bits (bits 1-15 for
halfwords and 1-31 for fullwords) are used to
designate the magnitude of the number. Binary
integers are also referred to as fixed-point numbers,
because the radix point is considered to be fixed at

the right, and any scaling is done by the programmer.

Positive binary integers are in true binary notation
with a zero sign bit. Negative binary integers are in
two’s-complement notation with a one bit in the sign
position. In all cases, the bits between the sign bit
and the leftmost significant bit of the integer are the
same as the sign bit (that is, all zeros for positive
numbers, all ones for negative numbers).

Negative binary integers are formed in
two’s-complement notation by inverting each bit of
the positive binary integer and adding one. As an
example using the halfword format, the binary
number with the decimal value +26 is made negative
(—26) in the following manner:

S
+26 0 000 0000 0001 1010 (S is the sign bit)
Invert 1 111 1111 1110 0101
Add 1 1

~26 1 111 1111 1110 0110 (Two’s complement form)
This is equivalent to subtracting the number:
00000000 00011010 from 1 00000000 00000000

Negative binary integers are changed to positive in
the same manner.

The following addition examples illustrate
two’s-complement arithmetic and overflow
conditions. Only eight bit positions are used.

1. +57 = 0011 1001
+35 = 0010 0011
+92 = 0101 1100
2. +57 = 0011 1001
-35 =1101 1101

+22 = 0001 0110 No overflow—carry into
high-order position and

carry out.

A-2 IBM 4300 Processors Principles of Operation

3. +35 = 0010 0011
—57 = 1100 0111

—-22 = 1110 1010 Sign change only—no
carry into high-order
position and no carry out.
4. —57 = 1100 0111

—35 =1101 1101

-92 = 1010 0100 No overflow—carry into
high-order position and
carry out.

5. +57 = 0011 1001

+92 = 0101 1100
+149 = *1001 0101

*QOverflow—carry into
high-order position, no
carry out.
6. —57 = 11000111

~-92 = 1010 0100

—149 = *0110 1011

*QOverflow—no carry into
high-order position but
carry out.

The presence or absence of an overflow condition
may be recognized from the carries:
¢ There is no overflow:
a. . If there is no carry into the high-order bit
position and no carry out (examples 1 and 3).
b. If there is a carry into the high-order position
and also a carry out (examples 2 and 4).
» There is an overflow:
a. If there is a carry into the high-order position
but no carry out (example 5).
b. 1If there is no carry into the high-order
position but there is a carry out (example 6).
The following are 16-bit signed binary integers.
The first is the maximum positive 16-bit binary
integer. The last is the maximum negative 16-bit
binary integer (the negative 16-bit binary integer
with the greatest absolute value).

Number Decimal i Integer

2131 = 32767 = 0 111 1111 1111 1111
2° = 1= 0 000 0000 0000 0001
0 = 0= 0 000 0000 0000 0000
20 = -1 =1 111 1111 1111 1111
215 = 32,768 = 1 000 0000 0000 0000

The following are several 32-bit signed binary
integers arranged in descending order. The first is
the maximum positive binary integer that can be
represented by 32 bits, and the last is the maximum
negative binary integer that can be represented by 32
bits.

Number Decimal Integer
231.1= 2147483647 = 0 111 111t 1111 111 1111 1111 1111 1111
218 = 65536 = 0 000 0000 0000 0001 0000 0000 0000 0000

0 = 0= 000 0000 0000 0000 0000 0000 0000 0000
-2° = -1 = 111 1111 f1ir 1110 111 1dn 11 o111
111 1111 1111 111 1111 1111 1111 1110
111 1111 1111 1111 0000 0000 0000 0000
000 0000 0000 0000 0000 0000 0000 Q001
000 0000 0000 0000 0000 0000 0000 0000

=t = 2 =
-2'¢ = —65536 =
—23141 = 2147483647 =

Ky
r
0
2 = 1 = 0 000 0000 0000 0000 0000 0000 0000 0001
]
1
1
1
1
23 = .2147483648 = 1

Unsigned Binary Integers

Certain instructions, such as ADD LOGICAL, treat
binary integers as unsigned rather than signed.
Unsigned binary integers have the same format as
signed binary integers, except that the leftmost bit is
interpreted as another numeric bit rather than a sign
bit. There is no complement notation because all
unsigned binary integers are considered positive.
The following examples illustrate the addition of
unsigned binary integers. Ounly eight bit positions are
used. The examples are numbered the same as the
corresponding examples for signed binary integers.

1. 57 = 0011 1001
35 = 0010 0011

92 = 0101 1100

2. 57 = 0011 1001
221 = 1101 1101

278 = *0001 0110 *Carry out of
high-order position
3. 35 = 0010 0011

199 = 1100 0111
234 = 1110 1010

4. 199 = 11000111
221 = 1101 1101
420 = *1010 0100 *Carry out of
high-order position
5. 57 = 0011 1001
92 = 0101 1100

149 = 1001 0101

6. 199 = 11000111
164 = 1010 0100

363 = *0110 1011 *Carry out of

high-order position

A carry out of the high-order bit position may or
may not imply an overflow, depending on the
application.

The following are several 32-bit unsigned binary
integers arranged in descending order:

Number Decimal Integer

2321 = 4294967296 = 1111 1111 1111 1111 1111 1111 1111 1111
231 = 2147483648 = 1000 0000 0000 0000 0000 0000 0000 (000
2311 = 2147483647 = 0111 1111 1111 1111 1111 1111 1111 1111
218 = 65536 = 0000 0000 0000 0001 0000 0000 0000 0000
2° = 1 = 0000 0000 0000 0000 00C0 0000 0000 0001
0 = 0 = 0000 0000 0000 0000 0000 0000 0000 0000

Decimal Integers

Decimal integers are represented as one or more
decimal digits and a sign digit. Each digit is a 4-bit
code. The decimal digits are in binary-coded decimal
(BCD) form, with the values 0-9 encoded as
0000-1001. The sign is usually represented as 1100
(C hex) for plus and 1101 (D hex) for minus. These
are the preferred sign codes, which are generated by
the machine for the results of decimal operations.
There are also several alternate sign codes (1010,
1110, and 1111 for plus; 1011 for minus). The
alternate sign codes are accepted by the machine as
valid but are not generated for results.

Decimal integers may have different lengths, from
one to sixteen bytes. There are two decimal formats:
packed and zoned. In the packed format, each byte
contains two decimal digits, except for the rightmost
byte which contains the sign in its right digit. The
number of decimal digits in the packed format can
vary from one to 31. Because decimal integers must
consist of whole bytes and there must be a sign digit
on the right, the number of decimal digits is always
odd. If an even number of significant digits is

-desired, a leading zero must be inserted on the left.

In the zoned format, each byte consists of a decimal
digit on the right and the zone code 1111 (F hex) on
the left, except for the rightmost byte where the sign
code replaces the zone code. Thus, decimal integers
in the zoned format can have anywhere from one to
16 digits. The zoned format may be used directly for
input and output in the extended
binary-coded-decimal interchange code (EBCDIC),
except that the sign must be separated from the
low-order digit and handled as a separate character.
For positive (unsigned) numbers, however, the sign
code of the low-order digit can simply be replaced by
the zone code, which is one of the acceptable
alternate codes for plus.

In either format, negative decimal integers are
represented in true notation with a separate sign. As
for binary integers, the radix point (decimal point) of

Appendix A. Number Representation and Instruction-Use Examples A-3

decimal integers is considered to be fixed at the right,
and any scaling is done by the programmer.

The following are some examples of decimal
integers shown in hexadecimal notation:

Value Packed Format Zoned Format

+123 12 3C F1 F2 C3 or F1 F2 F3
—4321 04 32 1D F4 F3 F2 D1
+000050 0000050C FO FO FO FO F5 CO or
FO FO FO FO F5 FO
-7 70 D7
00000 00 00 OC FO FO FO FO CO or

FO FO FO FO FO

Under some circumstances, a zero with a minus sign
(negative zero) is produced. For example, the
multiplicand:

00 123D (-123)
times the multiplier:
oC (+0)
generates the product:
00 00 0D (-0)

because the product sign follows the algebraic rule of
signs even when the value is zero. A negative zero,
however, is entirely equivalent to a positive zero;
they compare equal in a decimal comparison.

Floating-Point Numbers

A floating-point number is expressed as a fraction
multiplied by a separate power of 16. The term
floating point indicates that the radix-point
placement, or scaling, is automatically maintained by
the machine.

The part of a floating-point number which
represents the significant digits of the number is
called the fraction. A second part specifies the power
(exponent) to which 16 is raised and indicates the
location of the radix point of the number. The
fraction and exponent may be represented by 32 bits
(short format), 64 bits (long format), or 128 bits
(extended format).

Short Floating-Point Number

S| Characteristic 6-Digit Fraction

A-4 JIBM 4300 Processors Principles of Operation

Long Floating-Point Number

/L
7/

S| Characteristic 14-Digit Fraction

ya
7/

Extended Floating-Point Number

/ L

7/
High-Order Half
S| Characteristic of 28-Digit Fraction
/ L
7/
0 1 8 63
/ L
7/
/ Low-Order Half
of 28-Digit Fraction
Y
7/
64 72 127

A floating-point number has two signs: one for the
fraction and one for the exponent. The fraction sign,
which is also the sign of the entire number, is the
leftmost bit of each format (O for plus, 1 for minus).
The numeric part of the fraction is in true notation
regardless of the sign. The numeric part is contained
in bits 8-31 for the short format, in bits 8-63 for the
long format, and in bits 8-63 followed by bits 72-127
for the extended format.

The exponent sign is obtained by expressing the
exponent in excess-64 notation; that is, the exponent
is added as a signed number to 64. The resulting
number is called the characteristic. It is located in
bits 1-7 for all formats. The characteristic can vary
from O to 127, permitting the exponent to vary from
—64 through O to +63. This provides a scale
multiplier in the range of 16-64 to 1663, A nonzero
fraction, if normalized, must be less than one and
greater than or equal to 1/16, so that the range
covered by the magnitude M of a floating-point
number is:

1665 < M < 1683
In decimal terms:
16-65 is approximately équal to 54 x 10-79
1693 is approximately equal to 7.2 x 1075
More precisely,
In the short format:
1665 < M < (1 — 166) x 1683

In the long format:

1665 < M < (1 — 16-14) x 1663
In the extended format:

1665 < M < (1 — 16-28) x 1683

Within a given fraction length (6, 14, or 28 digits),
a floating-point operation will provide the greatest
precision if the fraction is normalized. A fraction is
normalized when the high-order digit (bit positions 8,
9, 10, and 11) is nonzero. It is unnormalized if the
high-order digit contains all zeros.

If normalization of the operand is desired, the
floating-point instructions that provide automatic
normalization are used. This automatic normalization
is accomplished by left-shifting the fraction (four bits
per shift) until a nonzero digit occupies the
high-order digit position. The characteristic is
reduced by one for each digit shifted.

The following are sample normalized short
floating-point numbers. The last two numbers
represent the smallest and the largest positive
normalized numbers.

Number Powers of 16 S «— Char— Fraction
1.0 = +1/16x16* = 0 100 0001 0001 0000 0000 00CO 000O 0000
0.5 = +8/16x16° = 0 100 0000 1000 0000 0000 0000 0000 0000
1/64 = +4/16x16”1 = 0 011 1111 0100 0000 0000 0000 0000 0000
0.0 =40 x16°%% = (0 000 0000 0000 0000 0000 GO0 0000 0000
—15.0 = —15/16x16> = 1 100 0001 1111 0000 0000 GOCO 0000 0000
5.4x1077° % +1/16x1675% = 0 000 0000 0001 0000 0000 0000 0000 0000
7.2x107% ¥ (1-16"%)x16%% =-0 111 1111 1111 1111 1111 1111 1111 1111

Conversion Example

Convert the decimal number 149.25 to a short

floating-point number. (In another appendix are

tables for the conversion of hexadecimal and decimal

integers and fractions.) ‘

1. The number is decomposed into a decimal integer
and a decimal fraction.

149.25 = 149 plus 0.25

2. The decimal integer is converted to its
hexadecimal representation.

14949 = 9516

3. The decimal fraction is converted to its
hexadecimal representation.

0.2550 = 0.415¢

4. Combine the integral and fractional parts and
express as a fraction times a power of 16
(exponent).

95.416 = 0.9541¢ x 162

Appendix A.

5. The characteristic is developed from the exponent
and converted to binary.

base + exponent = characteristic
64 + 2 = 66 = 1000010

6. The fraction is converted to binary and grouped
hexadecimally.

.9541¢ = .1001 0101 0100

7. The characteristic and the fraction are stored in
the short format. The sign position contains the
sign of the fraction.

S CHAR FRACTION
0 1000010 1001 0101 0100 0000 0000 0000

Instruction-Use Examples

The following examples illustrate the use of many of
the unprivileged instructions. Before studying one of
these examples, the reader should consult the
instruction description in this manual for the
particular instruction of interest to him.

The instruction-use examples are written principally
for assembler-language programmers, to be used in
conjunction with the appropriate assembler-language
manuals.

Most examples present one particular instruction,
both as it is written in an assembler-language
statement and as it appears when assembled in
storage (machine format). '

Machine Format

All machine-format numerical operands are written in
hexadecimal notation unless otherwise specified.
Hexadecimal operands are shown converted into
binary, decimal, or both if such conversion helps to
clarify the example for the reader. Storage addresses
are also given in hexadecimal.

Assembler-Language Format

In assembler-language statements, registers and
lengths are presented in decimal. Displacements,
immediate operands, and masks may be shown in
decimal, hexadecimal, or binary notation; for
example, 12, X‘C’, or B‘1100’ represent the same
value. Whenever the value in a register or storage
location is referred to as "not significant," this value
is replaced during the execution of the instruction.
When SS-format instructions are written in the
assembler language, lengths are given as the total
number of bytes in the field. This differs from the
machine definition, in which the length field specifies
the number of bytes to be added to the field address

Number Representation and Instruction-Use Examples A-5

to obtain the address of the last byte of the field.
Thus, the machine length is one less than the
assembler-language length. The assembler program
automatically subtracts one from the length specified
when the instruction is assembled.

In some of the examples, symbolic addresses are
used in order to simplify the examples. In
assembler-language statements, a symbolic address is
represented as a mnemonic term written in all
capitals, such as FLAGS which may denote the
address of a storage location containing data or
program-control information. When symbolic
addresses are used, the assembler supplies actual base
and displacement values according to the
programmer’s specifications. Therefore, the actual
values for base and displacement are not shown in
the assembler-language format or in the
machine-language format. For assembler-language
formats, in the labels that designate instruction fields,
the letter "S" is used to indicate the combination of
base and displacement fields for an operand address.
(For example, S1 represents the combination of Bl
and D1.) In the machine-language format, the base
and displacement address components are shown as
asterisks (***).

General Instructions
(See Chapter 7.)

ADD HALFWORD (AH)

The ADD HALFWORD instruction algebraically
adds the halfword contents of a storage location to
the contents of a register. The halfword storage
operand is expanded to 32 bits after it is fetched and
before it is used in the add operation. The expansion
consists in propagating the leftmost (sign) bit 16
positions to the left. For example, assume that the
contents of storage locations 2000-2001 are to be
added to register 5. Initially:

Register 5 contains 00 00 00 19 = 251,.

Storage locations 2000-2001 contain FF FE = —21y.

Register 12 contains 00 00 18 00.

Register 13 contains 00 00 01 50.

A-6 IBM 4300 Processors Principles of Operation

The format of the required instruction is:

Assembler Format

Op Code R; Dy Xz By

AH 5.X'6B0'(13,12}

Machine Format

Op Code R1 X2 By D

4A |5 |ID | C 6B0

After the instruction is executed, register 5 contains
00 00 00 17 = 234,.

AND (N, NR, NI, NC)

When the Boolean operator AND is applied to two
bits, the result is one when both bits are one;
otherwise, the result is zero. When two bytes are
ANDed, each pair of bits is handled separately; there
is no connection from one bit position to another.
The following is an example of ANDing two bytes:
First-operand byte: 0011 0101,

Second-operand byte: 0101 1100,

Result byte: 0001 0100,

AND (NI)

A frequent use of the AND instruction is to set a
particular bit to zero. For example, assume that
storage location 4891 contains 0100 0011,. To set
the rightmost bit of this byte to zero without
affecting the other bits, the following instruction can
be used (assume that register 8 contains

00 00 48 90):

Assembler Format

Op Code DiB; I

NI 1(8).X’FE’

Machine Format

Op Code Iy By D;

94 FE|8 001

When this instruction is executed, the byte in
storage is ANDed with the immediate byte (the I
field of the instructions):

Location 4891: 0100 0011,
Immediate byte: 1111 11102
Result: 0100 0010,

The resulting byte, with bit 7 set to zero, is stored
back in location 4891. Condition code 1 is set.

BRANCH AND LINK (BAL, BALR)

The BRANCH AND LINK instructions are
commonly used to branch to a subroutine with the
option of later returning to the main instruction
sequence. For example, assume that you wish to
branch to a subroutine at storage address 1160. Also
assume:

The contents of register 2 are not significant.

Register 5 contains 00 00 11 50.

Address 00 00 C6 contains the BAL instruction, so that

00 00 CA is the address of the next sequential instruction.

The format of the BAL instruction is:

Assembler Format

Op Code R; Dy X2B»

BAL 2,X'10°(0,5)

Machine Format

Op Code R; X2 B, D,

45 210 5 010

After the instruction is executed:

Register 2 (bits 8-31) contains 00 00 CA.
PSW bits 40-63 contain 00 11 60.

The programmer can return to the main instruction
sequence at any time with a BRANCH ON
CONDITION (BCR) instruction that specifies
register 2 and a mask of 15,9, provided that register 2
has not meanwhile been disturbed.

The BALR instruction with the R2 field equal to
zero may be used to load a register for use as a base
register. For example, in the assembler language, the
sequence of statements:

Appendix A.

BALR 15,0
USING *,15

tells the assembler program that register 15 is to be
used as the base register in assembling this program
and that when the program is executed, the address
of the next sequential instruction following the BALR
will be placed in the register. (The USING statement
is an "assembler instruction" and is thus not a part of
the object program.)
BALR 6,0 preserves the condition code in bits 2

and 3 of register 6 for future inspection.

BRANCH ON CONDITION (BC, BCR)

The BRANCH ON CONDITION instructions test the
condition code to see whether a branch should or
should not be taken. The branch is taken only if the
condition code is as specified by a mask.

Mask Condition
Value Code

8 0

4 1

2 2

1 3

For example, assume that an ADD (A, AR)
operation has been performed and that you wish to
branch to address 6050 if the sum is zero or less
(condition code 0 or 1). Also assume:

Register 10 contains 00 00 50 00.
Register 11 contains 00 00 10 00.

The RX form of the instruction performs the
required test (and branch if necessary) when written
as:

Assembler Format

Op Code Mq D; X3B»

BC 12,X'50°(11,10)

Machine Format

Op Code M1 X By Dy

47 C |B |A 050

A mask of 15 indicates a branch on any condition
(an unconditional branch). A mask of zero indicates
that no branch is to occur (a no-operation).

Number Representation and Instruction-Use Examples A-7

BRANCH ON COUNT (BCT, BCTR)

The BRANCH ON COUNT instructions are often
used to execute a program loop for a specified
number of times. For example, assume that the
following represents some lines of coding in an
assembler-language program:

LUPE AR 8,1

-BACK BCT 6,LUPE

where register 6 contains 00 00 00 03 and the
address of LUPE is 6826. Assume that, in order to
address this location, register 10 is used as a base
register and contains 00 00 68 00.

The format of the BCT instruction is:

Assembler Format

Op Code R; Dy X3B;

BCT 6,X"26'(0,10)

Machine Format

Op Code R;1 X2 B; D,

46 6 |0 A 026

The effect of the coding is to execute three times
the loop defined by locations LUPE through BACK.

BRANCH ON INDEX HIGH (BXH)

The BRANCH ON INDEX HIGH instruction is an
index-incrementing and loop-controlling instruction
that causes a branch whenever the sum of an index
value and an increment value is greater than some
comparand. For example, assume that:

Register 4 contains 00 00 00 8A = 13819 = the index.
Register 6 contains 00 00 00 02 = 219 = the increment.
Register 7 contains 00 00 00 AA =17019 = the comparand. "
Register 10 contains 00 00 71 30 = the branch address.

A-8 IBM 4300 Processors Principles of Operation

The format of the instruction is:

Assembler Format

Op Code RjiR3;D; B

BXH 4,6,0(10}

Machine Format

Op Code Ry R; B, D

86 4 |6 A 000

When the instruction is executed, first the contents
of register 6 are added to register 4, second the sum
is compared with the contents of register 7, and third
the decision whether to branch is made. After
execution:

Register 4 contains 00 00 00 8C = 14049
Registers 6 and 7 are unchanged.

Since the new value in register 4 is not greater than
the value in register 7, the branch to address 7130 is
not taken.

When the register used to contain the increment is
odd, that register also becomes the comparand
register. The following assembler-language routine
illustrates how this feature may be used to search a
table.

Table

2 Bytes 2 Bytes

ARG1 FUNCT1
ARG2 FUNCT2
ARG3 FUNCT3
ARG4 FUNCT4
ARG5 FUNCTS
ARG6 FUNCT6

Assume that:

Register 0 contains the search argument.

Register 1 contains the width of the table in bytes

(00 00 00 04).

Register 2 contains the length of the table in bytes

(00 00 00 18).

Register 3 contains the starting address of the table.

Register 14 contains the return address to the main program.

As the following subroutine is executed, the
argument in register 0 is successively compared with
the arguments in the table, starting with argument 6
and working backwards to argument 1. If an equality
is found, the corresponding function replaces the
argument in register 0. If an equality is not found,

FF1¢ replaces the argument in register 0.

The first instruction (LNR) causes the value in
register 1 to be made negative. After execution of
this instruction, register 1 contains FFFFFFFC =
—440. Considering the case when no equality is
found, the BXH instruction will be executed seven
times. Each time the BXH is executed, a value of —4
is added to register 2, thus reducing the value in
register 2 by 4. The new value in register 2 is
compared with the —4 value in register 1. Thus the
branch is taken each time until the value in register 2
is —4.

SEARCH LNR 1,1
NOTEQUAL BXH 2,1,LLOOP
NOTFOUND LA 0,X‘FF
BCR 15,14
LOOP CH 0,0(2,3)
BC 7,NOTEQUAL
LH 0,2(2,3)
BCR 15,14

BRANCH ON INDEX LOW OR EQUAL
(BXLE)

This instruction is similar to BRANCH ON INDEX
HIGH except that the branch is successful when the
sum is low or equal compared to the comparand.

COMPARE HALFWORD (CH)

The COMPARE HALFWORD instruction compares
a 16-bit signed binary integer in storage with the
contents of a register. For example, assume that:

Register 4 contains FF FF 80 00 = —32,7681¢.
Register 13 contains 00 01 60 50.
Storage locations 16080-16081 contain 8000 = —32,76819.

When the instruction

Assembler Format

Op Code R; D2 X2B;

CH 4,X'30°(0,13)

Machine Format

Op Code Ri X2 Bz D

49 4 |0 D 030

is executed, the contents of locations 16080-16081
are fetched, expanded to 32 bits (the sign bit is
propagated to the left), and compared with the
contents of register 4. Because the two numbers are
equal, condition code O is set.

COMPARE LOGICAL (CL, CLR, CLI,
CLC)

The COMPARE LOGICAL instructions differ from
the signed-binary comparison instructions (C, CH,
CR) in that all quantities are handled as unsigned
binary integers or as unstructured data.

Compare Logical (CLR)
Assume that:

Register 4 contains 00 00 00 01 = 1.
Register 7 contains FF FF FF FF = 232-1,

Execution of the instruction

Assembler Format

Op Code R1R;

CLR 4,7

Machine Format

Op Code R; Rj

15 4 |7

sets condition code 1. Condition code 1 indicates
that the first operand is lower than the second.

If, instead, a signed-binary comparison instruction
had been executed, the contents of register 4 would
have been interpreted as +1 and the contents of
register 7 as —1. Thus, the first operand would have
been higher, so that condition code 2 would have
been set.

Compare Logical (CLI)

The CLI instruction compares a byte from the
instruction stream with a byte from storage. For
example, assume that:

Register 10 contains 00 00 17 00.

Storage location 1703 contains 7E.

Appendix A. Number Representation and Instruction-Use Examples A-9

Execution of the instruction

Assembler Format

Op Code D;Bj I»

CLI 3(10).X'AF’

Machine Format

Op Code I, By D;

95 AF|A | 003

sets condition code 1, indicating that the first
operand (the quantity in main storage) is lower than
the second (immediate) operand.

Compare Logical (CLC)

The CLC instruction can be used to perform the
bit-for-bit comparison of storage fields up to 256
bytes in length. For example, assume that the
following two fields of data are in storage:

Field 1
1886 1891

D1 D6|C8|D5|E2 | D6|D5|6B|C1|4B | C2|4B

Field 2
1900 190B

D1 | D6|C8|D5|E2 |D6D5|6B|C1]4B |C3|4B

Also assume:

Register 9 contains 00 00 18 80.
Register 7 contains 00 00 19 00.

Execution of the instruction

Assembler Format

Op Code DiL By D3B;

CLC 6{12,9),0(7)

Machine Format

Op Code L By D; By D

D5 |0B|9 006 |7 000

A-10 IBM 4300 Processors Principles of Operation

sets condition code 1, indicating that the contents of
field 1 are lower in value than the contents of field 2.

Because CL.C compares on a bit-for-bit basis, the
instruction can be used to collate fields composed of
characters from the EBCDIC code. For example, in
EBCDIC, the above two data fields are:

Field 1 JOHNSON,A.B.
Field 2 JOHNSON,A.C.

Condition code 1 tells us that A.B.JOHNSON
precedes A.C.JOHNSON, thus placing the names in
the correct alphabetic order.

COMPARE LOGICAL CHARACTERS
UNDER MASK (CLM)

The CLM instruction provides a means of comparing
bytes selected from a general register to a contiguous
field of bytes in main storage. The M; field of the
CILM instruction is a four-bit mask that selects zero
to four bytes from a general register, each mask bit
corresponding, left to right, to a register byte. In the
comparison, the register bytes corresponding to ones
in the mask are treated as a contiguous field. The
operation proceeds left to right. For example, assume
that:

Three bytes starting at storage location 10200 contain FO BC
7B.

Register 12 contains 10000.

Register 6 contains FO BC 5C 7B.

Execution of the instruction

Assembler Format

Op Code R; M3 D; B;

CLM 6,B°1101°,X'200°(12)

Machine Format

Op Code Ri M3 By D

BD |[6|D |C 200

causes the following comparison:

Register 6: FO BC 5C 7B

Mask _]_ 1 0 1
FO BC 7B

Three bytes

starting at

location BC| 78

10200

Because the selected bytes are equal, condition code
0 is set.

COMPARE LOGICAL LONG (CLCL)

The CLCL instruction is used to compare two
operands in main storage, bit for bit. Each operand
can be of any length. Two even-odd pairs of general
registers (four registers in all) are used to locate the
operands and to control the execution of the CLLCL
instruction, as illustrated in the following diagram.
The first register of each pair must be an even
register, and it contains the storage location of the
byte currently being compared in each operand. The
odd register of each pair contains the length of the
operand it covers, and the high-order byte of the
second-operand odd register contains a padding byte
which is used to extend the shorter operand, if any,
to the same length as the longer operand.

;+1 (0dd) 8)

//////////// First-Operand Length

° 8 31

R, (even)

7///////// Second-Operand Address

° 8 31
Appendix A.

Rx+1 (odd)

Pad Byte Second-Operand Length

0 8 31
Since the CLCL instruction may be interrupted

. during execution, the interrupting program must

preserve the contents of the four registers for use
when the instruction is resumed.

The following instructions set up two register pairs
to control a text-string comparison. For example,
assume:

Operand 1 Padding Byte

Address: 20800 (hex) Address: 20003 (hex)

Length: 100 (dec) Length: 1
Value: 40 (hex)

Operand 2

Address: 20A00 (hex)

Length: 132 (dec)

Register 12 contains 00 02 00 00

The setup instructions are:

LA 4,X‘800°(12) Point register 4 to start of first operand

LA 5,100 Set register S to length of first operand
LA 8,X'A00°(12) Point register 8 to start of second operand
LA 9,132 Set register 9 to length of second operand

ICM 9,B‘1000°,3(12) Insert padding byte in leftmost by te
position of register 9

Register pair 4,5 defines the first operand. Bits
8-31 of register 4 contain the storage location of the
start of an EBCDIC text string, and bits 8-31 of
register 5 contain the length of the string, in this case
100 bytes.

Register pair 8,9 defines the second operand, with
bits 8-31 of register 8 containing the starting location
of the second operand and bits 8-31 of register 9
containing the length of the second operand, in this
case 132 bytes. Bits 0-7 of register 9 contain an
EBCDIC blank character (X‘40’) to pad the shorter
operand. In this example, the padding byte is used in
the first operand, after the 100th byte, to compare
with the remaining bytes in the second operand.

With the register pairs thus set up, the format of the
CLCL instruction is:

Number Representation and Instruction-Use Examples A-11

Assembler Format

Op Code R;j R,

CLCL 48

Machine Format

Op Code R; R;

OF 4 18

When this instruction is executed, the comparison

starts at the left end of each operand and proceeds to.

the right. The operation ends as soon as an
inequality is detected or the end of the longer
operand is reached.

If this CLCL instruction is interrupted after 60
bytes are successfully compared, the operand lengths
in registers 5 and 9 will have been decremented to
X“28’ and X‘48’, respectively, and the operand
locations in registers 4 and 8 will have been
incremented to X‘2083C’ and X‘20A3C’. The
padding byte X‘40’ remains in register 9. When the
CLCL instruction is reissued with these register
contents, the comparison resumes at the point of
interruption.

If the instruction is interrupted after 110 bytes are
successfully compared, the residual operand lengths in
registers 5 and 9 are 0 and X‘16’, respectively, and
the current operand locations in registers 4 and 8 are
X“2086E’ and X‘20A6E’.

When the comparison ends, the condition code is
set to 0, 1, or 2, depending on whether the first
operand is equal to, less than, or greater than the
second operand, respectively.

When the operands are unequal, the addresses in
registers 4 and 8 locate the bytes that caused the
mismatch.

CONVERT TO BINARY (CVB)

The CONVERT TO BINARY instruction converts an
eight-byte, packed-decimal number into a signed
binary integer and loads the result into a general
register. After the conversion operation is completed,
the number is in the proper form for use as an
operand in signed binary arithmetic. For example,
assume:

A-12 IBM 4300 Processors Principles of Operation

Storage locations 7608-760F contain a decimal number in the
packed format: 00 00 00 00 00 25 59 4C (+25,594).

The contents of register 7 are not significant.

Register 13 contains 00 00 76 00.

The format of the conversion instruction is:

Assembler Format

Op Code RiD2X;B;

CvB 7.8(0,13)

Machine Format

Op Code R; X; B D3

4F 710 D 008

After the instruction is executed, register 7 contains
00 00 63 FA.

CONVERT TO DECIMAL (CVD)

The CONVERT TO DECIMAL instruction performs
functions exactly opposite to those of the CONVERT
TO BINARY instruction. CVD converts a signed
binary integer in a register to packed decimal and
stores the eight-byte result. For example, assume:

Register 1 contains the signed binary integer: 00 00 OF OF.
Register 13 contains 00 00 76 00.

The format of the instruction is:

Assembler Format

Op Code RiD2X;B;

CvD 1,8(0.13)

Machine Format

Op Code Ry X3 B D

4E 110 D 008

After the instruction is executed, storage locations
7608-760F contain 00 00 00 00 00 03 85 5C
(+3855).

The plus sign generated is the preferred plus sign,
1100;,.

DIVIDE (D,DR)

The DIVIDE instruction divides the dividend in an
even-odd register pair by the divisor in a register or
in storage. Since the dividend is assumed to be 64
bits long, it is important that the proper sign be first
affixed. For example, assume that:

Storage locations 3550-3553 contain 00 00 08 DE = 227019
= the dividend.

Storage locations 3554-3557 contain 00 00 00 32 = 5099

= the divisor.

The initial contents of registers 6 and 7 are not significant.
Register 8 contains 00 00 35 50.

The following assembler-language statements load
the registers properly and perform the divide
operation:

Statement Comments

L 6.0 (0,8) Places 00 00 08 DE into register 6

SRDA 6,32 (0) Shifts 00 00 08 DE into register 7
Register 6 is filled with zeros (sign bits)

D 6.4 (0,8) Performs the division

The machine format of the above DIVIDE
instruction is:

Machine Format
Op CodeR; X, By D

5D | 6 0 8 004

After all the foregoing instructions are executed:

Register 6 contains 00 00 00 14 = 2019 = the remainder.
Register 7 contains 00 00 00 2D = 4539 = the quotient.

Note that if the dividend had not been first placed
in register 6 and shifted into register 7, register 6
might not have been filled with the proper sign bits
(zeros in this example), and the DIVIDE instruction
might not have given the expected results.

EXCLUSIVE OR (X, XR, XI, XC)

When the Boolean operator EXCLUSIVE OR is
applied to two bits, the result is one when either, but
not both, of the two bits is one; otherwise, the result
is zero. When two bytes are EXCLUSIVE ORed,
each pair of bits is handled separately; there is no
connection from one bit position to another. The
following is an example of the EXCLUSIVE OR of
two bytes:

First-operand byte: 0011 0101,
Second-operand byte: 0101 1100,
Result byte: 0110 1001,

Exclusive OR (XI)

A frequent use of the EXCLUSIVE OR (XI)
instruction is to invert a bit (change a zero bit to a
one or a one bit to a zero). For example, assume
that storage location 8082 contains 0110 1001,. To
invert the leftmost and rightmost bits without
affecting any of the other bits, the following
instruction can be used (assume that register 9
contains 00 00 80 80):

Assembler Format

Op Code DiB; Iy

X1 2(9).X"81"

Machine Format

Op Code I, B; D

97 8119 002

When the instruction is executed, the byte in
storage is EXCLUSIVE ORed with the immediate
byte (the I, field of the instruction):

Location 8082: 0110 1001,
Immediate byte: 1000 0001,
Result: 1110 1000,

The resulting byte is stored back in location 8082.
Condition code 1 is set to indicate a nonzero result.

Exclusive OR (XC)

The EXCLUSIVE OR (XC) instruction can be used
to exchange the contents of two areas in storage
without the use of an intermediate storage area. For
example, assume two 3-byte fields in storage:

Field 1

359 35B
00 17 | 90

Field 2

360 362

00 14 | 01

Appendix A. Number Representation and Instruction-Use Examples A-13

Execution of the instruction (assume that register 7
contains 00 00 03 58):

Assembler Format

Op Code DiLB; D;B;

XCc 1(3.7).8(7)

Machine Format

Op Code L B;y D; By Dy

D7 [02{7 001 | 7 008

Field 1 is EXCLUSIVE ORed with field 2 as
follows:

Field 1: 0000 0000 0001 0111 1001 0000,

= 0017 90

Field 2: 0000 0000 0001 0100 0000 0001,
= 00 14 01

Result: 0000 0000 0000 0011 1001 00015
= 00 03 91

The result replaces the former contents of field 1.
Now, execution of the instruction

Assembler Format

Op Code DiLB; D2B>

Xc 8(3,7).1(7)

Machine Format

OpCode L B; D; B, D

D7 |02(7 008 | 7 001

produces the following result:
Field 1: 0000 0000 0000 0011 1001 0001,

= 00 03 91

Field 2: 0000 0000 0001 0100 0000 0001,
= 00 14 01

Result: 0000 0000 0001 0111 1001 0000,
=00 17 90

The result of this operation replaces the former
contents of field 2. Field 2 now contains the original
value of field 1.

A-14 IBM 4300 Processors Principles of Operation

Lastly, execution of the instruction

Assembler Format

Op Code DiLB; D;B;

XcC 1(3,7).8(7)

Machine Format

OpCode L B; D; By D

D7 |02|7 001 |7 008

produces the following result:
Field 1: 0000 0000 0000 0011 1001 0001,

= 000391
Field 2: 0000 0000 0001 0111 1001 0000y
’ = 0017 90
Result: 0000 0000 0001 0100 0000 0001,
= 00 14 01

The result of this operation replaces the former
contents of field 1. Field 1 now contains the original
value of field 2.

Notes:

1. With the XC instruction, fields up to 256 bytes in
length can be exchanged.

2. With the XR instruction, the contents of two
registers can be exchanged.

3. Because the X instruction operates storage to
register only, an exchange cannot be made solely
by the use of X.

4. A field EXCLUSIVE ORed with itself is cleared
to zeros.

EXECUTE (EX)

The EXECUTE instruction causes one farget
instruction in main storage to be executed out of
sequence without actually branching to the target
instruction. Unless the Ry field of the EXECUTE
instruction is zero, bits 8-15 of the target instruction
are ORed with bits 24-31 of the R, register before
the target instruction is executed. Thus, EXECUTE
may be used to supply the length field for an SS
instruction without modifying the SS instruction in
storage. For example, assume that a MOVE (MVC)
instruction is the target that is located at address
3820, with a format as follows:

Assembler Format

Op Code DiL B; DB,

mMvc 3(1.12).0(13)

Machine Format

Op Code L By D; By D

D2 |00/C | 003| D 000

where register 12 contains 00 00 89 13 and register
13 contains 00 00 90 AO.

Further assume that at storage address 5000, the
following EXECUTE instruction is located:

Assembler Format

Op Code RiD>X2B;

EX 1.0(0,10}

Machine Format

Op Code Ry X B, D

44 110 A 000

where register 10 contains 00 00 38 20 and register
1 contains 00 OF FO 03.

When the instruction at 5000 is executed, the
rightmost byte of register 1 is ORed with the second
byte of the target instruction:

Register byte: ~ 0000 0000, =00
Instruction byte: 0000 00113 = 03

Result: 0000 00115 = 03

causing the instruction at 3820 to be executed as if it
originally were:

Assembler Format

Op Code D;L B; DB,

MVC 3(4.12).0(13)

Machine Format

OpCode L By D; Bx D3

D2 |03|C 003| D 000

However, after execution:

Register 1 is unchanged.

The instruction at 3820 is unchanged.

The contents of the four bytes starting at location 90A0 have
been moved to the four bytes starting at location 8916.

The CPU next executes the instruction at address 5004 (PSW
bits 40-63 contain 00 50 04).

INSERT CHARACTERS UNDER MASK
(ICM)

The ICM instruction may be used to replace all or
selected bytes in a general register with bytes from
storage and to set the condition code to indicate the
value of the inserted field.

For example, if it is desired to insert a three-byte
address from FIELDA into register 5 and leave the
high-order byte of the register unchanged, assume:

Assembler Format

Op Code R; M3 S

ICM 5.8°0111°,FIELDA

Machine Format

Op Code R; M3 S

BF |5 |7 | »»x»

FIELDA: FE DC BA

Register 5 (before): 12 34 56 78

Register 5 (after): 12 FE DC BA

Condition code (after): 1 (leftmost bit of inserted field
is one)

As another example:

Assembler Format

Op Code R; M3 S;

ICM 6,B°1001’,FIELDB

Machine Format

Op Code Ry M3 S,

BF [6 |9 | ****

Appendix A. Number Representation and Instruction-Use Examples A-15

FIELDB: 12 34
Register 6 (before): 00 00 00 00
Register 6 (after): 12 00 00 34

Condition code (after): 2 (inserted field is nonzero with
leftmost zero bit)

LOAD (L, LR)
The LLOAD instructions take four bytes from storage
or from a general register and place them unchanged
into a general register. For example, assume that the
four bytes starting with location 21003 are to be
loaded into register 10. Initially:
Register 5 contains 00 02 00 00.
Register 6 contains 00 00 10 03.
The contents of register 10 are not significant.
Storage locations 21003-21006 contain 00 00 AB CD.

To load register 10, the RX form of the instruction
can be used:

Assembler Format

Op Code Ri D2X2B>

L 10,0(5.6)

Machine Format

Op Code Ry X By Dj

58 A5 6 000

After the instruction is executed, register 1
contains 00 00 AB CD. '

LOAD ADDRESS (LA)

The LOAD ADDRESS instruction provides a
convenient way to place a nonnegative binary integer
up to 409549 in a register without first defining a
constant and then using it as an operand. For
example, assume that the number 2048, is to be
placed in register 1:

Assembler Format

Op Code Ri1 D; X2B;

LA 1,2048(0,0)

A-16 IBM 4300 Processors Principles of Operation

Machine Format

Op Code R; X2 By D,

41 1]01]0 800

The LOAD ADDRESS instruction can also be used
to increment a register by an amount up to 4095
specified in the D, field. For example, assume that
register 5 contains 00 12 34 56.

The instruction

Assembler Format

Op Code R;iD; X2B:

LA 5,10(0,5)

Machine Format

Op Code R; X, Bz D,

41 5|10 !5 00A

adds 10 (decimal) to the contents of register 5 as
follows:

Register 5 (old): 00 12 34 56
Do, field: 00 00 00 0A
Register 5 (new): 00 12 34 60

The register may be specified as either B, or X,.
Thus, the instruction LA 5,10(5,0) produces the same
result.

LOAD HALFWORD (LH)

The LOAD HALFWORD instruction places
unchanged a halfword from storage into the right half
of a register. The left half of the register is loaded
with zeros or ones according to the sign (leftmost bit) .
of the halfword.

For example, assume that the two bytes in storage
locations 1803-1804 are to be loaded into register 6.
Also assume: '

The contents of register 6 are not significant.

Register 14 contains 00 00 18 03.
Locations 1803-1804 contain 00 20.

The instruction required to load the register is:

Assembler Format

Op Code RiD; X3B»

LH 6.0(0,14)

Machine Format

Op Code R1 X2 B; D

48 6 |0 E 000

After the instruction is executed, register 6 contains

00 00 00 20. If locations 1803-1804 had contained

a negative number, for example, A7 B6, a minus sign

would have been propagated to the left, giving
FF FF A7 B6 as the final result in register 6.

MOVE (MVI)

The MOVE (immediate) instruction places one byte
of information from the instruction stream into
storage. For example, the instruction

Assembler Format

Op Code Dj; By Iy

MvI o(1}.Cc'$

-Machine Format

Op Code I By D;

92 |5B|1 |oo0

may be used, in conjunction with the instruction
EDIT AND MARK, to insert a dollar symbol at the
storage address contained in general register 1 (see
also the example for EDIT AND MARK).

MOVE (MVC)

The MVC instruction can be used to move data from
one storage location to another. For example, assume

that the following two fields are in storage:

Field 1
2048 2052

C1| C2{C3|C4|C5|C6|C7 |C8|C9 |CA|CB

Field 2
3840 3848

F1.| F2 | F3 | F4 | F56 | F6é | F7 | F8 | F9

Also assume:

Register 1 contains 00 00 20 48.
Register 2 contains 00 00 38 40.

With the following instruction, the first eight bytes
of field 2 replace the first eight bytes of field 1:

Assembler Format

Op Code DiL B1 D;B;

MVC - 0{8.1).0(2)

Machine Format

OpCode L B; Dy By D,

D2 | 071 000 | 2 000

After the instruction is executed, field 1 becomes:

Field 1
2048 2052

F1 |F2 |F3|F4 |F5 |F6|F7 | F8 |C9 |CA |CB

Field 2 is unchanged.

MVC can also be used to propagate a byte through
a field by starting the first-operand field one byte
location to the right of the second-operand field. For
example, suppose that an area in storage starting with
address 358 contains the following data:

358 360

00 | F1 | F2 |F3 |F4 | F5 | F6 | F7 | F8

With the following MVC instruction, the zeros in
location 358 can be propagated throughout the entire

-field (assume that register 11 contains 00 00 03 58):

Appendix A. Number Representation and Instruction-Use Examples A-17

Assembler Format

Op Code DL B; D, B

mMvc 1(8,11),0(11)

Machine Format

OpCode L B; D; B D,

D2 |07|B |001|B 000

Because the MVC handles one byte at a time, the
above instruction essentially takes the byte at address
358 and stores it at 359 (359 now contains 00), takes
the byte at 359 and stores it at 35A, and so on, until
the entire field is filled with zeros. Note that an MVI
instruction could have been used originally to place
the byte of zeros in location 358.

Notes:

1. Although the field occupying locations 358-360
contains nine bytes, the length coded in the
assembler format is equal to the number of
moves (one less than the field length).

2. The order of operands is important even though
only one field is involved.

MOVE LONG (MVCL)

The MVCL instruction can be used for moving data
in storage as in the first example of the MVC
instruction, provided that the two operands do not
overlap. MVCL differs from MVC in that the
address and length of each operand are specified in
an even-odd pair of general registers. Consequently,
MVCL can be used to move more than 256 bytes of
data with one instruction. As an example, assume:
Register 2 contains 00 0A 00 00.

Register 3 contains 00 00 08 00.

Register 8 contains 00 06 00 00.
Register 9 contains 00 00 08 00.

A-18 IBM 4300 Processors Principles of Operation

Execution of the instruction

Assembler Format

Machine Format

Op Code R; Ry

OE 8 |2

moves 2,0481 bytes from locations A0000-AO7FF to
location 60000-607FF. Condition code 0 is set to
indicate that the operand lengths are equal.

If register 3 had contained FO 00 04 00, only the
1,024, bytes from locations A0000-A03FF would
have been moved to locations 60000-603FF. The
remaining locations 60400-607FF of the first
operand would have been filled with 1,024 copies of
the padding byte X‘F0Q’, as specified by the leftmost
byte of register 3. Condition code 2 is set to indicate
that the first operand is longer than the second.

The technique for setting a field to zeros that is
illustrated in the second example of MVC cannot be
used with MVCL. If the registers were set up to
attempt such an operation with MVCL, no data
movement would take place and condition code 3
would indicate destructive overlap.

Instead, MVCL may be used to clear a storage area
to zeros as follows. Assume register 8 and 9 are set
up as before. Register 3 contains only zeros,
specifying zero length for the second operand and a
zero padding byte. The contents of register 2 are not
significant. Executing the instruction MVCL 8,2
then causes locations 60000-607FF to be filled with
zeros. Condition code 2 is set.

MOVE NUMERICS (MVN)

To illustrate the operation of the MOVE NUMERICS
instruction, assume that the following two fields are
in storage:

Field A
7090 7093

C6 C7 | C8 | C9

Field B
7041 7046

FO F1 | F2 | F3 | F4 | F5

Also assume:

Register 14 contains 00 00 70 90.
Register 15 contains 00 00 70 40.

After the instruction

Assembler Format

Op Code DiL By D; By

MVN 1(4,15),0(14)

Machine Format

OpCode L By D; B, D,

D1 |03 |F |001] E 000

is executed, field B becomes:
7041 7046

F6 | F7 | F8 | F9 | Fa | F5

The numeric portions (the rightmost four bits) of
the bytes at locations 7090-7093 have been stored in
the numeric portions of the bytes at locations
7041-7044. The contents of locations 7090-7093
and 7045-7046 are unchanged.

MOVE WITH OFFSET (MVO)

Assume that the three-byte unsigned packed-decimal
number in storage locations 4500-4502 is to be
moved to locations 5600-5603 and given the sign of
the packed-decimal number ending at location 5603.
Also assume:

Register 12 contains 00 00 56 00.

Register 15 contains 00 00 45 00.

Storage locations 5600-5603 contain 77 88 99 0C.
Storage locations 4500-4502 contain 12 34 56.

After the instruction

Assembler Format

Op Code DiLiBy D, LyB>

MVO 0(4.12),0(3,15)

Machine Format

Op Code Ly L By D; By Dy

F1 3]2 Cc 000 | F 000

is executed, the storage locations 5600-5603 contain
01 23 45 6C. Note that the second operand is
extended with one high-order zero to fill out the
first-operand field.

MOVE ZONES (MVZ)

The MOVE ZONES instruction can, similarly to
MVC and MVN, operate on overlapping or
nonoverlapping fie