
March 17, 2003

The following document is
 "Planning a Computer System - Project Stretch"
edited by
 Werner Buchholz
 Systems Consultant
 Corporate Staff, Research and Engineering
 Internatinal Business Machines Corporation
published by
 McGraw-Hill Book Company
 New York, ... 1962

Copyright status
--
 ----- Original Message -----
 From: Plikerd, Scott
 To: 'ed@ed-thelen.org'
 Sent: Friday, February 28, 2003 12:02 PM
 Subject: (c) owner of Buchholz/PLANNING A COMPUTER SYSTEM

 Dear Mr. Thelen:

 According to our records, the copyright registration for above-referenced
 title published in 1962, was not renewed with the Copyright Office at the
 Library of Congress. Because this title was published before 1964, it did
 not receive an automatic renewal and appears to have fallen into the public
 domain. It is possible that IBM or even the author renewed this title in
 1990, when it came up for renewal, but McGraw-Hill did not. To be
 absolutely sure, you will have to check with the Copyright Office to see if
 the copyright registration was renewed.

 Regards,

 Scott W. Plikerd
 Manager
 Permissions Department
 McGraw-Hill Education
 Two Penn Plaza, 9th Floor
 New York, NY 10121-2298
 (212) 904-2614 (phone)
 (212) 904-6285 (fax)

Editor's permission
--
 ----- Original Message -----
 From: "Werner Buchholz" <wbuchholz@computer.org>
 To: "Ed Thelen" <ed@ed-thelen.org>
 Cc: "Williams, Mike" <williams@computerhistory.org>; "Spicer, Dag"
 <spicer@computerhistory.org>
 Sent: Wednesday, March 12, 2003 5:33 AM
 Subject: Re: your book "Planning a Computer System - Project Stretch"

 > At 03:43 AM 3/12/2003 -0800, Ed Thelen wrote:
 > >I presume your book is now "in the public domain". However, I think it
 > >proper to ask your permission
 > >to place a representation of your book on my web site.
 >

 > I certainly have no objection.
 >
 > Werner Buchholz

The book was kindly loaned by
 The Computer history Museum
 1401 Shoreline Blvd.
 Mountain View, California
 and scanned by
 Ed Thelen ed@ed-thelen.org
--
--

Chapter 1

PROJECT STRETCH
by W. Buchholz

The computer that is discussed in this book was developed by the
International Business Machines Corporation a t Poughkeepsie, N.Y .,
under Project Stretch. The project started toward the end of 1954.
By then IBM was producing several stored-program digital computers :
the IBM 650, a medium-sized computer; the IBhf 704, a large-scale
computer primarily for scientific applications; and the IBM 705, a large-
scale computer primarily for business data processing. The 704 and 705
had already superseded the 701 and 702, which were IBM’s first com-
mercial entries into the large-computer field. Since the entire field was
still new, there had been little experience on which to base the design of
these machines, but by 1954 such experience was building up rapidly.
This experience showed that the early computers were basically sound
and eminently usable, but it was also obvious that many of the early
decisions would have been made quite differently in 1854 and that many
improvements had become possible.

At the same time, solid-state components were rapidly being developed
to the point where it appeared practical to produce computers entirely
out of transistors and diodes, together with magnetic core memories. A
computer made only of solid-state components promised to surpass its
vacuum-tube predecessors with higher reliability, lower power consump-
tion, smaller size, lower cost made possible by automatic assembly, and
eventually greater speed. The imminrncc of new technology, together
with the knowledge of shortcomings in existing designs, gave impetus to
a new computer project.

In 1955 the project was directed more specifically toward achieving,
on very large mathematical computing problems, the highest perform-
ance possible within certain limits of time and resources. If mostly
on-the-shelf components were used, a factor-of-10 improvement over the
IBM 704, the fastest computer then in production, appeared feasible.
Although this level of improvement would have been a respectable

1

2 [e H . \ P . 1

arhievement. it was rejected as not being a large eiiougli step. Instead,
an over-all performance of 100 times that of the 704 was set as the target.

The purpose of setting so ambitious a goal was to stimulate innovation
in all aspects of computer design. The technology available in 1955 mas
dearly not adequate for the task. New transistors, new cores, new logi-
cal features, and new manufacturing techniques were needed, which.
although they did not yet exist, were known to be a t least physically
possible. Even though the goal might not be reached in all respects, the
resultant machine would set a new standard of performance and make
available the best technology that could be achieved by straining the
technical resources of the laboratory.

A num-
ber of organizations in the country had many important computing prob-
lems for which the fastest existing computers were completely inadequate,
and some had other problems for which even the projected computer of
100 times the speed of the existing ones would not be enough. Xegoti-
ations with such organizations resulted in a contract with the U.S. Atomic
Energy Commission in late 1956 to build a Stretch system for the Los
Alamos Scientific Laboratory.

The early design objectives were described in 1956l in terms of certain
technological and organizational goals:

Hence the name Project Stwtch.
The need for a computer of the power envisioned was clear.

l’wformance

.Zn over-all performance level of 100 times that of the fastest machines
then in existence was the general objective. (It has since become evi-
dent that speed comparisons of widely different machines are very diffi-
cult t o make, so that i t is hard to ascertain how well this target has been
achieved. Using the IBM 704 as the reference point, and assuming
problems that can easily be fitted to the shorter word size, the smaller
memory, and the more limited repertoire of the 704, the speed ratio for
the computer actually built falls below the target of 100. On the other
hand, for large problems which strain the facilities of the 704 in one or
more ways, the ratio may exceed 100.)

Reliability

for satisfactory operation of a necessarily complex machine.

Checking

Extensive automatic checking facilities were intended to detect any
errors that occurred and to locate faults within narrow limits. Storage
devices were also to be equipped with error-correction facilities to ensure

l S. W. Dunwell, Design Objectives for the IBM Stretch Computer, Proc. Eastern
Joint Computer Conf., December, 1956, pp. 20-22.

Solid-state components promised the much higher reliability needed

CHAP. I] PROJECT STKETCH 3

that datu could be recovered in spite of an occasional wror. The pur-
pose was again to increase performance by rpducing the rerun time often
needed in unchecked computers.

Generalit?]
To broaden the area of application of the system and to increase the

cffrrtireness of the system on secondary but time-consuming portions
of any single job, it was felt desirable to include in one system the best
features of scientific, data-processing, and real-time control computers.
Furthermore, the input-oiitpiit controls were to be sufficiently general to
permit considerable future expansion and attachment of new input-output
devices.

High-speed 4 rithmetic
h high-speed parallel arithmetic unit was to execute floating-point

additions in 0.8 microsecond and multiplications in 1.4 microseconds.
(The actual speeds are not as high, see Chap. 14.) This unit would not
he responsible for instruction preparation, indexing, and operand fetch-
ing, which were to be carried out by other sections of the system whose
operation mould overlap the arithmetic.

ICditing
A separate serial computer unit with independent instruction sequen-

cing was visualized to edit input and output data of variable length in a
highly flexible manner. (It was later found desirable to combine the
serial and parallel units to a greater degree, so that they are no longer
independent, but the functional capability of both units mas retainrd.)

The main memory was to have a cycle time of only 2 microseconds.
(All but the early production memories will indeed be capable of work-
ing a t 2.0 fisec, but computer timing dictates a slightly longer cycle of
2.1 psec.) The capacity was to be 8,192 (later raised to 16,384) words
per unit. I

Input-Output Ezchangr
h unit resembling somewhat a telephone exchange was to provide

simultaneous operation of all kinds of input-output, storage, and data-
transmission devices.

A second set of faster, though smaller, memory units was also postulated, but it
was later omitted because the larger units were found to give about the same over-all
performance with a greater capacity per unit cost. These units are still used, however,
to satisfy more specialized requirements of the 7051 Procmsing Unit described in
Chap. 17.

4 PROJECT STRETCH [CHAP. 1

Magnetic disk units were to be used for external storage to supplement
the internal memory. The target was a capacity of 1 (later raised to 2)
million words with a transfer rate of 250,000 (later lowered to 125,000)
words per second. These disk units permit a very high data flow rate
(even at the lower figure) on problems for which data cannot be con-
tained in memory.

As the understanding of the task deepened, this tentative plan was
modified in many ways. The functional characteristics of the actual
computer were developed in the years 1956 to 1958. This planning
phase, which is likened in Chap. 2 to the work of an architect planning
a building, culminated in a detailed programmer’s manual late in 1958.
During the same period the basic technology was also established. A
number of changes were subsequently made as design and construction
progressed, but the basic plan remained as in 1958.

It was delivered to
LOS Alamos in April, 1961. Several other 7030 systems were under con-
struction in 1961 for delivery to other organizations with a need for very
large computers. Wc shall leave it to others to judge, on the hasis of
subsequent operating experience, how close the computer comes to satis-
fying the original objectives of Project Stretch.

The Stretch computer is now called the IBM 7030.

Chapter 2

ARCHITECTURAL PHILOSOPHY
by F. P. Brooks, Jr

Computer architecture, like other architecture, is the art of’ determin-
ing the needs of the user of a structure and then designing to meet those
needs as effectively as possible within economic and technological con-
straints. Architecture must include engineering considerations, so that
the design will be economical and feasible; but the emphasis in architec-
ture is upon the needs of the user, whereas in engineering the emphasis is
upon the needs of the fabricator. This chapter describes the principles
that guided the architectural phase of Project Stretch and the rationale
of some of the features of the I R M 7030 computer which emerged.

2.1. The Two Objectives of Project Stretch

High Performance

over previous computers had a. triple motiv, A t‘ ion.
The objective of obtaining a major increase in over-all performance

1. There were some real-time tasks with deadlines so short that they
demanded very high performance.

2. There were a number of very important problems too large to be
tackled on existing computers. In principle, any general-purpose com-
puter can do any programmable problem, given enough time. In prac-
tice, however, a problem can require so much time for solution that the
program may never be “debugged” because of machine malfunctions and
limited human patience. Moreover, problem parameters may change,
or a problem may cease to be of interest while i t is running.

3. Cost considerations formed another motivation for high perform-
ance. It has been observed that, for any given technology, performance
generally increases faster than cost. A very important corollary is that,
for a fully utilized computer, the cost per unit of computation declines
with increasing performance. It appeared that the Stretch computer
would show accordingly an improved performance-to-cost ratio over

3

6 AHCHITECTURAL I’HILOSOPHY ICH.4P. 2

carlier computers. It, appeared, further, that some cornputter Iisers did
indeed have sufficient work to occupy fully an instrument of t,he pro-
posed power and could, therefore, obtain economic advantage by using
R Stretch computer.

Generality
In addition to being fast, the Stretch computer was to be truly a

general-purpose computer, readily applicable to scientific computing,
business data processing, and various large information-processing tasks
encountered by the militaiy. In 1955 and 1956, when the general objec-
tives of Project Stretch wcre set, it was apparent that there existed a few
applications for a very-high-performance computer in each of these areas.
There is no question that the new computer could have been made atl
least twice as fast,, with perhaps no more hardware, if it had been special-
ized for performing a very few specific computing algorithms. This
possibility was rejected in favor of a general-purpose computer for four
reasons, each of which w-ould have sufficed :

1. S o prospective user had all his work confined to so few programs,
nor could any user be sure that his needs would not change significantly
during the life of the machine.

2 . If a computer were designed to perform well on the entire class of
problems encountered by any one user, the shift in balance required to
make it readily applicable to other users would be quite small.

3. Since there exist,ed only R few applications in each specialized area
and since the development costs of a computer of very high performance
are several times the fabrication costs, each user would in fact be acquir-
ing a general-purpose computer (containing some hardware he did not
especially need) more cheaply than he could have acquired a. machinc
more precisely specialized for his needs.

4. Since there are real limitations on the skilled manpower and other
facilities available for development efforts, it would not have been possi-
ble to develop several substantially different machines of this performance
class a t once, whereas it was possible to meet a variety of needs for very-
high-performance computers with a single machine.

In sum, then, Project Stretch was to result in a very-high-performance,
general-piirpose information-processing svstem.

2.2. Resources

h sharp increase in computer performance does not spring solely from
n strong justification for it ; new technology is indispensable. It appeared
that expected technological advances would permit the design to be based

I M . C. Sangren, Role of Digital Computers in Kurlear Design, A‘ucl~ontcs, vel. 15,
no. 5 , pp. 56-60, May, 1957.

Ssc. 2.31 GUIDING PRINCIPLES 7

iipon new cor(’ memories with a 2-microsecond cycle time, new transistor
circuits with delays of 10 to 20 nanoseconds (billionths of a second) per
stage, and corrmponding new packaging techniques. The new transistor
technology offered not only high speeds but a new standard of reliability,
which made it not unreasonable to contemplate a machine with hundreds
of thousands of components.

In order to complete the computer within the desired t:mc span, it was
decided to accept the risks that would be iiivolved in (1) developing the
technology and (2) designing the machine simultaneously.

The new circuits would be only ten to twenty times as fast as those of
the 704, and the new memories would be only six times as fast. Obvi-
ously, a new system organization was required if t,here was to be a major
increase in performance. It was clear that the slow memory speed would
be the principal concern in system design and the principal limitation on
performance. This fact influenced many decisions, among them the
selection of a long memory word, and prompted the devotion of con-
siderable effort to maximizing the use of each instruction bit.

Project Stretch benefited greatly from practical experience gained with
the first generation of large-scale electronic computers, such as the IBM
700 series. Decisions made in the design of these earlier computers had
necessarily been made without experience in the use of such machines.
A t the beginning of Project Stretch the design features of earlier machines
were reviewed in the light of subsequent experience. It should not be
surprising that a number of features were found inadequate: some con-
siderations had increased in significance, others had diminished. Thus
it was decided not to constrain Stretch to be program-compatible with
earlier computers or to follow any existing plan. .1, completely fresh
start meant extra architectural effort, hut this freedom permitted many
improvements in system organization.

A wealth of intensive cxperience in the application of existing com-
puters was made available by the initial customers for Stretch computers.
From these groups came ideas, insight, counsel, and often, because the
groups had quite diverse applications, conflicting pressures. The diver-
sity of these pressures was itself no small boon, for it helped ensure adher-
ence to the objective of general applicability.

2.3. Guiding Principles
The universal adoption of several guiding principles helped ensure the

conceptual integrity of a plan whose many detailed decisions were made
by many contributors.

Over-all Optimization

mizing the cost of answers, not just the cost of hardware.
The objective of economic efficiency was understood to imply mini-

This meant

8 .~RCHITECTIJRAL PHILOSOPHY [CHAP. 2

repeated consideration of the costs associated with programming, compi-
lation, debugging, and maintenance, as e ell as the obvious cost of machine
time for production computation. A consequent objective was to make
programming easier-not necessarily for trivial problems, but for prob-
lems worthy of the computer, problems whose coding in machine language
would usually be generated automatically by a compiler from statements
in the user’s language.

A corollary of this principle was the recognition that complex tasks
always entail a price in information (and therefore money) and that this
price is minimized by selecting the proper form of payment-sometimes
r.xtra hardware, somet,imcs extra instruction executions, and sometimes
harder thought in developing programming systems. For example, the
price of processing data with naturally diverse lengths and structures is
easily recognized (see Chap. 4). This price appeared to be paid most
economically in hardware; so very flexible hardware for this purpose was
provided. Similarly, protection of memory locations from unwanted
alteration was accomplished much more economically with equipment
than it would have been with programming. A final minor example is
the STORE VALUE IK ADDRESS’ operation, which inserts index values into
addresses of different lengths; by using address-length-determining hard-
ware already provided for other reasons, this instruction performs a task
that would be rather painful to program. For other tasks, such as pro-
gram relocation, excep tion-condi tioii fix-up, and supervisory control of
input-output, hardware was considered, hut programming techniques
were selected as more economical.

Poww instpad of Simplicity
The user was given power rather than simplicity whenever an equal-

cost choice had to be made. It was recognized in the first place that
the new computer would have many highly sophisticated and experienced
users. It would have been presumptuous as well as unwise for the com-
puter designers to “protect” such users from equipment complexities that
might be useful for solving complex problems. In the second place, the
choice is asymmetric. Powerful features can be ignored by a user who
wishes to confine himself to simple techniques. But if powerful features
were not provided, the skillful and motivated user roiild not wring their
power from the computer.

For these reasons, the user is given programmed access to the hardware
* Names of actual 7030 operations are printed in SMALL CAPS in this book. When

a name is used to denote a class of operations of which this operation is a member, it
is printed in ztulics; also italicized are operations that exist in 8ome computers but not
in this one. For example, operations of the add type built into the 7030 include ADD,
ADD TO MEMORY, ADD TO MAGNITUDE, etc., but not add absolute, which is provided in a
different manner by modifier bits.

SEC. 2.31 GUIDING PRINCIPLES 9

wherever possible. He is given, for example, an interruption and address-
protection system whose use can be simple or very complex. He is given
an indexing system that can be used simply or in some rather complex
ways. If he chooses and if his problems are simple, he can write pro-
grams using floating-point arithmetic without regard for precision, over-
flow, or underflow; but if he needs to concern himself with these often
complex matters, he is given full facilities for doing so.

Generalized Features
Wherever specific programming problems were considered worthy of

hardware, ad hoc solutions were avoided and general solutions sought.
This principle came from a strong faith that important variants of the
same problem would surely arise and that generality and flexibility would
amply repay any extra cost. There was also certainty that the architects
could hardly imagine, much less predict, the many unexpected uses for
general operations and facilities. This principle, for example, explains
the absence of special operations to edit output: the problem is solved
by the general and powerful logical-connective operations. Similarly, a
single uniform interruption technique is used for input-output communi-
cation, malfunction warning, program-fault indication, and routine detec-
tion of expected but rare exceptional conditions.

Specialized Equipment for Frequent Tasks
There is also an antithetical principle. For tasks of great frequency

in important applications, specialized equipment and operations are pro-
vided in addition to general techniques. This, of course, accounts for
the provision of floating-point arithmetic and automatic index modifi-
cation of addresses.

To maximize instruction density, however, specialized operations of
less than the highest frequency are specified by extra instructions for
such operations rather than by extra bits in all instructions. In short,
the information price of specifying a less usual operation is paid when i t
is used rather than all the time. For example, indirect addressing,
multiple indexing, and instruction-counter storing on branching each
require half-word instructions when they are used, but no bits in the
basic instructions are used for such purposes. As a result of such detailed
optimization, the 7030 executes a typical scientific program with about
20 per cent fewer instructions of 32 bits than does the 704 with 36-bit
instructions on a corresponding program.

Systematic Instruction Set
Because the machine would be memory-limited, it was important t,o

provide a very rich instruction set so that the memory accesses for an

10 AKCHITECTITR \ L PHILOSOPHY I C H t P . 2

instruction and its operand mould accomplish as much as possible. As it
has developed, the instruction set contains several thousand distinguish-
able operations. Such a wealth of function could be made conceptually
manageable only by strong systematization. For example, there is only
one conditional branch instruction for testing the machine indicators, but
this is accompanied by a 6-bit code to select any one of the 64 machine
indicators, a bit to specify testing for either the on or the off condition,
and another bit to permit resetting of the indicator. Thus there are only
a few basic operations and a few modifiers. In all, the number of oper-
ations and modifiers is less than half the number of operations in the
IBM 709 (or 7090), although the number of different instruction actions
is over five times that of the 709.

Such systematization, of course, implies symmetry in the operation
code set-each modifier can be validly used with all the operations for
which it can be indicated in the instruction, and, for most operations, the
logical converses or counterparts are also provided. Thus the floating-
point-arithmetic set includes not only the customary DIVIDE where the,
addressed operand constitutes the divisor, but also a RECIPROCAL DIVIDE

which addresses the dividend.

Proiision ,for New Operating Techniques
Experience with the IBM 650 and 704 computers had clemo~~htr:tlcd

that two computers whose spceds ditrcr by more than one order of magni-
tude are different in kind as well as in degree. This confirmed the SUS-

picion that the 7030 would be more than a super-704 and would be
operated in a different way. An early effort was made, therefore, to
anticipate some of the operating techniques appropriate for such an
~nstrument, so that suitable hardware could be provided.

The most significant conclusion from these investigations was that an
important operating technique would be mzcltiprogramming, or time-
.haring of t he central computer amoiig several independent problem
programs. This now familiar (but yet unexploited) concept was new in
19.56 and viewed widely with suspicion.
-\ second conclusion was that the proposed high-capacity, high-data-

rat e disk storage would contribute substantially to system performance
and would permit the 7030 to be operated as a scientific computer with-
o u t very-high-speed magnetic tapes.

2.4. Contemporary Trends in Computer Architecture

Over the years computer designs have gone through a constant and
gradual evolution shaped largely by experience gained in many active
c.omputing centers. This experience has heavily influenced the architec-
ture of Stretch. In several instances the attack on a problem exposed

SEC'. 2.41 ('ONTEMPO11 i l ly rrl{lGXl)h I > ('OMI'UTER . \ II('HITECTURE 1 1

by experience with existing computers differs in Stretch from the solution
presently adopted in most computer installations. For example, with
existing large computers the only way to meet the high cost of human
intervention is to minimize such intervention; in the Stretch design the
attempt has been, instead, to make human intervention much cheaper.

The effect of several of these contemporary design trends on the Stretch
architecture will be examined here.

Concurrency
Most new computer designs achieve higher performaiice by oper-

ating various parts of the computer system concurrently. Concurrent
operation of input-output and the central computer has been available
for some years, but some contemporary designs go considerably beyond
this and allow various elements of the central computer to operate
roncurrently.
d distinction may be made (see Chap. 13) between local concurrency,

providing overlapped execution of instructions that are immediate neigh-
Ilors in the instruction stream of a single program, and nonlocal con-
currency, where the overlap is between nonadjacent instructions that
may belong to different programs. The usual input-output concurrency
i \ of the nonlocal type; since the instructions undergoing simultaneous
mecution are not closely related to one another, the need for interlocks
rind safeguards is not severe and may, to a large extent, be accomplished
by supervisory programming.

Local concurrency is used rxteiisivrly in the central processing unit of
the 7030 to achieve a high rate of instruction flow within a single instruc-
tion sequence. Unlike another scheme,2 in which each specialized unit
performs its task and returns its result to memory to await call by the
next unit, the 7030 uses registers; this is because memory speed is the
main limitation on 7030 computer speed. Several of these registers form
< I high-speed virtual memory (the look-ahead uni t of Chap. 15), which
receives instructions and operands from the real memory in advance of
execution by the arithmetic unit and receives the results for storing while
the arithmetic unit proceeds with the next operation. Up to eleven SUC-

t.essive instructions may be in the registers of the central processing unit
.tt various stages of execution : undergoing address modification, awaiting
L~rccm to operands in memory, waiting for and being executed by the
.withmetic units, or waiting for a result to be returned to memory.

Considerable effort was expended on automatic interlocks and safe-
s a r d s , so that the programmer would not have to concern himself with

P. Dreyfus, Programming Design Features of the GAMMA 60 Computer, Pror.

Ibid.
f..aslerrr J(Ji7Lf Comp?rter (lonf., December, 1958, pp. 174-181.

1 2 ARCHITECTURAL PHILOSOPHY [CHiP. 2

the intricate logic of local concurrency. The programmer writes his pro-
gram as if it were to be executed sequentially, one instruction a t a time.

To make a computer with automatic program-interruption facilities
behave this way was not an easy matter, because the number of instruc-
tions in various stages of processing when an interrupting signal occurb
may be large. The signal may have been the result of one of these
instructions, requiring interruption before the next instruction is exe-
cuted. Since the next several instructions may already be under way,
it must be possible to go back and cancel their effects. The amount of
overlap varies dynamically and may even be different for two executions
of the identical instruction sequence; so it would be almost impossible
for the programmer to do the backtracking. Therefore, the elaborate
safeguards provided to ensure sequential results from nonsequential oper-
ation do more than satisfy a desire to simplify programming; the pro-
grammer would be lost without them.

fit ultiprogramming
Time-sharing (as of a computer by multiprogramming) and concur-

rency are two sides of one coin: to overcome imbalance in a computer
system, faster elements are time-shared and slower elements are made to
operate concurrently. In the 7030, for example, the single central com-
puter uses several concurrently operating memory boxes, and the single
computer-memory system may control in turn many concurrently oper-
ating input-output devices.

Even though per-operation cost teiids to decrease as system perform-
ance increases, per-second cost increases, and i t therefore hecomes more
important to avoid delaying the calculator for input-output. To
take full advantage of concurrent input-output operation for a computer
of very high performaiice demands that input data for one program be
entered while a preceding program is in control of calculation and that
output take place after calculation is complete. For this reason alone,
it was apparent from the beginning that multiprogramming facilities
would be needed for Project Stretch.
-1 second motivation for multiprogramming is the need for a closer man-

machine relationship. As computers have become faster, the increasing
cost of wasted seconds has dictated increasing separation between the
problem sponsor and the solution process. This has reduced the over-all
efficiency of the problem-solving process; for, in fact, the more complex
problems solved on faster calculators are harder, not easier, for the spon-
sor to comprehend and therefore need more, not less, dynamic interaction
between solution process and sponsor. There can be no doubt that much
computer time and more printer time has been wasted because the prob-
lem sponsor cannot observe and react as his program is being run on large

SEC. 2.41 CONTEMPOHAKY TI~ENUS IX C'om R ARCHITECTURE 1 3

computers like the IBM 704. This difficulty promised to become more
acute with the even more complex problems for which Stretch was needed.

With multiprogramming it becomes economically practical for a person
seated a t a console to observe his program during execution and interrupt
it while considering the next step. Since the computer can immediately
be switched to another waiting program, the user is not charged with the
cost of an idle computer. Thus the extension of multiprogramming to
manual operation offers, once the technique has been mastered, a tre-
mendous economic breakthrough : it provides a general technique for
solving the problem of loss of contact betn.em sponsor and solution. A
sponsor can now interact with his problem a t his own speed, paying only
the cost of delaying the problem, not that of delaying the machine. This
should materially accelerate that large proportion of scientific compu-
tation which is expended on continual and perpetual refinement and
debugging of mathematical models and the programs that embody them.
The solution of moPt such problems is characterized more closely by a
fixed number of interactions between computer and sponsor than by a
fixed amount of computer time.

Multiprogramming also makes it economically practical to enter nevi
data and to print or display results on line, that is, via directly connected
input and output devices; whereas the economics of previous computers
forced card-to-tape and tape-to-printer conversion o f line, that is, with
physically separate devices, so that only the fastest possible medium,
magnetic tape, would be used on the computer. On-line operation of
input and output is emphasized in the Stretch philosophy, because it
removes much of the routine operator intervention and reduces the over-
all elapsed time for each run of a problem.

Multiprogramming makes several demands upon system organization.
Most obvious is the requirement of ample and fast storage, both internal
and external. Of equal importance is an adequate and flexible inter-
ruption system. Also, in the real world, time-sharing of a computer
among users with ordinary human failings requires memory protection,
40 that each user can feel secure within his assigned share of the machine.
Dcbugging is difficult enough a t best, arid most users would sacrifice
efficiency rather than tolerate difficulties caused by the errors in other
programs. It proved possible in the 7030 to provide a rudimentary but
sufficient form of memory protectioii without affecting speed and with a
modest amount of hardware.

The equipment for multiprogramming was, however, limited to two
essential features : program interruption and address monitoring, and
r hese were designed to be as flexible as possible. Other multiprogramming
runctions are left t o the supervisory prograin, partly because that arrange-
ment appeared to be efficient, but primarily because no one could be sure

1 4 ARCHITECTURAL PnILosoPm [CHAP. 3

which further facilities would prove useful and which would prove merely
expensive and overly rigid inconveniences. Several years of actual multi-
programming experience will undoubtedly demonstrate the value of other
built-in features.

If multiprogramming is to be an operating technique} a radically differ-
ent design is needed for the operator’s console. If several independent
programs are to be run, each with active operator intervention, there
must be provision for multiple independent consoles. Each console must
be incapable of altering any program other than the associated problem
program. For active intervention by the problem sponsor (rather than
by a special machine operator), the console must be especially convenient
to use. Finally, if a supervisory program is to exercise complete control
in scheduling programs automatically, it must be able to ignore unused
console facilities. Although intelligent human intervention is prized
highly, routine human intervention is to be minimized, so as to reduce
delays and opportunities for error.

The operating console was designed to be simply another input-output
device with a convenient assortment of switches, keys, lights, digital dis-
plays, and a typewriter. A console interpretive program assigns mean-
ing to the bits generated by each switch and displayed by each light.
There are no maintenance facilities on the operator’s console, and com-
pletely separate maintenance consoles are provided.

Automatic Programming

Undoubtedly the most important change in computer application tech-
nique in the past several years has been the appearance of symbolic
assemblers and problem-language compilers. Studies showed that for
Stretch a t least half of all computer time would be used by compiier-
produced programs; all programs would be a t least initially translated
by an assembler.

A most important implication of symbolic-language programming is
that the addressing radix and structure need not be determined for coder
convenience. Fairly complex instruction formats can be used without
causing coding errors, and operation sets with hundreds of diverse oper-
ations can be used effectively.

Many proposals for amending system architecture to simplify com-
pilers were considered. The most far-reaching of these concerned the
number of index registers, which should be infinity or unity for greatest
ease of assignment during compilation. The alternatives were investi-
gated in considerable detail, and both turned out to reduce computer
performance rather sharply. Indeed, reduced performance was implied
by most such proposals. These studies resulted in a belief which is not
shared by all who construct compilers; this is that total cost to the user is

SEC. 2.51 HINDSIGHT 1 5

minimized not by restricting system power to keep compilers simple but
by enhancing facilities for the task of compilation itself, so that com-
pilers can operate more rapidly and efficiently.

Information Processing
The arithmetic power of a computer is often only ancillary to its power

of assembling, rearranging, testing, and otherwise manipulating infor-
mation. To an increasing extent, bits in even a scientific computer
represent things other than numerical quantities: elements of a pro-
gram metalanguage, alphabetic material, representations of graphs, bits
scanned from a pattern, etc. In the light of this trend, it was therefore
important to match powerful arithmetical with powerful manipulative
facilities. These are provided in the variable-field-length arithmetic
and, in unique form, in the variable-field-length connective operations,
which operate upon bits as entities rather than components of numbers.
Good variable-field-length facilities are, of course, particularly important
for business and military data processing.

2.5. Hindsight
As the actual shape of the 7030 began to emerge from the initial

planning and design stages, i t became apparent that some of the earlier
thoughts had to be revised. (Some of these changes have already been
noted parenthetically in Chap. 1.) The bus unit for linking and schedul-
ing traffic between many memory boxes and many memory-using units
turned out to be a key part of the design. The original algorithms for
multiplication and division proved inadequate with available circuits,
and new approaches were devised. It became clear that division, especi-
ally, could not be improved by the same factor as multiplication. Serial
(variable-field-length) operation turned out to be considerably slower
than expected; so serial multiplication and division were abandoned, and
the variable-field-length multiplication and division operations were rede-
signed to use the faster parallel unit.

The tivo separate computer sections that were postulated originally
I\ ere later combined (see Chap. l), and both sets of facilities were placed
under the control of one instruction counter. Although the concept of
multiple computing units, closely coupled into one system, was not found
practical for the 7030 system, this concept still seems promising.' I n
iact, the input-output exchange coupled to the main computer in the
7030 is a simplified example, since the exchange is really another com-
puter, albeit a highly specialized one with an extremely limited instruc-
t ion vocabulary.

* A . L. Leiner, W. A. Nota, J. L. Sniith, and A. Weinberger, PILOT: h New bhlti-
Computer System, J . AC'M, vol. 6, no. 3, pp. 313-335, July, 1959.

16 A4KCHITECTUHAL PHILOSOPHY [CHAP. 2

Some architectural features proved unworkable. Rather late in the
design period, for example, it became clear that the method of handling
zero quantities in floating-point arithmetic was ill-conceived ; so this
method was abandoned, and a better concept was devised.

Two excellent features, each of which contributes markedly to system
performance, were found to have inherently conflicting requirements;
their interaction prevents either feature from realizing its full potential.
The program-interrupt system is intended to permit unpredicted changes
in instruction sequencing. The instruction look-ahead unit, on the other
hand, depends for its effectiveness on the predictability of instruction
sequences; each interruption drains the look-ahead and takes time to
recover. This destroyed the usefulness of the interrupt system for fre-
quent one-instruction fix-ups and required the addition of built-in excep-
tion handling in such cases as floating-point underflow.

On the other hand, some improvements became possible as the design
progressed. It turned out, for example, that the equipment for perform-
ing variable-field-length binary multiplication with the parallel arithmetic
unit could easily be made to do binary-decimal and format conversions;
so this facility was added.

There are in the 7030 architectural features whose usefulness is still
unmeasured. Others seem to be innova-
tions that will find redefinition and refinement in future computers, large
and small. Still other features appear now to be wise for very-high-
performance computers, but must be considerably scaled down for more
modest machines. Experience has, however, reinforced the system archi-
tects’ belief in the guiding principles of the design and in the general
applicability of these principles to other computer-planning projects.

h few are probably mistakes.

Chapter 3

SYSTEM SUMMARY OF IBM 7030

by W. Buchholz

3.1. System Organization
The IBM 7030 is composed of a central processing unit, one or more

memory units, a memory bus unit, an input-output exchange, and input-
output devices. Optionally, high-speed magnetic disk storage units and
a disk control unit may be added for external storage. A typical system
configuration is shown in Fig. 3.1.

Information moves between the input-output devices and the memo-
ries under control of the exchange. The central processing unit (CPU)
actually consists of several units that may operate concurrently: an
instruction unit, which controls the fetching and indexing of instructions
and executes the instructions concerned with indexing arithmetic; a look-
ahead unit, which controls fetching and storing of data for several instruc-
tions ahead of the one being executed, so as to minimize memory traffic
delays; a parallel arithmetic unit, for performing binary arithmetic on
floating-point numbers a t very high speed ; and a serial arithmetic unit,
for performing binary and decimal arithmetic, alphanumeric operations,
Lind logical-connective operations on fields of varying lengths.

T,ogically the CPU operates as one coordinated unit upon a succession
of instructions under the control of a single instruction counter. Care is
taken in the design so that the user need not concern himself with the
intricacies of overlapped operations within the CPU.

The memory bus unit coordinates all traffic between the various
memory units on the one side and, on the other side, the exchange, the
disk control, and the various parts of the CPU.

3.2. Memory Units
The main magnetic core memory units have a read-write cycle time of

2.1 microseconds. A memory word consists of G4 information bits and
S check bits for automatic single-error correction and double-error
detection.

17

18 SYSTEM SUYBI.\RT OF IBM 7030 [CHAP. 3

The address part of every instruction provides for addressing directly
any of 262,144 (219 word locations. Addresses are numbered from 0
up to the amount of memory provided in a particular system, but
addresses 0 to 31 refer to index words and special registers instead of
general-purpose memory locations.

A system may
contain one, two, or a multiple of two such units, up to a maximum of

Each unit of memory consists of 16,384 (214) words.

Memory units

1 1 1 1 1 1
1 Memory out bus
.Z Memory in bus

.-
Memory bus

unit

I Controls

synchronizer
unit

Channels for
input-output

units

(Magnetic tapes
Magnetic disks
Printers
Readers
Consoles
Displays High-speed
Inquiry stations disk units
Data transmission
e tcJ

Index Index

Arithmetic

Parallel
arithmetic unit

arithmetic unit

Central
processing

unit

FIG. 3.1. 7030 system.

sixteen units. Each memory unit operates independently. In systems
with two units or more, several memory references may be in process
at the same time. In order to take better advantage of this simultaneity,
successive addresses are distributed among different boxes. When a sys-
tem comprises two units, successive addresses alternate between the two.
When a system comprises four or more units, the units are arranged in
groups of four, and successive addresses rotate to each of the four units
in one group, except for the last group which may consist of only two
units with alternating addresses.

SEC. 3.51 I N P U T AND O U P U T FACILITIE6 19

3.3. Index Memory

A separate fast magnetic core memory is used for index registers.
Since index words are normally read out much more often than they are
altered, this memory has a short, nondestructive read cycle of 0.6 psec.
The longer clear-and-write cycle of 1.2 psec is taken only when needed.

The index memory is directly associated with the instruction unit of
the computer. It cannot be used to furnish instructions, nor can i t be
used directly with input or output.

The sixteen index registers have regular addresses 16 to 31, which
correspond to abbreviated 4-bit index addresses 0 to 15. The first
register cannot participate in automatic address modification since an
index address of 0 is used to indicate no indexing.

3.4. Special Registers
Some

of these are composed of transistor flip-flops; others are in the fast index
memory or in main memory. The addressable registers are assigned
addresses 0 to 15. These locations cannot be used for instructions or for
input or output data.

Address 0 always contains zero. It is a bottomless pit; regardless of
what is put in, nothing comes out. The program may attempt to store
data at address 0, but any word fetched from there will contain only 0
data bits.'

The remaining fifteen addresses correspond to machine registers, time
clocks, and control bits.

3.5. Input and Output Facilities

Input to the system passes from the input devices to memory through
The exchange. The exchange assembles successive 64-bit words from the
flow of input information and stores the assembled words in successive
memory locations without tying up the central processing unit. The
CPU specifies only the number of input words to be read and their loca-
tion in memory; the exchange then completes the operation by itself.

The exchange operates in a similar manner for output, fetching SUC-

cessive memory words and disassembling them for the output devices
independently of the CPU. External storage devices, such as tapes and
disks, are operated via the exchange as if they were input and output.

The exchange has the basic capability of operating eight independent
input-output units. This eight-channel exchange can be enlarged by

A distinctive type (0, 1) is used in the text for the bits of binary numbers or codes,
and regular type (0, 1, 2, . . .) for decimal digits. For example, 10 is p binary
gumber (two) and 10 a decimal number (ten).

Many of the registers of the machine are directly addressable.

They are listed in the Appendix.

20 SYSTEM SUMMARY OF IRM 7030 [("HAP. 3

adding more eight-channel groups. Each of these channels can handle
informat,ion a t a rate of over 500,000 bits per second. The exchange as a
whole can reach a peak data rate of 6 million information bits per second.

A wide variety of input-output units can be operated by the exchange.
These include card readers and punches, printers, magnetic tapes, oper-
ator's consoles, and typcwriter inquiry stations. Several of some kinds
of units can be attached to a single exchange channel; of the several units
on a single channel, only one can be operated a t a time.

Provisions have been made in the design of the exchange for adding up
to 64 more channels operating simultaneously but a t a much lower data
rate per channel. This extension is intended for tying the computer eco-
nomically into a large network of low-speed units, such as manually
operated inquiry stations.

3.6. High-speed Disk Units

For many large problems, the amount of core storage that it is practical
to provide is not nearly large enough to hold all the data needed during
computation. Earlier systems have been severely limited by the rela-
tively low data rates of magnetic tapes or the relatively low capacities of
magnetic drums available for back-up storage. To avoid having the
over-all 7030 performance limited by the same devices, it was essential
to develop an external storage medium with high capacity and high data-
transfer rates. A magnetic disk storage unit was designed for this
purpose.

The disk units read or write a t a rate of 125,000 words per second, or
8 million bits per second over a single channel (a rate 90 times that of the
IBM 727 tape available with the 704). One or more units, each with a
capacity of 2 million words, may he attached. Access to any location of
any disk unit requires of the order of 150 milliseconds. Once data trans-
mission has started i t continues a t top speed for as many consecutive
words as desired, without further delays for access to successive tracks.

The control unit, or disk synchronizer, functions like the input-output
exchange except that it is a single-channel device designed specifically to
handle the high data rate of the disks. The exchange and the disk syn-
chronizer can operate independently and simultaneously a t full speed.
An error-correcting code is used on the disks, and any single errors in data
read from the disks are corrected automatically by the control unit before
transfer to memory.

3.7. Central Processing Unit

The central processing unit performs arithmetical and logical oper-
ations upon operands taken from memory. The results are generally
left in accumulator registers to be further operated on or to he stored in

1M3TRUCTION LOOK-AHEAD 21

memory subsequently. Operations are specified one a t a time by instruc-
tions, which are also taken from memory. Each instruction usually
specifies an operation and an operand or result. The operand specifi-
cation is made up of an address and an index address. Part of the index
word contents are added to the address in the instruction to obtain an
6 ffective address. The effective address designates the actual location of
the operand or result. The additions needed to derive the effective
address and to modify index words are performed in an index-arithmetic
unit which is separate from t)he main arithmetic unit.

3.8. Instruction Controls

h n instruction may be one word or one half word in length. Full-
,ind half-length instructions can be intermixed without regard to word
boundaries in memory.

Instructions are taken in succession under control of an instruction
<.ounter. The sequence of instructions may be altered by branching oper-
ations, which can be made to depend on a wide variety of conditions.
-1utomatic interruption of the normal sequence can also be caused by
many conditions. The conditions for interruption and control of branch-
ing are represented by bits in an indicator register. The interrupt sys-
rem also includes a mask register for controlling interruption and an
, Titerrupt address register for selecting the desired set of alternate pro-
grams. When it is needed, the address of the input or output unit
I Jusing an interruption can be read from a channel address register which
1.31~ be set up only by the exchange.

The interpretation and execution of instructions is monitored to make
-ure that the effective addresses are within boundaries defined by two
tmndary registers.

3.9. Index-arithmetic Unit

The index-arithmetic unit, which is part of the instruction-control unit,
~ i t a i n s registers for holding the instructions to be modified and the index
m r d s used in the modification. When index words themselves are oper-
L T P ~ on, some of these registers also hold the operand data. The index-
.:g operations include loading, storing, adding, and comparing. The
.adex-arithmetic unit has gates for selecting the necessary fields in index
2nd instruction words and a 24-bit algebraic adder.

3.1 0. Instruction Look-ahead

-1fter initiating a reference to memory for a data word, the instruction
.nit passes the modified instruction on to the look-ahead uni t . This unit

nolds the relevant parts of thc instruction until the data arrive, so that

22 SYSTEM S V M M ~ R Y OF IBRf 7030 [CH 11’. 3

both the operation and its operand can be sent) to the arithmetic uiiit
together. Since access to the dcsired memory unit takes a relatively long
time, the look-ahead will accept several instructions a t a time and
iiiitiate their memory references, so as to smooth out the memory traffic
and obtain a high degree of overlap between memory units. Thus
the unit “looks” several instructions ahead of the instruction being
executed and anticipates the memory references needed. This reduces
delays and keeps the arithmetic unit in as nearly continuous operation
as possible.

Indexing and branching illstructions are completed by the instruction
unit without involving the main arithmetic unit. The instruction unit
receives its own operands, whereas the look-ahead receives operands for
the main arithmetic unit. The look-ahead, however, is responsible for
storing all results for both units, so that permanent modification of stored
information is done in the proper logical sequence. Interlocks in the
look-ahead unit ensure that nothing is altered permanently until all pre-
ceding instructions have been executed successfully.

3.1 1. Arithmetic Unit

The
parallel section essentially performs floating-point arithmetic a t high
speed, and the serial section performs fixed-point arithmetic and logical
operations on fields of variable length. Both sections share the same
basic registers and much of the control equipment; so they may be treated
as one unit.

For simplicity, the arithmetic unit may be considered to be composed
of 4 one-word registers and a short register. This conceptual structure is
shown in Fig. 3.2 , where the full-length registers are labeled A , B , C, and
D , and the short register is labeled X. The registers marked A and B
constitute the left aiid right halves of the accumulator. The registers
marked C and D serve only as temporary-storage registers, receiving
words from memory and (in serial operations only) assembling results to
be stored in memory. The short register S stores the accumulator sign
bit and certain other indicative bits.

In floating-point addition the operand from memory is sent to register
C. (Since floating-point operands will fit into register C, register D is not
needed here.) This operand is then added to the contents of register A
or of both registers A aiid I?, depending on whether single- or double-
length addition has been specified. The result is placed in A or in A
aiid R. As an alternative (adding to memory), the result may be
returned to the location of the memory operand instead.

In floating-point multiplication one factor is the number in accumu-
lator register A. The other factor comes from memory and is trans-

The arithmetic unit consists of a parallel and a serial section.

Ssc. 3.111

Exponent Fraction A
Left half

accumulator

.\HITHMETI(' UNIT 23

Fraction (continued) fj

Right half
accumulator

From memor)

From memory From memory

Left half Right half
accumulator accumulator

SERIAL OPERATION

Accumulator
sign

Accumulator
sign

FIG. 3.2. Simplified register structure of arithmetic unit.

ierred to register C. The factors are now multiplied together, and the
product is returned to the accumulator register, replacing the previous
1-ontents. In cumulative multiplication one factor must have been previ-
ously loaded into a separate factor register (not shown). The other fac-
:or again comes from memory and goes to C . The factors are multiplied
3s in ordinary multiplication, but the product is added to the contents of
:he accumulator register.

In floating-point division the dividend is in the accumulator, and the
divisor is brought from memory to register C. The quotient is returned

24 SYSTEM S U M M ~ H Y OF IBM 7030 [CHAP. 3

to the accumulator, and the remainder, if any, goes to a rvmainder register
(not shown).

In serial variable-field-length operations the operand field may occupy
parts of two adjacent memory words, and both words if necessary are
fetched and placed in registers C and D. The other operand field comes
from A and B. The operands are selected a few bits a t a time and
processed in serial fashion. The result field may replace A and B, or it
may replace selected bits of C and D whose contents are then returned to
memory. Binary multiplication and division operands are stepped into
the parallel mechanism a few bits at a time, but the actual operation is
performed in parallel.

Other registers are the transit register, a full-word location, which may
be used for automatic subroutine entry; and two 7-bit registers, the ali-
ones counter and the left-zeros counter, which are used in connective oper-
ations to hold bit counts developed.from the results.

All registers mentioned above, except memory registers C and D, are
also addressable as explicit operands.

3.1 2. Instruction Set
The operations available may be divided into these categories :

Data arithmetic
1. Floating-point arithmetic
2. Variable-field-length arithmetic

Radix conversion
Connectives
Index arithmetic
Branching
Transmission
Input-Output

The categories are briefly described in the next few sections

3.1 3 . Data Arithmetic

The arithmetical instruction set includes the conventional operations
LOAD, ADD, STORE, MULTIPLY, and DIVIDE. Modifier bits are available to
change the operand sign. The operations subtract and add absolute are
obtained by use of sign modifiers to the ADD instruction and are not pro-
vided as separate operations. The same modifiers make it possible to
change the sign of a number that is to be loaded, stored, multiplied, or
divided.

A convenient feature of the MULTIPLY operation is that one of the fac-
tors is taken from the accumulator rather than from a separate register,
and this factor may be the result of previous computation. Similarly,

Ssc. 3.131 L) a ~ a ARITHMETIC 25

DIVIDE places the quotient in the accumulator, and so the quotient is
available directly for further arithmetical steps.

Extensions of the basic set of arithmetical operations permit adding
.ind counting in memory, rounding, cumulative multiplication, compari-
.on, and further variations of the standard ADD operation.

One of these variations is called ADD TO MAGNITUDE. This operation
tliffers from ADD in that, when the signs and modifiers are set for sub-
'iaction, i t does not allow the result sign to change. When the result
-ign would change, the result is set instead to zero. This operation is
i.eful in dealing with nonnegative numbers or in computing with dis-

1 ontinuous rates.
The important arithmetical operations are available in the floating-

.Joint mode as well as in the (fixed-point) variable-field-length mode.

b'ioatzng-poznt-arithmetic Operations
Floating-point (PLP) arithmetic use5 a 64-bit floating-point word con-

+ling of a signed 48-bit binary fraction, a signed 10-bit binary exponent,
lud an exponent flag to indicate numbers that have exceeded the avail-
,hie exponent range. Arithmetic can be performed in either normalized
tr unnormalized form.

The 48-bit fraction (mantissa) is longer than those available in earlier
ttmputers, so that many problems can be computed in single precision,

A hich would previously have required much slower double precision.
Khen multiple-precision computation is required, however, it is greatly
-at>ilitated by operations that produce double-length results.

To aid in significance studies, a noisy mode is provided in which the
,in -order bits of results are modified. Running the same problem twice,

-r:t in the normal mode and then in the noisy mode, gives an estimate
a-.f the significance of the results.

1-ariable-field-length-arithmetic Operations
The class of variable-field-length (VFL) arithmetic is used for data

l r i t hmetic on other than the specialized floating-point numbers. The
-rnphasis here is on versatility and on economy of storage. Arithmetic
7 - a ~ he performed directly in either decimal or binary radix. Individual
L Imbers, or fields, may be of any length, from 1 to 64 bits. Fields of
lfierent lengths may be assigned to adjacent locations in memory, even
_I' :his means that a field lies partly in one memory word and partly in
:he next. Each field may be addressed directly by specifying its position
s d length in the instruction; the computer takes care of selecting the
zemory words required and altering only the desired information.

For unsigned data the
sgn is simply omitted in memory; this saves space and avoids the task of

Sumerical data may be signed or unsigned.

26 SYSTEM SUMMARY OF IBR.’I 7030 [CHAP. 3

assigning signs where there are none to begin with. Unsigned numbers
are treated arithmetically as if they were positive.

VFL arithmetic is sometimes called integer arithmetic, because in multi-
plication and division the results are normally aligned as if the operands
were integers. It is possible, though, to specify that operands be ofset
so as to obtain any desired alignment of the radix point. An offset can
be specified in every instruction, and there is no need for separate instruc-
tions to shift the contents of the accumulator.

A significant feature of the VFL DIVIDE operation is that it will pro-
duce meaningful results regardless of the magnitude of the dividend or
the divisor (provided these fall within the bounds of numbers generally
acceptable to the arithmetic unit). The only and obvious exception is a
zero divisor. This greater freedom eliminates much of the scaling previ-
ously required before a DIVIDE instruction could be accepted.

All VFL-arithmetic operations are available in either decimal or binary
form, and the choice can be made by setting 1 modifier bit. Decimal
multiplication and division, however, are not built into the computer
directly; instead their operation codes are used to cause an automatic
entry to a standard subroutine which can take advantage of high-speed
radix conversion and binary multiplication or division. Thus decimal
multiplication and division are faster but just as convenient to program
as if they had been built in for execution by the serial decimal circuits.

An operation is provided that causes an automatic entry to a sub-
routine. A field of this instruction may be used to distinguish up to
128 pseudo operations.

One use of the VFL-arithmetic operations is to perform general arith-
metic on portions of floating-point words, instruction words, or index
words. The floating-point and index-arithmetic instruction classes do
contain special addition and comparison instructions for the most fre-
quent operations on partial words of this kind, but the VFL operations
provide a complete set for all purposes.

Alphabetic and alphanumeric fields of various lengths are handled by
VFL-arithmetic operations as if they were unsigned binary numbers,
regardless of the character code. There is actually no fixed character
code built into the computer, although a certain code with many desira-
ble features is recommended. Alphanumeric high-low comparisons are
made by a simple binary subtraction of two fields. The only require-
ment is that the binary numbers representing each character fall into the
comparing sequence desired for the application. If the code used for
input or output does not conform to this comparing requirement, special
provisions facilitate the translating of the code to any other form by
programming u table look-up.

The number of bits used to encode individual characters may be varied.
Thus a decimal digit may be compactly represented by a binary code of

SEC. 3.161 INDEX-AHITHIMETIC OPERATIONS 2 1

4 bits, or it may be expaiidcd to 6 or imre bits when intermixed with
alphabetic information.

3.1 4. Radix-conversion Operations

h group of radix-conversion operations is provided to convert integers
between decimal and binary form in either direction. These operations
are also used in implementing the decimal multiplication and division
pseudo operations mentioned in the preceding section.

3.1 5. Connective Operations

Instructions that combine bits by logical and, or, and exclusive or func-
tions have been available in earlier computers. These and many other
nonarithmetical data-handling operations are here replaced in simple and
orderly fashion by connective operations that provide many logical facili-
ties not previously available. These operations are called CONNECT,

CONNECT TO MEMORY, and CONNECT FOR TEST.
Each connective operation specifies a memory field of any length from

1 to 64 bits, as in integer arithmetic. Each bit in the memory field is
logically combined with a corresponding bit in the accumulator; the
resulting bit replaces the accumulator bit in CONSECT, the memory bit in
CONNECT TO MEMORY, or neither in CONNECT FOR TEST. All three oper-
ations make available certain tests and counts of 0 and 1 bits.

There are sixteen possible ways in which to combine, or connect, two
bits. Each of these logical connectives can be specified along with each
of the three connective operations. Besides the connectives and, or, and
exclusive or, there are connectives to match bits, to replace bits, and to
set bits to 0 or 1.

Although the term logical connectives suggests evaluation of elaborate
expressions in Boolean algebra, the connective instructions have impor-
tant everyday applications, such as the assembling and converting of
input-output data. Their power lies in their ability to specify fields of
any length and in any position in memory, either single test bits or strings
of adjacent bits.

3.1 6. Index-arithmetic Operations

ber in a specified index register before the address is used.
the instruction and the index register remain unchanged.
index registers is the function of the index arithmetic operations.

of index values.
algebraic.
added together for use in further indexing.
provides the function of indirect addressing.

Either or both of the operands may be inverted.

The address part of any instruction may be modified by adding a num-
Normally both

To alter the

These operations include loading, storing, incrementing, and comparing
The index value is a signed number, and additions are

One of the instructions allows up to sixteen index values to be
Another indexing instruction

28 SYSTEM SUMMARY OF IBM 7030 [CHAP. 3

Each index word contains a count to keep track of the number of times
a program loop has been traversed. Counting may be coupled with
incrementing of the index value. A third field in each index word
specifies a refill address from which another index word may be loaded
automatically.

Instructions generally specify one of a set of fifteen index registers for
address modification, but the number of available registers may be readily
supplemented by other index locations in memory through the operation
RENAME. This operation identifies one designated index register with
one of these memory locations and does the bookkeeping necessary to
cause this memory location to reflect changes in the index register.

Although indexing instructions are provided to change index values
and counts explicitly, it is possible to use another mode, called progressive
indexing, in which the index quantities may be advanced each time they
are used.

3.1 7. Branching Operations

The branching operations either conditionally or unconditionally alter
the instruction counter so as to change the course of a program. The
number of these operations is not large, but modifiers are available to
provide a great deal of flexibility.

All machine-state indicators, such as sign, overflow, error, and input-
output conditions, are collected in one 64-bit indicator register. The
BRANCH ON INDICATOR instruction may specify any one of these 64 indi-
cators as the condition to be tested. A modifier specifies whether branch-
ing is to occur when the indicator is on or off. Another modifier may
cause the indicator tested to be reset.

A second operation, BRANCH ON BIT, permits the testing of a single bit
anywhere in memory with one instruction. The tested bit may also be
modified. This instruction places a virtually unlimited number of indi-
cators under the direct control of the program.

A hybrid operation combines advancing of an index word with testing
and branching. Thus the most common program loops may be closed
with one half-length instruction, although full indexing flexibility requires
two half-length instructions to specify the necessary quantities.

Branch instructions may be coupled with another operation to store
the instruction-counter contents a t any desired location before branching.
This simplifies reentry to a program from a subprogram.

3.1 8. Transmission Operations

from one memory area to another.
changes the contents of two memory areas.

The operation TRANSMIT provides the facilities to move a block of data
A second operation, SWAP, inter-

SEC. 3.201 NEW FEATURES 29

3.19. Input-Output Operations

There are basically two operations for controlling input-output and
external storage units: READ and WRITE. Each instruction specifies the
unit desired and a memory area for the data to be read or written.

The memory area is specified by giving the address of a control word
which contains the first data address in memory and a count of the num-
ber of words to be transferred. The control word also contains a refill
address which can specify the address of another control word. Control
words can thus be chained together to define memory areas that are not
adjacent.

Control words have the same format as index words and can be used
for indexing. This important feature means that the same word can be
used first for reading new data, then for indexing while those data are
being processed, and finally for writing the data from the same memory
area.

Various modifications of READ and WRITE are provided to fit different
circumstances.

All instructions for operating external units are issued by the computer
program but are executed independently of the program. Several data
transfers can thus take place simultaneously, all sharing access to
memory. Signaling functions inform the program when each external
process is completed.

All external units, regardless of their characteristics, are controlled by
the same set of instructions. They are distinguished only by a number
assigned to each unit.

3.20. N e w Features

summarized in this section.

Other instructions perform various control functions.

Xew programming features not identified with specific instructions are

Addressing
In instructions where this is meaningful, the position of a single bit in

any word of memory can be addressed directly. A complete word-and-
bit address forms a 24-bit number. The word address (18 bits) is on the
left and the bit address (6 bits) on the right of that number. For the
purpose of bit addressing, the entire memory may be regarded as a set
of consecutively numbered bits. Since the number of bits in a memory
word (64) is a power of 2 and all addressing is binary, the address of the
rightmost bit (bit 63) of one memory word is followed immediately by the
address of the leftmost bit (bit 0) of the word with the next higher word
address.

Other instructions use only fnll memory words as data, and these pro-
Memory-word boundaries may be ignored by the program.

30 SYSTEM SUMM.\HY OF IBhl 7030 [CHAP. 8

vide space for only 18 bits of address. The bit address is assumed to be 0.
Still other instructions refer to half words and use 19 bits of address. The
extra bit is immediately to the right of the word address, and the remain-
ing 5 bits of the bit address are treated as Os.

Index words provide space for a sign and 24 bits in the value field,
so that all addresses may be fully indexed to the bit level. The entire
24-bit instruction address, with Os inserted where instructions have fewer
address bits, participates in the algebraic addition during address modi-
fication. When less than 24 bits are needed in the effective address, the
low-order bits are dropped.

Many internal machine registers are directly addressable as if they
were memory. The accumulator may, for example, be added to itself;
this is accomplished by addressing the accumulator as the operand of an
ADD instruction. One important use of this facility is in preserving and
restoring the contents of internal registers by transmitting them as a
block to or from memory with one TRAXSMIT instruction.

Instead of selecting a location from which to fetch data, the address
itself may serve as data in many operations. It is then called an immedi-
ate address. This feature is
very convenient for defining short constants without having to provide
the space and time for separate access to memory. Immediate address-
ing is not available for sending data to memory, because the address
space is needed to select memory.

The term direct address is used to distinguish the usual type of address
which gives the location of an operand or of an instruction.

The term indirect address refers to an address that gives the location of
another address. An indirect address may select an immediate address,
a direct address, or yet another indirect address. Indirect addresses are
obtained in the 7030 by the instruction LOAD VALUE EFFECTIVE, which
places the effective address found a t the specified memory location into
an index register for indexing a subsequent instruction. Multiple-
level indirect addressing is obtained when LOAD VALUE EFFECTIVE finds
at the selected location another instruction LOAD VALUE EFFECTIVE which
causes the indirect addressing process to be repeated.

Program Interruption
A single program-interrupt system serves for responding to asynchro-

nously occurring external signals and for monitoring exceptional condi-
tions generated by the program itself. When one of the indicators in the
previously mentioned indicator register comes on, the computer selects
an instruction from a corresponding position in a table of fix-up instruc-
tions. This instruction is sandwiched into the program currently being
executed a t whatever time the interruption occurs. The extra instruc-

Such data are limited to a t most 24 bits.

SEC. 3.201 SEW FEATURES 31

tion is usually one which first stores the current instruction-counter set-
ting, to preserve the point a t which the current program was interrupted,
and then branches to the desired fix-up routine. The table of fix-up
instructions may be placed anywhere in memory.

Means are provided to select which indicators may cause interruption
and when interruption will be permitted. Priorities can thus be estab-
lished. If more than one interrupt condition should occur a t a time, the
system will take them in order. Special provisions are made to permit
interruptions to any level to occur without causing program confusion.

Address Monitoring
Address-monitoring facilities are provided to assist in the debugging of

new programs and to protect already debugged programs against errone-
ous use of their memory locations by other programs being run simulta-
neously in multiprogrammed fashion. The two address-boundary registers
are used to define the desired memory area. One register specifies the
lower boundary and one the upper boundary. All effective operand
addresses and all instruction addresses are compared against the two
addresses in the registers to see whether the address in question falls
inside or outside the boundaries. By setting a control bit, it is possible
to define either the area inside the boundaries or the area outside the
boundaries as the protected area. Whichever it is, any attempt to fetch
an instruction or data word from the protected area or to store new infor-
mation in the protected area may be suppressed, and the program may
be interrupted immediately. Thus it is possible to use the address-
monitoring system to make sure either that a given program does not
stray outside its assigned area or that no program will interfere with
whatever is stored inside the area.

The built-in monitoring system is much more effective than the alterna-
tive of screening each program in advance to make sure that all addresses
are proper. It is very difficult to predict by inspection all the effective
addresses that may be generated during execution by indexing, indirect
addressing, or other procedures, especially in a program that may contaiii
errors.

Clocks
An interval timer is built in to measure elapsed time over relatively

It can be set to any value at any time, and an indicator
This indicator will cause auto-

To provide a continuous indication of time, a time clock is also fur-
This clock runs continuously while the machine is in operation;

It may be used to time

short intervals.
shows when the time period has ended.
matic program interruption.

nished.
its setting cannot be altered by the programmer.

32 [CHAP. 3

longer intervals for logging purposes or, in conjunction with an external
calibrating signal, to provide a time-of-day indication.

3.21. Performance

Since high pcrforniarice is so important an objective of the 7030, a sum-
mary of the system should give some examples of its internal speed. Such
speeds cannot be quoted with any accuracy, however.

In earlier computers it has been a relatively simple matter to compile
a list of exact times or time formulas for the execution of each operation.
To determine the time taken to execute a program it was necessary only
to add the times required for each instruction of the program. Describ-
ing the internal speed of the 7030 with any accuracy is a much more diffi-
cult task because of the high degree of overlap among the independently
and asynchronously operating parts of the central processing unit.

The list is not
complete and includes only the time spent by the arithmetic unit oper-
ating on data already available. There would be little point in extend-
ing the list; instruction and data fetches, address modification, and the
execution of indexing and branching instructions all overlap the arith-
metic-execution times to varying degrees; so the figures could not be
meaningfully addcd together.

Rules of thumb and approximation formulas may be developed in time,
but their accuracy would depend considerably on the type of program.
The degree of overlap varies widely between problems requiring a prc-
dominance of floating-point arithmetic or variable-field-length arithmetic
or branching or input-output activity. A zero-order approximation,
which could be off by a factor of 2 or more, might be to count 2.5 micro-
seconds for each instruction written. To arrive at a more accurate figure
i t is necessary to take into account the complex timing relationships of a
succession of specific instructions in considerable detail. Even then i t
would be difficult to measure the effect on performance of the long float-
ing-point word, the large core memory, the very large capacity of the
high-speed disk units, the overlapped input-output data transfer, or the
interrupt system. The best approach is still to program a complete
problem and then time the actual execution on the 7030 itself.

A few raw arithmetic speeds are listed in Chap. 14.

Chapter 4

NATURAL DATA UNITS
by G. A. Bldduw, F. P. Brooks, Jr., and W. Buchholz

4.1. Lengths and Structures of Natural Data Units

In considering automatic data-processing tasks generally, we identify
five common types of operations : floating-point operations, fixed-point
arithmetic, address arithmetic, logical manipulations, and editing oper-
ations. Each of these has a natural data unit distinct from those of the
other types in length, variability of length, or internal structure. An
ideal computer would permit each operation to address its natural data
unit directly, and this addressing would be simplified by utilizing all
properties of the natural data unit that are constant.

It should be observed that the natural data unit is associated with an
individual manipulative operation, not with a whole program. In any
program there will be different kinds of operations and, therefore, differ-
ent natural data units. Furthermore, the same datum is generally the
object of different kinds of operations. Yor example, a floating-point
datum may be developed as a unit in a computation, its components
then used in radix-conversion arithmetic, and the characters of the result
finally used as units in editing for printing. The format of a datum is
usually made to agree as closely as possible with the natural data unit
of the operations most often performed on that datum.

The natural data unit for most technical computation has come to be
the floating-point number, because the use of $outing-point arithmetic
frees the mathematician from many details of magnitude analysis. This
unit] has considerable internal structure : the representation of a single

Note: Sections 4.1 and 4.2 of this chapter are taken from a previously publishtd
paper by the same authors: Processing Data in Bits and Pieces, IRE Trans. on Eltc-
tronic Computers, vol. EC-8, no. 2, pp. 118-124, June, 1959; also “Information Process-
ing,” UNESCO (Paris), R. Oldenbourg (Munich), and Butterworths (London), 1960,

3 3
pp. 375-382.

34 ?Y'ATVRAL DATA UNITS \CHAP. '1-

number includes a number sign, a fraction, an exponent, an exponent,
sign, and bits for flagging numbers (Fig. 4.1). The fraction part of this
unit might be made to vary widely in length, depending upon precision
requirements, but the precision analysis that such variation would imply
would often be as burdensome as the detailed magnitude analysis that
floating-point operation eliminates. Moreover, these operations must
proceed with the utmost speed, and a fixed format facilitates parallel
arithmetic. For these reasons, floating-point numbers follow a rigid for-

/ Word boundary

"f Exponent flag

Exponent ' 5 f
Y

Fraction (48 bits)

3 flag bits
Exponent sign

FIG. 4.1. Data unit for floating-point arithmetic.

mat. The datum is usually long-in this machine it uses 64 bits, with
the fraction occupying 48 of these.

Fixed-point arithmetic is used on problem data when magnitude analy-
sis is trivial, such as that encountered in business or statistical calcu-
lations. Numbers may or may not
be signed. If the arithmetic is binary, the data unit has a simple struc-

Figure 4.2 shows some examples.

Word boundary

Y
I I I I I

0000001 001 01 01 10 01 00001 01 000
I , I

54 18

Signed
binary binary decimal decimal

Length 10 bits 7 bits 16 bits 12 bits

37

FIG. 4.2. Data units for fixed-point arithmetic.

ture. If the arithmetic is decimal, the number has an inner structure
of digits individually encoded in binary form. Whether the unit is simple
or complex in structure, its natural length is quite variable, with typical
numbers varying from 4 to 40 bits in length.

Address arithmetic operates upon a natural data unit whose structure ie
similar to that of unsigned fixed-point data, whether decimal or binary
(Fig. 4.3). The unit has, however, one or a few standard lengths because
of the fixed size of memory, and the length of the unit is relatively short.

Pure logical manipulalions-whether used as the main part of a pro-

Address op. I Address J Op. I i
18 51 55 60 0

Address op. I
56 60

since no carries are propagated, restriction to fields of arbitrary lengths is
not too burdensome.
h final class, editing operations, includes all operations in which data

are transformed from one format to another, checked for consistency with
:I source format, or tested for controlling the course of the program. The

Address OP. I

0 19 28 32

50 60 1 1 11 26

X Y x A h Y)
36

36 XATURAL I)ATA UNITS [CHAP. 4

manipulations, such as comparison or transmission, t)he natural data unii
is a field of many characters or a complete record.

Besides these five kinds of natural data units that can be identified for
operations commonly built into computers, other natural data units are
suitable for operations usually encoded with subroutines, such as matrix
arithmetic, complex arithmetic, and multiple-precision arithmetic. As
these larger units are necessarily composed of components that themselves
are the data units of some built-in operation, they need not be Considered
separately .

{Word boundary

Y

Employee Name
number [S e x MJJiMlf. t Number of

status dependents

FIG. 4.5. Data units for editing operations.

4.2. Procedures for Specifying Natural Data Units
The previous section has shown how natural data units for different

operations differ in structure, length, and variability of length. These
diversities imply that more information is required for the specification
of the natural data units than would be required if they were alike. The
computer designer can choose the manner in which the user will pay this
information price, but the price must be paid.

The data and instructions for any given problem may be considered
to consist of a single stream of natural data units, without computer-
prescribed spacers, groupings, etc. The computer designer must furnish
a memory structure and an addressing system with which the individual
components of a stream of natural data units are to be manipulated.
The programmer must map the data-unit stream of his problem into a
spaced and grouped stream suitable for the memory organization that
the computer designer provides. This mapping requires some of the
computer's power and necessarily introduces some inefficiencies. The
more complex and difficult the mapping, the lower is the performance of
the whole system.

For sim-
plicity, early computer designers assumed (1) that provisions for han-
dling the object data of fixed-point-arithmetic operations would suffice
and (2) that the natural data unit for these operations was the single
number of constant length. These two assumptions led to a simple,

The classical approach to this problem was to ignore it.

SEC. 4.21 PROCEDURES FOR SPECIFYING s YPURAL D A T A UXITS 37

homogeneous, fixed-word-length memory organization. Since neither
assumption was campletely true, the information price of diversity was
paid by the user in reduced performance and more complex programming.

When performing operations other than fixed-point arithmetic, such as
editing and address arithmetic, the programmer shifted, extracted, and
packed in order to get a t the natural data unit of the operation. Wheii
faced with data of varying lengths, the programmer had t,wo options as
to the method of paying the information price. He could (1) place each
unit in a different machine word or (2) pack several shorter units into a
single word. (Since the machine word was usually picked to be a reason-
able upper bound on natural data lengths, he was less often faced with
the problem of manipulating units that required several words.) The
price of using a different word for each data unit is reduced memory
capacity and increased operating times for input-output and arithmetic
units. The price of packing memory cells is paid in memory capacity
for the packing instructions, in execution time, and in programming time.

Clearly, one way to improve the performance of a computer by chang-
ing its organization is to pay the price of diverse data units in the form
of more complex hardware. This implies a memory structure that can
be composed of variable-length cells. Several computers have been so
organized. These computers have been intended primarily for business
data processing, where editing operations are of great importance and
where the assumption of constant-length data units is particularly poor.
d s the importance of nonarithmetical operations in all kinds of calcu-
lations became more apparent, a variable-cell-length memory organiza-
tion became more desirable for any high-performance general-purpose
computer.

If the
memory is to be addressed rather than scanned, the cell lengths may
vary from cell to cell and from problem to problem, but the positions
(and therefore the lengths) of cells must remain constant within a single
computation. That is, cells at different addresses may have different
lengths, but a change in the contents of a cell must not change its length.
On tape, where scanning is used instead of addressing, this constraint
does not hold, and some computers allow item lengths on tape to vary
by deleting either leading numerical zeros or trailing alphabetic blanks.

A simple way of organizing a memory of different cell sizes is to pro-
vide a fixed complement of assorted sizes; this is done, for example, in the
IBM 604 calculator. This rather inflexible arrangement was discarded
for the IBM 7030 in favor of a second method, where the smallest data
component is made addressable; a cell is defined by specifying both the
position of one component in memory and the extent of the cell. Because
of the requirements of pure logical operations and of editing operations,

There are several methods of achieving variable cell size.

38 ~ . 4 T U H A L DATA UNITS !CHAP. 4

addressing resolution was provided all the way down to the individual
bit level.

There are several techniques for specifying cell extent. The first is to
use a unique combination of data bits as a partition between cells. This
method is used to separate numerical fields in the IBM 705. The use of
partition symbols implies reduced memory capacity due to the symbols
themselves and, more seriously, exclusion of the partition-bit combination
from the set of permissible data symbols. This dificiilty alone would
have precluded use of partitions between memory cells in the 7030.
Arbitrary bit combinations arise in assembling instructions, reading data
from external devices, and performing binary computations, and such
activities could not be excliidcd. Furthermore, in any computer where
memory speed is the limiting factor on performance, i t is highly desirable
that each bit fetched from memory contain 1 bit of information. Use of
extra symbols and restrictions on bit combinations both reduce infor-
mation content.

A variation of the partition-bit approach is to provide space for
marker bits outside the data storage space. In the smaller IBM 1401
computer, for example, the cell size is variable to the character level, and
the high-order end of a cell is indicated by a separate bit available in
each character position. This is a simple technique to implement, and
it avoids restrictions on the data symbols permissible. The obvious infor-
mation price of this scheme is 1 extra bit per character. An additional
price must be paid in instructions to set up and alter the positions of
these marks, which, being extraterritorial in nature, are awkward to
bring in from the input. Moreover, this approach becomes relatively
more costly as data storage space increases in comparison to program
storage space.
h third method of specifying cell extent is to use a Procrustean-bed

technique in which data are transferred from memory to a register until
the register is full. Transfers to memory likewise proceed until the
register is completely copied. This technique is used for alphabetic
fields in the 705. The disadvantage is that the technique requires extra

Each bit in the memory has a unique address.

PI0.CrUS’teS (prbkrh’tFz], a. [L., fr. Gr. I’rukrouslh,
fr. prokrozezn to beat out to stretch fr. pro forward +
krouein to strike.] Qr. A’ntip. A cblebrated legendary
highwayman of Attica who tied his victims upon an iron
bed, and, as the case iequired, either stretched or cut off
their legs to adapt them to its length. Hence rite bed
of Procrustes or Procrustean bed a n idea theory or
system to ivhich facts, human nature, h the lik& xould’be
arb1 tranlr fitted.

PI0.CrUS’teS (prbkrh’tFz] a. [L., fr. Gr. I ’ rukrousk
fr. urokrozein to h e a t nu!, to stretch fr ~ r o forward -I!

Antio.
highwayman of Afiica. wh
bed, and, as the case required, either stretched or cut off
their legs to adapt them to its length. Hence rite bed
of Pmcruates or Prncrirstean bed a n idea theory or

iman nature. & the liki. nould’be

(&I permission from Webster’s “New Internotional
Dictionary,’‘ 2d ed., copyright 1959 by Q. K! C. Merriam
Company, Springfield, Mass., publishers of the Mer-

instructions for changing the
length of the receiving register
or the use of several receiving
registers of different lengths.
.4 fourth technique, and

that adopted, is to provide
the information on cell extent
in the instructions that use
that cell. This can be done

SEC. 4 31 DATA HIERARCHIES 39

by specifying one of several masks, by specifying beginning and end, or
by specifying beginning and length. In order to simplify indexing, the
last method was selected. Each instruction that can refer to variable-
length cells contains the complete address of the leftmost (high-order) bit
of the cell and the length of the cell; however, instructions that do not
need to refer to cells of varying length do not contain all this information.

4.3. Data Hierarchies
Most data-processing tasks involve a hierarchy of data units which,

in ascending order of size, are frequently called character, Jield, record,
and $le. Each structural unit consists of one or more of the preceding
units. The reason for the existence of this structure is that an associ-
ation of meaningful data units may have a meaning of its own. To use
a well-worn example, a payroll record consists of an employee identifica-
tion number and related data, such as name, pay rate, and amounts, each
of which is a field which, in turn, is made up of alphabetic or numerical
characters. This record as a whole may be sorted into identification
number sequence with other employees’ records, if the fields remain
associated with the identification; if the fields were all sorted individually,
their meaning would be destroyed. Again, a file of last week’s payroll
records can be distinguished from a file of this week’s records if they
remain together.

It has been found useful to define a similar hierarchical structure for
the machines that process the data, but often for different reasons. The
number of bits transmitted in parallel a t one time between the computer
and input-output units is one such data unit; that transmitted in parallel
between computer and memory is another, often different. Efficient
operation of input-output units usually requires the definition of still
larger groupings of data.

The distinction between the natural requirements of the data and those
of the machine has often been obscured by the fact, already referred to,
that the user may be forced to adapt his data to the characteristics of the
machine. Thus the same terms are frequently used for both purposes.
We prefer to use two sets of terms and to point out similarities by listing,
side by side, terms that have a corresponding ranking:

Natural data hierarchy Machine data hierarchy

Bit Bit
Character Byte
Field Word
Record Block
File Reel of tape, tray of cards,

web of paper, rtc.

40 NATURAL DATA UNITS (CHAP. 4

Bit is widely used in both contextb and, since i t causes no confusion,
the term will be retained for both.

Character is usually identified with a graphic symbol, such as a numeri-
ral digit, alphabetic letter, punctuation mark, or mathematical symbol.

Field denotes a group of characters processed together in a single
numerical or logical operation. Examples are a number, a name, an
address. A field is identified by its location in storage or in a record.
(The term goes back to punched-card usage. I tem has also been used.)

Correspond-
ing fields in successive records normally occupy the same relative position
within the record. A record is identified by one or more identifier fields
or by its location in storage or in a file.

A file is a group of records, which are usually processed one record at a
time.

The actual usage of the above terms depends largely on the application,
and many applications require additional steps in the hierarchy which
may not have generic names.

Terms used here to describe the structure imposed by the machine
design, in addition to bit, are listed below.

Byte denotes a group of bits used to encode a character, or the number
of bits transmitted in parallel to and from input-output units. A term
other than character is used here because a given character may be repre-
sented in different applications by more than one code, and different codes
may use different numbers of hits (i.e., different byte sizes). I n input-
output transmission the grouping of bits may be completely arbitrary
and have no relation to actual characters. (The term is coined from bite,
but respelled to avoid accidental mutation to bit.)

A word consists of the number of data bits transmitted in parallel from
or to memory in one memory cycle. Word size is thus defined as a
structural property of the memory. (The term catena was coined for
this purpose by the designers of the Bull GAMMA 60 computer.)

Block refers to the number of words transmitted to or from an input-
output unit in response to a single input-output instruction. Block size
is a structural property of an input-output unit; it may have been fixed
by the design or left to be varied by the program.

A record is a group of fields that are processed together.

A file may be identified by an identifier record.

4.4. Classes of Operations
Several classes of operations are provided in the 7030 to deal directly

with different natural data units. In particular, the variable-field-length
system to be described in Chap. 7 has been designed to overcome the
limitations of the rigid word structure of the memory and permit the
program to specify fields of any Imgth, up to the rather high limit of

SEC. 4.41 CLASSES OF OPERATIONS 41

64 bits. This system is used for fixed-point-arithmetic, alphanumeric,
and logical operations, since the data units for these classes of operations
can be specified in the same way.

The floating-point operations (see Chap. 8) deal specifically with
floating-point numbers. As has been mentioned, it is advantageous here
to make the length of the floating-point number the same as that of the
memory word.

Address arithmetic is performed primarily by indexing operations,
which are discussed in Chap. 11, and these operations are designed to
handle the various address lengths encountered in the 7030.

Editing operations require a combination of these classes of operations
and others, like data transmission, that are not so readily classified.
Data transmission and input-output operations (see Chap. 12) have the
restriction that only full 64-bit words can be transmitted. Thus a record
of a given natural length must be approximated by a block that is a
multiple of 64 bits long. To save the few extra bits in the last word of a
Mock mould have greatly increased the amount of equipment and was not
ronsidered worth while.

Chapter 5

CHOOSING A NUMBER BASE
by W. Buchholz

5.1. Introduction
One of the basic choices the designers of a digital computer must make

is whether to represent numbers in decimal or binary form. Many fac-
tors enter into this choice. Where high performance is a major goal, as
in the IBM 7030, high arithmetical speed is of the essence and a proper
choice of number system can contribute to arithmetical speed. But the
over-all performance of a computer cannot be measured by its arith-
metical speed alone; it is significantly affected by the ease with which
nonarithmetical operations are performed. Equally important is the
human factor. Unless the computer is programmed to assist in the
preparation of a problem and in the presentation of results, false starts
and waiting time can greatly dilute the effective performance of a high-
speed computer. Regardless of the number system chosen for internal
arithmetic, decimal numbers must be used in communicating between
man and the computer.

Civilized man settled on 10 as the preferred number base for his own
arithmetic a long time ago.' The ten digits of the decimal system had
their origin when man learned to count, on his ten fingers. The word
digit is derived from the Latin word digitus for Jinger and remains to
testify to the history of decimal numbers. Historically, several other
number bases have been employed by various peoples at different times.
The smaller number bases are clearly more awkward for human beings

Note: The material in Chap. 5 is taken from W. Buchholz, Fingers or Fists? (The
Choice of Decimal or Binary Representation), Communs. A C M , vol. 2, no. 12, pp. 3-
11, December, 1959.

Although in most languages numbers are expressed by decimal symbols, it is a
curious fact that there has been so far no standardization on multiples of 10 for units
of money, length, weight, and time. We are still content to do much of our everyday
arithmetic in what is really a mixcd-radix system which includes such number bases
8s 3, 4, 7 , 12, 24, 32, 60, 144, 1,760, etc.

42

SEC. 5.11 I~THODUCTION 43

to use because more symbols are needed to express a given number.
Yevertheless, there is evidence of the use of the base 2, presumably by
men who observed that they had two ears, eyes, feet, or fists.

With the decimal symbolism in universal use, i t was natural that
the earliest automatic digital computers, like the desk calculators and
punched-card equipment that preceded them, should have been decimal.
In 1946 John von Neumann and his colleagues at the Institute for
Advanced Study, in their classical report describing the new conrept of
a stored-program computer, proposed to depart from that practice.
They chose the base 2 for their system of arithmetic because of its greater
economy, simplicity, and speed.

Many designers have followed this lead and built binary computers
patterned after the machine then proposed. Others have disagreed and
pointed out techniques for obtaining satisfactory speeds with decimal
arithmetic without unduly increasing the over-all cost of the computer.
Since decimal numbers are easier to use, the conclusion has been drawn
that decimal computers are easier to use. There have been two schools
of thought ever since, each supported by the fact that both decimal and
binary computers have been eminently successful.

As the Institute for Advanced Study report has long been out of print,
i t seems appropriate to quote a t some length the reasons then given for
choosing binary arithmetic :

In spite of the longstanding tradition of building digital machines in the
decimal system, we feel strongly in favor of the binary system for our device.
Our fundamental unit of memory is naturally adapted to the binary system
4nce we do not attempt to measure gradations of charge a t a particular point in
the Selectron [the memory device then proposed] but are content to distinguish
two states. On magnetic wires or
tapes and in acoustic delay line memories one is also content to recognize the
presence or absence of a pulse or (if a carrier frequency is used) of a pulse train,
or of the sign of a pulse. (We will not discuss here the ternary possibilities of a
positive-or-negative-or-no pulse system and their relationship to questions of
reliability and checking, nor the very interesting possibilities of carrier frequency
modulation.) Hence if one contemplates using a decimal system . . . one is
forced into a binary coding of the decimal system-each decimal digit being
represented by a t least a tetrad of binary digits. Thus an accuracy of ten deci-
mal digits requires a t least 40 binary digits. In a true binary representation of
numbers, hen-ever, about 33 digits suffice to achieve a precision of lolo. The
use of the binary system is therefore somewhat more economical of equipment
than is the decimal.

The flip-flop again is truly a binary device.

A. R. Burks, H. H. Goldstine, and J. von Neumann, “Preliminary Discussion of
t tit, Logical Design of an Electronic Computing Instrument,” Institute for Advanced
*tudy, Princeton, N.J., 1st ed . June, 1946, 2d ed., 1947, sac. 5.2; also subsequent
iepoits by H. H. Goldstine and J. von Neumann.

44 CHOOSIXG A NUMBER BASE [CHAP. 5

The main virtue of the binary system as against the decimal is, however, the
greater simplicity and speed with which the elementary operations can be per-
formed. To illustrate, consider multiplication by repeated addition. I n binary
multiplication the product of a particular digit of the multiplier by the multi-
plicand is either the multiplicand or null according as the multiplier digit is 1 or 0.
In the decimal system, however, this product has ten possible values between
null and nine times the multiplicand, inclusive. Of course, a decimal number has
only logle 2 = 0.3 times as many digits as a binary number of the same accuracy,
but even so multiplication in the decimal system is considerably longer than in
the binary system. One can accelerate decimal multiplication by complicating
the circuits, bu t this fact is irrelevant to the point just made since binary multi-
plication can likewise be accelerated by adding to the equipment. Similar
remarks may be made about the other operations.

An additional point t ha t deserves emphasis is this: An important par t of the
machine is not arithmetical bu t logical in nature. Now logic, being a yes-no
system, is fundamentally binary. Therefore a binary arrangement of the
arithmetical organs contributes very significantly towards producing a more
homogeneous machine, which can be better integrated and is more efficient.

The one disadvantage of the binary system from the human point of view is
the conversion problem. Since, however, i t is completely known how to convert
numbers from one base to another and since this conversion can be effected solely
by the use of the usual arithmetic processes, there is no reason why the computer
itself cannot carry out this conversion. It might be argued tha t this is a time-
consuming operation. This, however, is not the case. . . . Indeed a general-
purpose computer, used as a scientific research tool, is called upon to do a very
great number of multiplications upon a relatively small amount of input data.
and hence the time consumed in the decimal-to-binary conversion is only a trivial
per cent of the total computing time. A similar remark is applicable to the
output data.

The c o m p u t e r field a n d , a long wi th it, t h e technical l i t e ra ture o n com-
p u t e r s have g rown t r emendous ly s ince th i s pioneering repor t appeared .
It seems desirable, therefore , t o br ing these early comment s up to d a t e
in the light of experience. T h e present discussion is also in tended t o
widen the scope of t h e examina t ion so as t o reflect knowledge gained f r o m
increasing a r e a s of appl icat ion of the large computers . M a t h e m a t i c a l
computa t ions are still important, but the processing of large files of busi-
ness data h a s since become a m a j o r field. C o m p u t e r s are beginning t o
b e appl ied t o t h e control of planes i n a c t u a l flight, to the collection a n d
display of d a t a o n demand , a n d t o language t rans la t ion a n d sys tems
s imulat ion. Regardless of the appl icat ion, a grea t deal of t h e t i m e of
a n y large compute r is s p e n t o n prepar ing p rograms before t h e y c a n b e
i u n o n that computer . M u c h of this work is nonnumerical data process-
ing. The poin t of view has t h u s shif ted considerably s ince t h e days of
t h e v o n N e u m a n n report, a n d a reevaluat ion seems t o b e in order .

QEC. 5.21 INFORMATION CONTENT 45

5.2. Information Content

Information theory’s2 allows tis to measure the informatioii content of
,4ssume a set of N possible numbers, each

The
a number in a specific sense.
of which is equally likely to occur during a computing process.
information II contained in the selection of a number is then

H = IogzN

Suppose, now, that a set of b binary digits (bits) represents a set of 2b con-
secutive integers, extending from 0 to 2b - 1, each of these integers being
equally probable. Then

H = log2 2‘
= b bits

(Because in this example the amount of information is equal to the num-
ber of bits needed to represent the integer in binary form, the bit is often
chosen as the unit of information. The two uses of the term bit should
not be confused, however. Numbers are defined independently of their
representation, and the information content of a number is measured in
hits regardless of whether the number is in binary, decimal, or any other
form.)

Similarly, assume a set of I O d consecutive integers from 0 to IOd - 1
expressed by d decimal digits. Here

H = log2 lod
d

= d log, 10 = ~-
log10 2

= 3.322d bits (approx.)

Thus a decimal digit is approximately equivalent in information content
to 3.322 binary digits.

In the actual representation of a number N , both b and d must, of
course, be integers. The ranges lod and 2b cannot be compared exactly.
For such pairs as d = 3 and b = 10, the values lo3 = 1,000 and
? l o = 1,024 come very close to being equal. Here b/d = 1% = 3.333
(approx.), which agrees well with the above value 3.322. This shows,
at least, that the measure of information is a plausible one.

Conversely, to express a binary number requires approximately 3.322
times as many binary symbols (0 arid 1) as decimal symbols (0 to 9).

C. E. Shannon and W. Weaver, “The Mathematical Theory of Communication,”
The University of Illinois Press, Urbana, Ill., 1949.

* I,. Brillouin, “Science and Information Theory,” Academic Prrss, Tnc., Sew York,
1956, pp. 3-4.

46 CHOOSING A NUMBEB BAEE [CHAP. 5

Few truly decimal switching and storage devices have found application
in high-speed electronic computers; otherwise a decimal computer might
be a great deal more compact than a corresponding binary computer.
Generally, only binary (or on-off) devices are used; hence decimal digits
must be encoded in binary form even in decimal computers.1 Since bits
cannot be split to make up the 3.322 bits theoretically required, a t least
4 bits are needed to represent a decimal digit. Therefore, instead
of being more compact, a decimal computer in fact requires a t least
4/3.322 = 1.204 times as many storage and switching elements in a large
portion of its system. The reciprocal ratio, 3.322/4 or 83 per cent, might
be considered to be the maximum storage efficiencyof a decimal computer.

Four-bit coding of decimal digits is called binary-coded decimal (BCD)
notation. Codes with more than 4 bits for each decimal digit are often
used to take advantage of rertain self-checking and other properties; the
eficiency of such codes is correspondingly lower than 83 per cent.

The 83 per cent efficiency is only a theoretical value for even a +bit
code. A basic assumption made in arriving at this value was that all the
N possible numbers in the expression log, N were equally likely to occur.
Eonuniform distributions are quite frequent, however. A common situ-
ation is that a set of b bits (in the binary case) is chosen to represent
N integers from 0 to N - 1, N < 2b, and the integers N to 2b - 1 are
never encountered. The information content log, N may then be con-
siderably less than b bits. Both binary and decimal computers suffer a
loss of efficiency when the number range N is not a power of the number
base.

For example, assume N = 150; that is, the numbers range from 0 to
149. Then

H = logz 150 = 7.23 bits

Since 8 is the next largest integer, a binary computer requires at least
8 bits to represent these numbers, giving an efficiency of 7.23/8 or 90 per

The unirersal use of binary elements is based on practical engineering consider-
ations, but under certain crude assumptions it can be shom-n that 2 is also a near-
optimum radix theoretically, Let a given number N be represented in radix r by n
radix positions; that is, A' = T". Assume the cost of each radix position to be
proportional to the radix, so that the cost C of representing N is

log, N
log, r

C = hxn = kr-

Assume further that r and tt could be continuously variable; then setting dC/dr = 0
gives a minimum cost for r = e . The nearest integral radixes are 2 and 3, and their
value of C is not much greater than the minimurn. Although ternary arithmetic is
it11 interesting possibility, there has been little incentive to develop ternary devices
in practice.

SEC. 5.21 INFORMATION CONTENT 47

cent. h decimal computer requires at least three decimal digits or
12 bits, with an efficiency of 7.23/12 or 60 per cent. Relative to the
binary number base, the efficiency of decimal representation is only
60/90 or 67 per cent.

With binary
integers the lowest efficiency of 78 per cent occurs for N = 5 . Decimal
representation has its lowest efficiency of 25 per cent a t AT = 2. Decimal
representation is never more efficient than binary representat ion, and
only for N = 9 and N = 10 are they equally efficient.

Figure 5.1 shows the storage efficiency curves for binary and decimal
systems, and Fig. 5.2 shows the efficiency of the decimal representation
relative to the binary system.

The loss in efficiency is greatest for the snialler integers.

20

10

- ..

-
I . , , I I I I , , I I , , , I , I , , 1 , 1 1 1 1 1 1

FIG. 5.1. Absolute efficiency of decimal and binary number systems.
where b is the least numher of bits to represent AT.

E = (log, N) / b ,

For the above analysis a variable-field-length operation was assumed
\\-here the least possible number of bits or decimal digits can be assigned
10 represent the maximum value of N . A great many computers are
designed around a fixed word length, and even more space will then be
n-asted unless time is taken to program closer packing of data. It was
dso assumed that the N integers considered were distributed uniformly
rhroughout the interval; a nonuniform distribution with numbers miss-
:ng throughout the interval results in a further lowering of storage
efficiency, which affects binary and decimal computers alike.

Although only integers have been considered so far, the same reasoning
ibviously applies to fractions truncated to a given precision, since these
-ire treated in storage in the same manlier as integers. Similarly, the
-ign of :L number may be regarded as an integer with N = 2. Instruc-

48

20

10

CHOOSING A NUMBER BASE

-
I

-

I I I , , , , I , I I I , , I I I , , , I I , , , , I I I 1 ,!I,

[CHAP. 5

tions are always made up of a number of short, independent pieces. For
example, an operation code for 45 different operations may be encoded
as a set of integers with N = 45, for which the binary efficiency is 92 per
cent and the decimal efficiency only 69 per cent.

The lower information-handling efficiency of the decimal representa-
tion may reflect itself in higher cost, in lower performance, or both. If
performance is to be maintained, the cost will go up, but it would be
wrong to assume that the extra bits required for decimal representation
mean a proportional increase in cost. The ratio of the cost of storage,
registers, and associated switching circuits to the total cost of a com-

puter depends greatly on the design. Factors other than hardware cost
need to be considered in estimating the over-all cost of using a computer
on a given job.

When the cost is to be the same, a lower storage efficiency may result
in lower performance. Thus the performance of many storage devices,
such as magnetic tape, is limited by the bit transmission rate, so that
the greater storage space occupied by decimal numbers, as compared to
equivalent binary numbers, is reflected in a corresponding loss of speed.
This may be important for applications in which the transmission rate to
and from tape, or other external storage, is the limiting time factor: a
binary computer is clearly a t least 20 per cent faster than a correspond-
ing decimal computer on a tape-limited job of processing numerical data.

Similarly, in many other applications the rate of information (data a i d
iiislruction) flow out of and into the internal memory will be B major
limiting factor, particularly for a computer designed to achieve the high-
est practicable performance with given types of components. Although

SEC. 5.31 ARITHMETICAL SPEED 49

it ran be very niisleadiiig to compare two dissimilar computers on the
basis of memory speed only, the comparison is appropriate for two com-
puters using similar components and organization but differing mainly in
their number representation.

A memory in active use may be looked on as an information channel
with a capacity of

C = nw bits per second

where n is the number of bits in the memory word and w is the maximum
number of words per second bhat the memory can handle.

This channel capacity is fully utilized only if the words represent num-
bers from 0 to 2% - 1, each of which is equally probable. If the infor-
mation content is less than that, the actual performance is limited to Hw,
where H is defined as before, More specifically, if a memory word is
divided into k fields, of range N1, Nz, Na, . . . , N,, then

k

H = 2 log2 Ni
i = l

The maximum performance is lowered by the factor

For IC = 1, this is the same factor as the storage efficiency described above.
Other organizational factors may reduce performance further, and

memory multiplexing can be used to increase over-all performance.
These matters are independent of the number representation. The fact
remains that a decimal organization implies a decided lowering of the
maximum performance available. By increasing the number of com-
ponents this loss can be overcome only in part, because of physical and
cost limitations.

In summary, to approach the highest theoretical performance inherent
in a given complement of components of a given type, i t is necessary to
make each bit do 1 bit's worth of work.

5.3. Arithmetical Speed
A binary arithmetic unit is inherently faster than a decimal unit of

similar hardware complexity operating on numbers of equivalent length.
Whereas the gain in speed of binary over decimal arithmetic may not be
significant in relatively simple computers, it is substantial when the
design is aimed a t maximum speed with a given set of components.
There are several reasons why binary arithmetic is faster.

1. The cumulative delay in successive switching stages of an adder
places a limit on the attainable speed, and the more complex decimal

50 CHOOSING A NUMBER BASE [CHAP. 5

adder requires more levels of switching than ti binary adder for numbers
of 'similar prrrisioii. Carry propagation, if any, also takes longer in a
dccimal ndder he(aaiise decimal numbers are longer.

2 . With :t base of 2 , wrtnin measiires can bc taken i o speed up multi-
plication and division. An example is the skipping of siiccessive Os or Is
in the multiplier. When corresponding measures are taken with base 10
arithmetic, they are found to gi\e a smaller ratio of improremrnt. Thus
the average number of additions or subtractions needed during multi-
plication or division is greater, and this difference is compounded by the
extra time nreded for each addition or subtraction.

3. Scaling of numbers, which is required to keep numbers within the
bounds of the registers during computation, results in a greater round-off
error when the base is 10. The finest step of adjustment is 3.3 times as
coarse in shifting by powers of 10 as it is with powers of 2 . In large
problems the greater error mill require more frequent use of multiple-
precision arithmetic, at a substantial loss of speed. This effect is partly
offset by the fact that scaling will occiir more often in binary arithmetic.
and the extra shifting takes more time.

-1. Multiplying or dividing by powers of the number base is accom-
plished hy the fast process of shifting. are
found much more frequently in mathematical formulas than other coeffi-
cients, including 10 and +io, and a binary computer has the advantage
here.

The coefficients 2 and

To overcome the lower speed inherent in decimal arithmetic, it is, of
(aourse, possible to construct a more complex arithmetic unit at a greater
cost in components. If top speed is desired, however, the designer of a
binary arithmetic unit, will have taken similar steps. There is a decided
limit on this acceleration process. Not only does the bag of tricks run
low after a while, but complexity eventually becomes self-defeating.
Greater complexity means greater bulk, longer wires to connect the com-
poiicnts, and more componeuts to drive the longer wires. The longer
wires and additional drivers both mean more delays in transmitting sig-
nals, which cannot be overcome by adding even more components.
When the limit is reached there remains the substantial speed differ-
ential between binary and decimal arithmetic, as predicted by theoret,ical
considerations in Sec. 5.1.

5.4. Numerical Data
Xumerical data entering or leaving a computer system are of two kinds :

(1) those which must be interpreted by humans and (2) those which come
from or actuate other machines. The first are naturally in decimal form.
The second class, which occurs when a computer is part of an automatir
control system, could also be decimal, since machines, unlike human

SEC. 5.51 NONNUMEHICAL D.kT.4 51

beings, can readily be designed either way; but binary coding is generally
simpler and more efficient.

The previously cited von Neumann report, considered only the impor-
tant applications where the volume of incoming and outgoing data is
.;mall compared with the volume of’ intermediate results produced dur-
ing a computation. In a fast computer any conversion of input and out-
put data may take a negligible time, whereas the format of intermediate
results has a major effect on the over-all speed. The von Neumann
report did not consider the equally important data-processing applica-
tions in which but few arithmetical steps are taken on large volumes of
input-output data. If these data are expressed in a form different from
that used in the arithmetic unit, the conversion time can be a major
burden. Any conversion time must be taken into account as reducing
the effective speed of the arithmetic unit.

The choice would appear simple if different computers could be applied
to different jobs, using decimal arithmetic when the data were predomi-
nantly decimal and binary arithmetic elsewhere. Experience has shown,
however, that a single large computer is often used on a great variety of
jobs that cannot be classified all one way or the other. Moreover, as
will be shown in subsequent sections, there are strong reasons for choos-
ing a binary addressing system even where the applications indicate the
.:se of decimal data arithmetic. Some kind of binary arithmetic unit
must then be provided anyway, if only to manipulate addresses.
-1 high-speed binary arithmetic unit is thus clearly desirable for all

applications. To handle decimal data, the designer may choose to pro-
!-ide a separate decimal arithmetic unit in the same computer, or he may
prefer to take advantage of the speed of his binary arithmetic unit by
didding special instructions to facilitate binary-decimal conversion.

The decimal arithmetic and conversion facilities must take into account
*!ot only the different number base of decimal data but also the different
format. Binary numbers usually consist of a simple string of numerical
-tits and a sign bit. Decimal numbers are frequently interspersed with
Jlphabetic data, and extra zone bits (sometimes a separate digit) are then
provided to distinguish decimal-digit codes from the codes for alphabetic
And other characters, The separate treatment of numerical and zone por-
*ions of coded digits greatly adds to the difficulty of doing conversion by
ordinary arithmetical instructions. Hence the decimal arithmetic and
ronversion instructions should be designed to process decimal data
directly in a suitable alphanumeric code.

5 . 5 . Nonnumerical Data

.?formation:
-1 computer may have to process a large variety of nonnumerical

52 CHOOSING A NUMBER BASE [CHAP. 5

1. Character codes representing alphabetic, numcrical, or other sym-

2. Codes used to perform specified func:tions, such as terminating data

3 . Yes-no data (“married,” “out of stock,” etr.)
4. Data for logical and decision operations
5 . Instructions (other than numerical addresses)
6. Machine-status information, such as error indications
7. Status of switches and lights

bols for recording data in human-readable form

transmission

Because the storage and switching elements normally used in com-
puters are binary in nature, all information, numerical or noiinumerical,
is encoded in a binary form. This binary coding has no direct relation
to the number base being used for arithmetic. The number base deter-
mines the rules of arithmetic, such as how carries are propagated in addi-
tion, but it has no meaning in dealing with nonnumerical information.
Thus the binary-decimal distinction does not apply directly to the non-
arithmetical parts of a computer, such as the input-output system.

Even where mathematical computation on numerical data is the major
job, a great deal of computer time is usually spent on nonnumerical oper-
ations in preparing programs and reports. It is important, therefore,
that the designer avoid constraints on the coding of input and output
data, such as are found in marly existing decimal computers. Many of
these constraints are unnecessary and place extra burdens of data con-
version and editing at greater cost on peripheral equipment.

5.6. Addresses
Memory addresses are subject to counting and adding and are thus

proper numbers which can be expressed with any number base. Base 10
has the same advantage for addresses as for data: conversion is not
required, and actual addresses can be continuously displayed on a con-
sole in easily readable form.

The compactness of binary numbers is found particularly advantageous
in fitting addresses into the usually cramped instruction formats (see
Chap. 9). Tight instruction formats contribute to performance by reduc-
ing the number of accesses to memory during the execution of a program
as well as by making more memory space available for data. The lomi
efficiency of decimal coding for addresses has already led designers of
nominally decimal computers to introduce a certain amount of binary
coding into their instruction formats. Such a compromise leads to pro-
gramming complications, 1% hich can be avoided when the coding is purely
hinary.

-Although the compactness of the binary notation is important, the

SIX". 5.71 TRANSFORMATIOX 5 3

most significant advantage of binary addressing is probably the ease of
performing data transformation by address selection (table look-up) .
This is discussed in the next section.

5.7. Transformation

A single data-processing operation may be regarded as transforming
one or more pieces of data into a result according to certain rules. The
most general way of specifying the rules of transformation is to use a
set of tables. The common transformations, such as addition, multi-
plication, and comparison, are mechanized inside the computer, and some
others, such as code conversion, are often built into peripheral equipment;
tables (sometimes called matrixes) may or may not be employed in the
mechanization. All transformations not built into the computer must be
programmed.

In a computer with a large rapid-access internal memory, the best
transformation procedure, and often the only practical one, is table
look-up. Each piece of data to be transformed is converted to an address
which is used to select an entry in a table stored in memory. (This
method of table look-up is to be distinguished from table searching, where
d l entries are scanned sequentially until a matching entry is found.)
Table 5.1 serves to illustrate the process by a code-translation example.

Two methods of encoding the digits 0 to 9, both in current use, are
.hewn in Table 5.1. One is a 2-out-of-5 code which requires 5 bits for
every digit. Two and only two 1 bits are contained in each digit code,
with all other 5-bit combinations declared invalid. This property per-
mits checking for single errors and for common multiple errors. The
vcond code is a 4-bit representation using codes 0001 to 1001 for the
digits 1 to 9 and I010 for the digit 0. Codes 0000 and 1011 to 1111
are not used.

For translation from the 5-bit code to the 4-bit code, a table of 32 (a5)
entries is stored in successive memory locations. Each entry contains a
&bit code. Where the 5-bit combination is a valid code, the correspond-
ing 4-bit code is shown. All invalid 5-bit combinations are indicated in
the example by an entry of 11 11 , which is not a valid 4-bit code.

The example in Table 5.1 consists in adding a given 5-bit code 10001
to the address of the first entry, the table base address. The sum is the
address in the table of the desired entry, which is seen to be 01 11. If
the entry had been 11 11, the incoming code would have been known to
rontain an error.

The key to this transformation process is the conversion of data to
addresses. A system capable of receiving, transforming, and transmit-
ting any bit pattern can communicate readily with any other system,
including equipment and codes over which the designer has no control.

54 UHOOSING A XUMBEK BBSE [CHAP. 5

The desire to accept any bit pattern as an address almost dictates binary
addressing. It is true that decimal addressing does not entirely preclude
transformation of arbitrary data by indirect methods, but such methods
are very wasteful of time or memory space.

TABLE 5.1. EXAMPLE OF CODE TRANSLATION BY TRANSFORMATION

Two codes f o r decimal digits 1 Translation table, code A to code B

Symbols

I
2
3
4
5
6
7
8
9
0

Code A
(5 bits)

0001 1
001 01
001 10
01 001
01 01 0
01 100
10001
1001 0
101 00
11 000

Code B
(4 bits)

0001
001 0
001 1
01 00
01 01
0110
0111
1000
1001
I010

Address

. . .100000

. . .100001

. . .100010

. . .100011

. . .IO01 00

. . .IO01 01

. . .101110

. . .101111

. . .I1 0000

. . .I1 0001

. . .110010

. . .110011

. . .111111

. . .

. . .

I ~. _ _

Example: Translation of Symbol “7”

+ 10001 Incoming 5-hit code
. . .100000 Table base address

(Sum) . . .I1 0001 Address of table entry

Entry

1111
1111
1111
0001
1111
001 0

1111
1111
1111
0111
1000
1111

1111

. . .

. . .

5.8. Partitioning of Memory

It has already been mentioned that the binary radix makes it possible
to scale numbers in smaller steps and thus reduce loss of significance dur-
ing computation. Binary addresses also have this advantage of greater
resolution. Shifting biliary addresses to the left or right makes it easy
to divide memory into different areas, or cells, whose sizes are adjustable
by powers of 2 . With decimal addressingkwh partitioning is easily
obtained only by powers of 10.

In a core memory, for example, each address refers to a memory word
consisting of the number of parallel bits that are accessible in a single
memory cycle. Since binary addressing of these memory words had been
chosen for reasons given in previous sections, there was then considerable
advantsgc to choosing the number of bits in each word to be a power of 2.
111 the ‘7030 this word length was set a t 26, or 64 bits. (This particular

SEC. S.S] PARTITIONING OF MEMORY 55

power of 2 gave a good compromise between speed and cost of memory
and provided ample space for representing a floating-point number in
one memory word. Thirty-two bits was too short and 128 bits too long.)
Individual bits in a 64-bit memory word can be addressed simply by
extending the address and inserting 6 bits to the right of the word address
to operate a bit-selection mechanism. When increments are added to
these addresses in binary form, whether by explicit instructions or by
indexing, carries from the sixth to the seventh bit automatically advance
the word address.

The flexibility of bit addressing may be illustrated by enlarging the
example of Table 5.1. Instead of using an entire memory word to hold
one 4-bit table entry, it is possible to use for the same entry a cell only
4 bits long, with sixteen cells in each memory word of 64 bits. With
respect to the bit address, the incoming code is shifted 2 bits to the left
to obtain increments of 4 bits of storage in memory:

. . .10000000 Table base address
+ 10001 00 Incoming 5-bit code with two Os added

(Sum) . . . I1 0001 00 Address of table entry
-42

Address Address of
of word bit in word

The example can be readily changed to translate from a 5-bit code to a
12-bit code, such as is used on punched cards, Without an actual table
being shown, it is evident that the 12-bit code can be conveniently stored
in successive 16-bit cells. The proper addresses are then obtained by
inserting four 0 bits a t the right, instead of two as before:

. . .1000000000 Table base address
+ 10001 0000 Incoming 5-bit code with four Os added

(Sum) . . . I1 0001 0000 Address of table entry --
Address Address of
of word bit in word

Similarly, the process can be extended to finer divisions. By using the
incoming code as the address of a single bit, it is possible to look up a
compact table of yes-no bits in memory to indicate, for example, the
single fact of whether the code is valid or not.

If single
bits were to be addressed, the next higher address digits would address
every tenth bit. This is too large a cell size to permit the addressing of
every decimal digit in a data field. To be practical in large-scale numeri-
cal computation, the code for a decimal digit cannot occupy a cell of more
than 4, 5, or a t most 6 bits. When the addressing is chosen to operate on

NOW consider these examples in terms of decimal addressing.

56 CHOOSING A NUMBER BASE [CHAP. 5

cells of t,his size, direct addressing of single bits is ruled out,. Table entries
requiring more than one cell cannot occupy less than ten cells.

The designer of a binary computer may or may not choose to endow it
with the powerful facility of addressing single bits (bit addressing) and
provide for automatic modification of bit addresses (bit indexing). The
point remains that the flexible partitioning of memory available to him
would not have been available with decimal addressing.

5.9. Program Interpretation

il major task in any computer installation is the preparation and check-
out of programs. Printing a portion of a program a t the point, where an
error has been found is a common check-out tool for the programmer.
Interpreting such a print-out is greatly simplified if the instructioiis are
printed in the language that the programmer used.

At first glance this seems to be a convincing argument for decimal
computers. On closer examination it becomes evident that both binary
and decimal machines would be difficult to use without the assistance of
adequate service programs. When good service programs are available
to assist the user, it is hard to see how the number base in the arithmetic
unit makes much difference during program check-out.

One reason for service programs is that in practice much programming
is done in symbolic notation, regardless of the number base used inter-
nally. The programmer’s language is then neither binary nor decimal;
it is a set of alphanumeric mnemonic symbols. Conversion to or from
the symbolic notation by means of a service program is desirable for any
user of either kind of machine, with the possible exception of the pro-
gramming specialist who writes programs in machine language either by
rhoice or in order to develop new service programs.

L4nother and more basic reason for service programs is that most com-
puters have more than one format for data and instructions, and a service
program is needed to help interpret these formats. In binary computers
it is desirable to know whether a data field is an integer or a floating-point
number with its separate exponent (integer) and fraction. The instruc-
tions are normally divided differently from either kind of data field. A
knowledge of the divisions of each format is required in converting from
binary to decimal form.

Many decimal computers do not use purely decimal coding for the
instructions, particularly those aimed a t efficient processing of large
amounts of nonnumerical business data. Moreover, alphanumeric char-
acter coding usually employs a convention different from that used in the
coding of instructions. Again, a service program is needed to interpret
the different data and instruction languages.

Table 5.2 illustrates this point with print-outs of actual computer pro-

SEC. 5.91 PROGRAM INTERPRETATION 57

grams. The first example is for an IBM 704, which uses binary arith-
metic. The service program lists memory locations and instructions in
octal form with the appropriate instruction bits also interpreted as alpha-
betic operation codes. The service program distinguishes floating-point
numbers, which are listed in a decimal format with separate exponent,
mantissa, and signs.

TABLE 5.2. EXAMPLES O F PROGRAM PRINT-OUTS

Print-out f rom I B M 704

Location

0 0 6 2 2
0 0 6 2 3
0 0 6 2 4
0 0 6 2 5
0 0 6 2 6
0 0 6 2 7
0 0 6 3 0
0 0 6 3 1
0 0 6 3 2

Instruction or data

F S B 0 3 0 2 0 0 0 0 0 6 3 7
T Z E 0 1 0 0 0 0 0 0 0 6 2 6
T P L 0 1 2 0 0 0 0 0 0 6 0 7
S T O 0 6 0 1 0 0 0 0 0 6 3 4
H T R 0 0 0 0 0 0 0 0 0 5 6 1
- 0 1 + 9 . 9 4 5 2 2 4 5
+ 0 3 + 4 . 1 3 0 0 0 0 0
- 0 1 + 7 . 3 3 0 4 1 0 0
+ 0 5 + 5 . 3 0 1 7 8 4 2

Print-out from I B M 705

Location

0 1 2 0 4
0 1 2 0 9
0 1 2 1 4
0 1 2 1 9
0 1 2 2 4
0 1 2 2 9

Straight
print-out

4 / Q R I
r , i 0 9 4
H W 5 R 4
7 W 6 N 5
1 2 4 4 9

8 T L - 1

Print-out modafed
for instructions

8 1 3 3 0 1 1 0
4 1 1 8 9 1 1 0
L 1 0 9 4
H 1 6 5 9 4 0 2
7 1 6 6 5 5 0 2
1 2 4 4 9

.
1 1 3 0 4 I S P A I 1 2 7 A 1 4
1 1 3 0 9 G E W A G 3 5 6 A 1 3
1 1 3 1 4 S P R O s 3 7 9 0 1 0
1 1 3 1 9 C E S S E C 3 5 2 2 3 0 5
1 1 3 2 4 D T H R D 3 3 8 R 0 7
1 1 3 2 9 O U G H 0 1 4 7 8 1 5

The second illustration shows a print-out from the IBM 705, a com-
puter with decimal arithmetic and with alphanumeric coding for data.
Each alphanumeric character has a unique 6-bit code. For reasons of
storage efficiency, inst,ructions in the 705 use a different code where some
of the bits in a 6-bit character have independent meanings. I n the exam-
ple shown in Table 5.2, this dual representation is overcome by printing
the program and data twice, once for ease of reading data and once for

58 CHOOSING A NUMBER BASE [CHAP. 5

ease of interpreting instructions. A service program was needed to
accomplish this.

The objection might be raised that the examples show up problems in
existing machine organizations rather than a need for service programs.
It is actually possible for “numerical engines” aimed a t processing only
numerical data to escape the problem of dual representation for instruc-
tions and data. When alphanumeric data must also be processed in a
reasonably efficient manner, however, one cannot avoid the problem of
dual representation.

5.10. Other Number Bases

Only binary and decimal computers have been considered here.
Although it is clear that other number bases could be selected, they
would all require translation to and from decimal formats, and they
would be no more efficient than base 2 .

5.1 1. Conclusion

The binary number base has substantial advantages in performance
and versatility for addresses, for control data that are naturally in binary
form, and for numerical data that are subjected to a great deal of arith-
metical processing. Figures of merit are difficult to assign because the
performance and cost of a given computer design depend on a great
many factors other than the number base. It is clear, however, that
decimal representation has an inherent loss in performance of a t least
20 to 40 per cent as compared with binary representation and that refined
design with increased cost can overcome this loss only in part. The
decrease in efficiency makes itself felt in a number of ways; so the com-
bined effect on over-all performance may be even greater than the per-
centage indicated.

It is equally clear, however, that a computer that is to find application
in the processing of large files of information and in extensive man-
machine communication must be adept a t handling data in human-
readable form; this form includes decimal numbers, alphabetic descrip-
tions, and punctuation marks. Since the volume of data may be great,
it is important that binary-decimal and other conversions should not
become a burden greatly reducing the effective speed of the computer.

Hence it was decided to combine in the design of the IBM 7030 the
advantages of binary and decimal number systems. Binary addressing
has been adopted for its greater flexibility; each bit in memory has a
separate address, and the length of a word in memory is a power of 2
(64 bits), Binary arithmetical operations are provided for manipulating
these addresses and for performing floating-point arithmetic a t extremely
high speed. Efficient binary-decimal conversion instructions minimize

SEC. 5.111 CONCLUSION 59

the conversion time for input and output data intended for use in exten-
sive mathematical computation. Decimal arithmetic is also included in
the instruction repertoire, in order to permit simple arithmetical oper-
ations to be performed directly on data in binary-coded decimal form.

Such a combination of binary and decimal arithmetic in a single com-
puter provides a high-performance tool for many diverse applications.
I t may be noted that a different conclusion might be reached for a com-
puter with a restricted range of functions or with performance goals
limited in the interest of economy; the difference between binary and
decimal operation might well be considered too small to justify incorpo-
rating both. This conclusion does appear valid for high-performance
computers, regardless of whether they are aimed primarily a t scientific
computing, business data processing, or real-time control. To recom-
mend binary addressing for a computer intended for business data proc-
essing is admittedly a departure from earlier practice, but the need for
handling and storing large quantities of nonnumerical data makes the
ieatures of binary addressing particularly attractive. In thc past, the
real obstacle to binary computers in business applications has been the
clificulty of handling inherently decimal data. Binary addressing and
1 Iccimal data arithmetic, therefore, make a powerful combination.

Chapter 6

C H A R A C T E R SET
by R. W. Bemer and W. Buchholz

6.1. Introduction

Among the input and output devices of a computer system, one can
distinguish between those having built-in codes and those largely insensi-
tive to code. Thus typewriters and printers necessarily have a fixed code
that represents printable symbols to be read by the human eye; a code
must be chosen for such a device in some more or less arbitrary fashion,
and the device must make the transformation between code and symbol.
Data storage and transmission devices, on the other hand, such as mag-
netic tape units and telephone transmission terminals, merely repeat the
coded data given to them without interpretation, except that some code
combinations may possibly be used to control the transmission process.
(Strictly speaking, storage and transmission devices do generally limit
the code structure in some respect, such as maximum byte size, so that
code sensitivity is a matter of degree.)

For the inherently code-sensitive devices to be attached to a new com-
puter system, an obvious choice of character set and code would have
been one of the many sets already established. When the existing sets
were reviewed, however, none were found to have enough of the system
characteristics considered desirable. In fact, it became clear that about
the only virtue of choosing an already established set is that the set
exists. Accordingly, it was decided, instead, to devise a new character
set expressly for use throughout a modern computer system, from input
to output. The chief characteristic of this set is its extension to many
more different characters than have been available in earlier sets. The
extended set designed for the 7030 (Fig. 6.1) contains codes for 120
different characters, but there is room for later expansion to up to 256
characters including control characters. In addition, useful subsets have
been defined, which contain some but not all of these 120 characters and
which use the same codes for the selected characters without t,ranslation.

60

SEC. 6.11 INTRODUCTION 61

It should be noted that the 7030 computer is relatively insensitive to
the specific choice of code, and any number of codes could be successfully
used in the system. For any particular application a specialized charac-
ter code might be found superior. In practice, however, a large comput,er

FIG. 6.1. 120-character set.

installation must deal with a mixture of widely different applications, and
the designers have to choose a single character set as a compromise among
conflicting requirements.

The purpose of this chapter is to list major requirements of a character
set and code, and to point out how these requirements may or may not
h e met by the specific set to be described.

62 CHARACTER SET [CHAP. 6

6.2. Size of Set

Present IBM 48-character sets consist of

1. 10 decimal digits
2. 26 capital letters
3. 11 special characters
4. 1 blank

Other manufacturers have employed character sets of similar or some-
what larger size.

Because a single set of’ eleven special characters is not sufficient, there
exist several choices of special characters as ‘ktandard options.”

Since this 48-character set is often represented by a 6-bit, code, it is
natural to try to extend it to 63 characters and a blank, so as to exploit
the full capacity of a 6-bit codc.L Although the extra sixteen characters
would indeed he very useful, this step was thought not to be far-reaching
enough to justify development of the new equipment that it would
require.

As a minimum, a new set should include also:

5. 26 lower-case letters
6. The more important punctuation symbols found on all office

7. Enough mathematical and logical symbols to satisfy the needs of
typewriters

such programming languages as ALGOL2s3

There is, of course, no definite upper limit on the number of characters.
One could go to the Greek alphabet, various type fonts and sizes, etc.,
and reach numbers well into the thousands. As set size increases, how-
ever, cost and complexity of equipment go up and speed of printing goes
down. The actual choice of 120 characters was a matter of judgment;
it was decided that this increment over existing sets would be sufficiently
large to justify a departure from present codes and would not include
many characters of only marginal value.

6.3. Subsets
Two subsets of 89 and 49 characters were chosen for specific purposes.

The 89-character set (Fig. 6.2) is aimed a t typewriters, which, with 44

H. 8. Bright, Letter to the Editor, Communs. A C M , vol. 2, no. 5, pp. 6-9, May,

A. J. Perlis and E(. Samelson, Preliminary Report: International Algebraic Lan-

Peter Naur (editor), &port on the Algorithmic Language ALGOL 60, Communs.

1959 (a 64character alphabet proposal).

guage, Communs. A C M , vol. 1, no. 12, December, 1958.

A C M , vol. 3, no. 5, May, 1960.

SEC. 6.51 CODE 63

character keys, a case shift, and a space bar, can readily handle 89
characters. This subset was considered important because input-output
typewriters can already print 89 characters without modification, and
44-key keyboards are familiar to many people.

The 49-character subset (Fig. 6.3) is the conventional set of “com-
mercial” characters in a code compatible with the full set.’ This subset
is aimed a t the chain printer mechanism used with the 7030, which can
readily print character sets of different sizes but prints the larger sets a t
a reduced speed. The 49-character subset permits high-volume printing
a t high speed in a compatible code on jobs (such as bill printing) where
the extra characters of the full set may not be needed. It should be noted
that the 49-character set is not entirely a subset of the 89-character set.

For example,
for purely numerical work, one may wish to construct a 13-character set
consisting of the ten digits and the symbols . (point) and - (minus),
together with a special blank.

Other subsets are easily derived and may prove useful.

6.4. Expansion of Set

Future expansion to a set larger than 120 can take place in two ways.
One is to assign additional characters to presently unassigned codes;

allowance should then be made for certain control codes which will be
needed for communication and other devices and which are intended to
occupy the high end of the code sequence.

The second way is to define a shift character for “escape” to another
character set.2 Thus, whenever the shift character is encountered, the
next character (or group of characters) identifies a new character set, and
subsequent codes are interpreted as belonging to that set. Another shift
character in that set can be used to shift to a third set, which may again
be the first set or a different set. Such additional sets would be defined
only if and when there arose applications requiring them.

6.5. Code

In choosing a code structure, many alternatives were considered.
These varied in the basic number of bits used (i.e., the byte size) and in
the number of such bytes that might be used 60 represent a single (print-

Note that this is one character larger than the previously referred-to 48-character
set. The additional special character was introduced in 1959 on the printer of the
IBM 1401 system; but its use has not become firmly established, partly because it
has no counterpart on the keypunch. Thus the 48- and 49-character sets are, in
effect, the aame set.

* R. W. Bemer, A Propoaal for Character Code Compatibility, Comi/iuns. A C M ,
1 01. 3, no. 2, February, 1960,

64 CHARACTER SET [CHAP. 6

I Bits 0-1-2-3 I

FIG. 6.2. 89-character set.

able) character. Among the alternatives were the following:

Single 6-bit byte with shift codes interspersed
Double 6-bit byte = single 12-bit byte’
Single %bit byte
Single 12-bit byte for “standard” characters (punched-card code) and

two 12-bit bytes for other characters

Some of these codes represented attempts to retain partial compati-
bility with earlier codes so as to take advantage of existing equipment.

I<. I\. Rriner, .4 P r o p o d for a Generalized Card Code for 256 Characters, Com-
 mu^. dCII./, vol. 2, no. 9, September, 1959.

SEC. 6.51 C O D E 65

FIG. 6.3. 49-character set.

These attempts were abandoned, in spite of some rather ingenious pro-
posals, because the advantages of partial compatibility were not enough
to offset the disadvantages.

The 8-bit byte was chosen for the following reasons:

1. I ts full capacity of 256 characters was considered to be snficient
for the great majority of applications.

2. Within the limits of this capacity, a single character is represented
by a single byte, so that the length of any particular record is not depend-
ent on the coincidence of characters in that record.

3. 8-bit bytes are reasonably economical of storage space.

66 CHARACTER SET [CH.4P. 6

4. For purely numerical work, a decimal digit can be represented by
only 4 bits, and two such 4-bit bytes can be packed in an 8-bit byte.
Although such packing of numerical data is not essential, it is a common
practice in order to increase speed and storage efficiency. Strictly speak-
ing, 4-bit bytes belong to a different code, but the simplicity of the 4-and-
%bit scheme, as compared with a combination 4-and-6-bit scheme, for
example, leads to simpler machine design and cleaner addressing logic.

5. Byte sizes of 4 and 8 bits, being powers of 2 , permit the computer
designer to take advantage of powerful features of binary addressing and
indexing to the bit level (we Chaps. 4 and 5).

The eight bits of the code are here numbered for identification from
“Bit 0” may be left to right as 0 (high-order bit) to 7 (low-order bit).

abbreviated to BO, “bit 1” to R1, et?.

6.6. Parity Bit
For transmitting data, a ninth bit is attached io each byte for parity

checking, and it is chosen so as to provide an odd number of 1 bits.
Assuming a I bit to correspond to the presence of a signal and assuming
also an independent source of timing signals, odd parity permits all 256
combinations of 8 bits to be transmitted and to be positively distinguished
from the absence of information. The parity hit is identified here as
“bit P” or B,.

The purpose of defining a parity bit in conjunction with a character set
is to establish a standard for communicating between devices and media
using this set. It is not intended to exclude the possibilities of error
correction or other checking techniques within a given device or on a
given medium when appropriate.

6.1. Sequence
High-equal-low comparisons are an important aspect of data process-

ing. Thus, in addition to defining a standard code for each character,
one must also define a standard comparing (collating) sequence. Obvi-
ously, the decimal digits must be sequenced from 0 to 9 in ascending
order, and the alphabet from A to Z. Rather more arbitrary is the
relationship between groups of characters, but the most prevalent con-
vention for the 48 IBM LLcommercial” characters is, in order:

(Low) Blank
Special characters .
Alphabetic characters A i o Z

& $ * - / , % # @

(High) Decimal digits 0 to 9

Fundamentally, the comparing sequence of characters should conform
to the natural sequence of the binary integers formed by the bits of that

SEC. 6.81 67

code. Few existing codes
have this property, and it is then necessary, in effect, to translate to a
special internal code during alphanumeric comparisons. This takes extra
equipment, extra time, or both. An important objective of the new char-
acter set was to obtain directly from the code, without translation, a
usable comparing sequence.

A second objective was to preserve the existing convention for the
above 48 characters within the new code. This objective has not been
achieved because of conflicts with other objectives.

The 7030 set provides the following comparing sequence without any
translation :

Thus 0000 01 GG should follow 0000 001 1.

(Low) Hank
Special characters (see chart)
Alphabetic characters
Numerical digits 0 1 to 9
Special characters . : - ?

(High) Unassigned character codes

a A b B c C to z Z

Note that the lower- and upper-case letters occur in pairs in adjacent
positions, following the convention established for directories of names.
(There appeared to be no real precedent for the relative position within
the pair. The case shift is generally ignored in the sequence of names
in telephone directories, even when the same name is spelled with either
upper- or lower-case letters. This convention is not usable in general,
4nce each character code must be considered unique.)

The difference between this comparing sequence and the earlier con-
vention lies only in the special characters. Two of the previously avail-
able characters had to be placed a t the high end, and the remaining special
rharacters do not fall in quite the same sequence with respect to one
niiother. It was felt that the new sequence would be quite usable and
that it would be necessary only rarely to re-sort a file in the transition
to the 7030 code. It is always possible to translate codes to obtain any
other sequence, as one must do with most existing codes.

6.8. Blank

The code 0000 0000 is a natural assignment for the blank (Le., the
nonprint symbol that represents an empty character space). Not only
Ghould the blank compare lower than any printable character, but also
absence of bits (other than the parity bit) corresponds to absence of
mechanical movement in a print mechanism.

Blank differs, however, from a null character, such as the all-ones code
ioiind on paper tape. Blank exists as a definite character occupying a
definite position on a printed line, in a record, or in a field to be compared.

68 CHARACTER SET [CHAP. 6

h null may be used to delete an erroneous character, and it would be
completely dropped from a record a t the earliest opportunity. Null,
therefore, occupies no definite position in a comparing sequence. A null
has not been defined here, but it could be placed when needed among the
control characters.

Considering numerical work only, i t would be aesthetically pleasing to
assign the all-zeros code to the digit zero, that is, to use 0000 as the
common zone bits of the numeric digits (see below). In alphanumeric
work, however, the comparing sequence for blank should take preference
in the assignment of codes.

6.9. Decimal Digits

The most compact coding for decimal digits is a 4-bit code, and the
natural choices for encoding 0 to 9 are the binary integers 0000 to 1001.
As mentioned before, two such digits can be packed into an 8-bit byte;
for example, the digits 28 in packed form could appear as

0010 1000

If decimal digits are to be represented unambiguously in conjunction
with other characters, they must have a unique 8-bit representation.
The obvious choice is to spread pairs of 4-bit bytes into separate 8-bit
bytes and to insert a 4-bit prefix, or zone. For example, the digits 28
might, be encoded as

zzzz 0010 zzzz I000

where the actual value of each zone bit z is immaterial so long as the
prefix is the same for all digits.

This requirement conflicted with requirements for the comparing
sequence and for the case shift. As a result, the 4-bit byte is offset by
1 bit, and the actual code for 28 is

0110 0100 0111 0000
This compromise retains the binary integer codes 0000 to 1001 in

adjacent bit positions, but not in either of the two positions where they
appear in the packed format.

The upper-case counterparts of the normal decimal digits are assigned
to italicized decimal subscripts.

6.1 0. Typewriter Keyboard

I The most commonly found devices for key-recording input to a com-
puter system are the IBM 24 and 26 keypunches, but their keyboards
are not designed for keying both upper- and lower-case alphabetic char-
acters. The shifted positions of some of the alphabetic characters are
used to punch numerical digits. For key-recording character sets with

SEC. 6.121

much more than the basic 48 characters, it is necessary to adopt a kej7-
l)oard convention different from that of the keypunch. The 89-charartei
subset was established to bring the most important characters of the full
set within the scope of the common typewriter, thus taking advantage of
the widespretid familiarity with the typewriter keyboard and capitalizing
on existing touch-typing skills as much as possible.

The common typewriter keyhoard consiqts of up to 44 keys and a sepn-
rate casc-shift key. To preserve this relationship in the code, the 44 keys
are represented by 6 bits of the code (B I to B6) and the case shift by a
separate bit (Bi). The case shift was assigned to the lowest-order bit,
,qo as to give the desired sequence between lower- and upper-case letters.

For ease of typing, the most commonly used characters should appear
in the lower shift (Bi = 0). This includes the decimal digits and, when
both upper- and lower-case letters are used in ordinary text, the lower-
case letters. (This convention differs from the convention for single-case
typewriters presently used in many data-processing systems; when no
lower-case letters are available, the digits are naturally placed in the same
shift as the upper-case letters.) It is recognized that the typewriter key-
board is not the most efficient alphanumeric keyboard possible, but it
would be unrealistic to expert a change in the foreseeable future. For
purely numerical data, it is always possible to use a 10-key keyboard
cither instead of the typewriter keyboard or in addition to it.

It was not practical to retain the upper- and lower-case relationships
of punctuation and other special characters commonly found on type-
writer keyboards. There is no single convention anyway, and typists
are already accustomed to finding differences in this area.

6.1 1. Adjacency

The 52 characters of the upper- and lower-case alphabets occupy 52
vonsecutive code positions without gaps. For the reasons given above,
i t was necessary to spread the ten decimal digits into every other one of
twenty adjacent code positions, but the remaining ten positions are filled
with logically related decimal subscripts. The alphabet and digit blocks
are also contiguous. Empty positions for additional data and control
characters are all consolidated a t the high end of the code chart.

This grouping of related characters into solid blocks of codes, without
empty slots that mould sooner or later be filled with miscellaneous char-
acters, assists greatly in the analysis and classification of data for editing
purposes. Orderly expansion is provided for in advance.

6.1 2. Uniqueness

A basic principle underlying the choice of this set is to have only one
code for each character and only one character for each code.

70 C H \ K 4 C T E I I SET [CHAP. 6

Much of the lack of standardization in existing character sets arises
from the need for more characters than there are code positions available
in the keying and printing equipment. Thus, in the existing 6-bit IBM
character codes, the code 001100 may stand for any one of the three
characters @ (at), - (minus), and ’ (apostrophe). The 7030 set was
required to contain all these characters with a unique code for each.

Thus, in one of the existing 6-bit
codes, - may be represented by either 100000 or 001 100. Such an
embarrassment of riches presents a logical problem when the two codes
have in fact the same meaning and can be used interchangeably. X o
amount of comparing and sorting will bring like items together iiiitil
one code is replaced by the other everywhere.

In going to a reasonably large set, i t was necessary to resist a strong
temptation to duplicate some characters in different code positions so as
to provide equal facilities in various subsets. Instead, every character
has been chosen so as to be typographically distinguishable if it stands
by itself without context. Thus, for programming purposes, it is possi-
ble to represent any code to which a character has been assigned by its
unique graphic symbol, even when the bit grouping does not have the
ordinary meaning of that character (e.g., in operation codes).

In many instances, however, i t is possible to find a substitute character
close enough to a desired character to represent it in a more restricted
subset or for other purposes. For example, = (equals) may stand for +-

(is replaced by) in an 89-character subset. Or again, if a hyphen is
desired that compares lower than the alphabet, the symbol r‘ (a modi-
fied tilde) is preferred to the more conventional - (minus).

A long-standing source of confusion has been the distinction between
upper-case “oh” (0) and zero (0). Some groups have solved this problem
by writing zero as g. Unfortunately, other groups have chosen to write
“oh,’ as g. Instead, it is
proposed to modify the upper-case “oh” by a center dot (leaving the zero
without the dot) and to write and print “oh,’ as 0 whenever a distinction
is desired.

Various typographic devices are used to distinguish letters (I, 1, V,
etc.) from other characters [I (stroke), 1 (one), V (or), etc.]. It is sug-
gested that the italicized subscripts he underlined when handwritten by
themselves, for example, 5 .

6.13. Signs
The principle of uniqueness implies a separate %bit byte to represent a

plus or R minus sign. Keying and printing equipment also require sepa-
rate sign characters. This practice is, of course, rather expensive in
storage space, but it was considered superior to the ambiguity of present

The opposite problem exists too.

lieither solution is typographically attractive.

-

SEC. 6.151 CAR.D-PUNCHING C,ONVENTIOX 71

6-bit, rodes where otherwise “unused” zone bits in numerical fields are
used to encode signs. If the objective is to save space, one may as well
abandon the alphanumeric code quite frankly and switch to a 4-bit
decimal coding with a 4-bit sign digit, or go to the even more compact
binary radix.

6.1 4. Tape-recording Convention

As has been remarked before, data-recording media such as magnetic
tape and punched cards are not inherently code-sensitive. It is obvi-
ously necessary, though, to adopt a fixed convention for recording a code
on a given medium if that medium is to be used for communication
between different systems.

Magnetic tape with eight, or a multiple of eight, information tracks
permits a direct assignment of the 8 bits in the 7030 code to specific
tracks. Magnetic tape with six information tracks requires some form
of byte conversion to adapt the 8-bit code to the 6-bit tape format. The
convention chosen is to distribute three successive 8-bit bytes over four
successive &bit bytes on tape. This convention uses the tape a t full
efficiency, leaving no gaps except possibly in the last 6-bit byte, which
may contain 2 or 4 nonsignificant 0 bits, depending on the length of the
record.

Thus successive %bit bytes, each with bits Bo to B7, are recorded as
shown in Table 6.1.

TARLE 6.1. CONVENTION FOR RECORDING %BIT CODE ON 6-TRACK TAPE

etc.

The parity bit is not shown. The parity bits for the 6-bit tape format
are, of course, different from those of the 8-bit code; so parity conversion
mist be provided also.

6.1 5. Card-punching Convention

Since 80-column punched cards are a common input medium, a card-
punching convention for the 120 characters is likewise desirable. After
the possibility of a separate card code for the 120 characters was con-
sidered-a code having the conventional IBM card code as a subset1--

’ Ib id .

12 CHARACTER SET

0
1
2
3
4
5
6

[CHAP. G

-
BP
Bo
BI
B2
B3
Bc

it was concluded that it would be better to punch the 8-bit code directly
on the card. This does not preclude also punching the conventional code
(limited to 48 characters) on part of the card for use with conventional
equipment. Code translation is then needed only whenever the conven-
tional card code is used; otherwise translation would be required for
every column if advantage is to be taken of the new code in the rest of
the system.

The punching convention is given in Table 6.2.
In addition, both hole 1 2 and hole 11 are to be punched in column 1 of

every card containing the 7030 code, besides a regular 7030 character,
so as to distinguish a 7030 card from cards punched with the conven-
tional code. Eight-bit punching always starts in column 1 and extends
as far as desired; a control code END (0 11 1 I 11 10) has been defined to
terminate the 8-bit code area. Conventional card-code punching should

TABLE 6.2. CONVENTION FOR PUNCHING %BIT CODE ON CARDS

be confined to the right end of those cards identified with 12-11 punching
in column 1.

Since the parity bit is also punched, the 7030 area of a card contains a
checkable code. Note that “blank” columns in this area still have a hole
in the Bp row. If only part of the card is to be punched, however, i t is
possible to leave the remaining columns on the right unpunched.

6.16. List of 7030 Character Set

reference in Fig. 6.4, which includes the names of the characters.
A list of the 7030 character-set codes and graphic symbols is shown for

SEC. 6.161 LIST OF 7030 CHA4R.4CTER SET 73

Code
P 0123 4567 C h a r a c t e r Name --
10000 0000
0 0000 0001
0 0000 0010

1 0 0 0 0 0011
0 0000 0100
1 0 0 0 0 0101
1 0 0 0 0 0110

0 0000 0111
0 0000 1000
1 0 0 0 0 1001
1 0 0 0 0 1010

0 0000 1011
1 0 0 0 0 1100
0 0000 1101

0 0000 1110
1 0 0 0 0 1111

0 0001 0000
1 0 0 0 1 0001
1 0 0 0 1 0010
0 0001 0011
1 0 0 0 1 0100

0 0001 0101
0 0001 0110
1 0001 0111

1 0 0 0 1 1000
0 0001 1001

0 0001 1010

1 0 0 0 1 1011

0 0001 1100
1 0 0 0 1 1101

1 0 0 0 1 1110
0 0001 1111

a
c

Blank (Space)
Plus o r m i n u s
Right a r r o w
(Replaces)

Not equal
And
Lef t b r a c e
Up a r r o w
(Star t s u p e r -
s c r ip t)

Right b r a c e
O r (inc lus ive)
Exclus ive O r
Down a r r o w
(End s u p e r -
s c r ip t)

Double l i nes
G r e a t e r than
G r e a t e r than
o r equal

L e s s than
L e s s than o r
equal

Lef t b r a c k e t
I m p l i e s
Right b r a c k e t
Degree
Lef t a r r o w (Is
r e p l a c e d by)

Ident ica l
Not
S q u a r e r o o t
(Check m a r k)

P e r c e n t s ign
Lef t slant (R e -
v e r s e divide)

Lozenge (Dia-
m o n d) (E)

Abeolute va lue
(Ver t i ca l line)

Number s ign
Exc lama t ion
point (F a c -
t o r ial)

At s ign
Ti lde (Hyphen)

Code
P 0123 4567 C h a r a c t e r Name

0 0010 0000
1 0 0 1 0 0001
1 0010 0010
0 0010 0011
10010 0100

0 0010 0101
0 0010 0110

1 0 0 1 0 0111

1 0 0 1 0 IO00
0 0010 1001
0 0010 1010

1 0 0 1 0 1011

0 0010 1100
10010 1101
1 0 0 1 0 I110
0 0010 1111
1 0011 0000
0 0011 0001
0 0011 0010
1 0 0 1 1 0011
0 0011 0100
1 0 0 1 1 0101
1 0 0 1 1 0110
0 0011 0111
0 0011 1000
10011 1001
10011 1010
0 0011 1011
1 0 0 1 1 1100
0 0011 1101
0 0011 1110
1 0 0 1 1 1111

E

$

+

- -

(
/

)

Y

I

11

a
A
b
B

C
d
D
e
E
f
F
4
G
h
H

I

J

C

1

j

A m p e r s a n d
P l u s s ign
Dol la r s ign
Equals
A s t e r i s k
(Multiply)

Lef t p a r e n t h e s i s
Right s lan t
(Divide)

Right p a r e n -
t h e s i s

C o m m a
Semico lon
Ap o s t r ophe
(Single quote)

Ditto (Double
quote)

Note: The c h a r a c t e r h a s also
been used .

FIG. 6.4. List of 7030 codes and characters. (Continued on next page.)

74 CHARACTER SET

Code
P 0123 4567 Character Name
0 0100 0000
10100 0001
10100 0010
0 0100 0011
10100 0100
0 0100 0101
0 0100 0110
10100 0111
10100 1000
0 0100 1001
0 0100 1010
10100 1011
0 0100 1100
10100 1101
10100 1110
0 0100 1111
10101 0000
0 0101 0001
0 0101 0010
10101 0011
0 0101 0100
10101 0101
10101 0110
0 0101 0111
0 0101 1000
10101 1001
10101 1010
0 0101 1011
10101 1100
0 0101 1101
0 0101 1110
10101 1111

k
K
1
L
m
M
n
N

0

P
P
q
Q
r
R

5
t
T

0

S

J

IJ
J

d

W
X

X

Y
Y

z
z

[CHAP. 6

Code
P 0123 4567 Character Name

10110 0000
0 0110 0001
0 0110 0010
1 0110 0011
0 0110 0100
1 0110 0101
10110 0110
0 0110 0111
0 0110 1000
10110 1001
10110 1010
0 0110 1011
10110 1100
0 0110 1101
0 0110 1110
10110 1 1 1 1
0 0111 0000
10111 0001
10111 0010
0 0111 0011
10111 0100
0 0111 0101
0 0111 0110
10111 0111

0

0
1

2

3

4

5

6

7

8

9

7

2

3

r,

5

6

7

8

9

-

?

Zero
Subscript zero
One
Subscript one
Two
Subscript two
Three
Subscript three
Four
Subscript four
Five
Subscript five
Six
Subscript s ix
Seven
Subscript seven
Eight
Subscript eight
Nine
Subscript nine
Period (point)
Colon
Minus sign
Question mark

FIG. 6.4 (Continued)

Chapter 7

VARIABLE - FI ELD - LE N GTH 0 PER AT1 0 N
by G. A. Bldduw, F. P. Brooks, Jr., and W. Buchholz

7.1. Introduction

Chapter 4 dealt with the fact that natural data units for fixed-point-
arithmetic, logical, and editing operations vary considerably in length
and structure. The variable-field-length instructions of the 7030 have
been designed to make it possible to specify these natural data units
simply and directly, thus saving time, space, and programming effort.

The variable-field-length (VFL) data-handling operations may be
divided into three classes : (1) arithmetical, (2) radix-conversion, and
(3) logical-connective operations. VFL arithmetical and logical-connec-
tive operatioris are both used also for processing alphanumeric data.

The VFL instructions include the basic arithmetical repertoire (LOAD,

STORE, ADD, COMPARE, MULTIPLY, DIVIDE) as well as interesting new oper-
ations and features. More important, however, is the method of data
definition employed hy all VFL instructions. Each field, regardless of
length, is treated as a separate entity independent of its neighbors. Each
numerical field may have its own sign, if a sign is desired. Any overflow
beyond the end of the specified field is signaled, but the next adjacent
field is protected from inadvertent carry propagation. Similarly, any
loss of significant bits caused by storing a result in a field of limited size
is signaled. result zero indicator shom the state of only the desired
field, no more and no less.

The flexibility needed for TE'L operations is achieved most economi-
cally by a serial data-handling mechanism. Serial data handling is
relatively slow, but the objective here is not high speed for individual
instructions. (Where arithmetical speed is of the essence, the unnormal-
ized floating-point mode should be used for fixed-point arithmetic-see
Chap. 8.) The VFL instructions are intended for such operations on
complex data structures as format conversion and arranging for printing.
Such operations can be performed by a serial T'FL unit faster than by

75

76 VARI IBLE-FIELD-LENGTH OPERATION [CHAP. 7

:I parallel fixed-length arithmetic and logic unit. Most of the serial
mechanism is actually concerned with the structure of the data and
relatively little with the operation itself. Thus the choice of a serial
mechanism was not dictated by the cost of extra adder stages but by
the complex switching that would have been needed to select an entire
field of variable position, length, and structure, in parallel fashion-
though it is granted that an elaborate parallel mechanism could have
been designed that would do VFL operations even faster than a serial unit.

VFL operations are particularly desirable in processing large volumes
of data. Here the most important element of high performance is reduc-
tion in storage space. With VFL operation more data can be held in
storage units of fixed capacity (core memory, drums, or disks), which
may permit a given problem to be solved more quickly or more problems
to be tackled a t one time by multiprogramming. With open-ended stor-
age media (magnetic tape), over-all performance is often limited by the
speed of data transmission; so the reduction in storage space obtained by
varying the field length can result in a corresponding reduction in execu-
tion time.

7.2. Addressing of Variable-field-length Data

As explained in Chap. 5, the reason for choosing a memory word s i x
of 64 bits, a power of 2, is that a binary address can be assigned to each
bit in a memory word, with continuous numbering of all bits in memory.
Accordingly, the VFL system has been designed so that the memory may
be looked on by the programmer as if i t were one continuous horizontal
string of bits, extending from address 0 a t the left to the last memory bit
a t the right. Fields can be placed anywhere in memory regardless of
their lengths, overlapping memory-word boundaries when necessary.
The programmer merely specifies the address of the field, which is the
address of the leftmost bit (the high-order bit in a numerical field), and
the length. Successive bits in the field have consecutively increasing
address numbers; but these addresses are not referred to by the program,
except when it is desired to operate explicitly on a portion of the field as
if it mere another field. The VFI, system does the bookkeeping neces-
sary to select the word or pair of adjacent words in memory and to select
the desired array of bits in these words.

The left-to-right memory-addressing convention, where a byte, field,
or record is addressed by the address of its leftmost bit, is followed
throughout the system. For purposes of arithmetic it might be thought
more convenient to address numerical fields from the right, since serial
arithmetic always starts with the lowest-order digit. Keyed input and
printed outpiit data, on the other hand, must follow the left-to-right
sequence to which hri~nans are accustomed. Because nonnumerical data

SEC. 7.3)

Address
2 4

FIELD LENGTH 77

Operation
1000 I P Length BS Offset code 1 1

4 4 3 6 3 7 4

may consist of long strings of bits, whereas numbers are relatively short,
it seemed desirable to adopt a consistent left-to-right convention and
impose the burden of temporarily reversing the sequence on the arith-
metical processes. This convention avoids the possibility of having
different operations refer to the same field by two different addresses.

The TTL instruction format (Fig. 7.1) contains a 24-bit operand
address, of which the left 18 bits specify the memory word, and the right
6 bits specify the bit within that word a t which the field starts. The
24-bit address is a homogeneous binary number, so that addresses may be
computed by straightforward arithmetical processes. The operand
address may be modified automatically by adding an index value that is
also 24 bits long. Thus VFL instructions provide for indexing to the bit
level. Indexing is specified by the index address 1 in the left half of the
instruction word. (The second I field in the right half may be used for
modifying the length, byte size, and offset fields described below.)

FIG. 7.1. VFL instruction format.

The address part of a T-FI, instruction may also be used as a data field
Immediate of up to 24 bits in a mode called immediate addressing.

addressing is useful for supplying short constants to the program.

7.3. Field Length

The length of the field is specified as a iiuniber of‘ bits and may range
from 1 to 64. It would be nicer to have an essent>ially unlimited field
length (as in the 2%-charact,er accumuiator of the I R M 705), but the
cost of additional flip-flop registers (as compared with the relatively slow
core storage used for the 705 accumulator) and extra controls would have
outweighed their usefulness. In numerical work 64 bits are usually ade-
quate, and multiple-precision fixed-point arithmetic should only rarely be
needed. For alphanumeric comparisons, which do often deal with long
fields, a special comparison operation is provided to simplify the com-
paring of multiple fields, so that long fields can readily be treated as

I ‘r11i.s is not I great burden, because a serial arithmetic unit must be capable of
I’t’ogressing, or jumping, from one end of a I~ul l l tJt ’ l . t o the other in either direction, for
-(.\,oral reasons. dfter a right-to-left subtraction, the unit may have to j ump back
t o tlir right end for a second, recompleinenting pass through the iirimhrr. In divisiori,
Ihr quotient must he developed digit by digit from left to right.

78 V~RIABLE-FIELIPLENGTH OPEI~.\TION [CHaP. 7

several shorter fields. In the other operations 15-here long fields are occa-
sionally encountered, there are no carries between fields, and multiple
operations can again be programmed quite easily. Hence the limitation
to 64 bits as the maximum field size is not onerous.

All bits of a field are counted in the field length, including the sign
bits of signed numbers. In assign-
ing memory space, adding the length of a field to its address gives the
address of the next available memory space. The length of a record is
the sum of the lengths of its fields.

7.4. Byte Size
Many data fields have an inner structure and are made up of a number

of bytes, such as decimal digits or alphabetic characters. In some oper-
ations, primarily decimal arithmetic, the control circuits must observe
the byte boundaries, since, during decimal addition for example, the
varry between bits of one decimal digit has different properties from those
of the carry between two adjacent decimal digits. I n binary arithmetic
the numerical part is homogeneous, all bits being treated alike, but the
sign may require special treatment and is considered to be a separate byte.
With alphabetic fields the byte boundaries are important for some func-
tions, such as printing; other operations, such as loading, storing, and
(in a well-chosen code) comparing, can be performed as if the field were a
homogeneous binary number.

Decimal digits are most economi-
cally represented in a &bit code. The commonly used 6-bit alphanumeric
codes are sufficient when decimal digits, a single-ease alphabet, and a few
special chaiwters are to be represented. If this list is extended to a
two-case alphabet and many more special characters, a 7- or 8-bit code
becomes desirable (see Chap. 6). h %bit octal code or a 5-bit alphabetic
code is occasionally useful. There would be little use for bytes larger
than 8 bits. Even with the common 12-bit code for punched cards, the
first processing step is translation to a more compact code by table
look-up, and during this process each column is treated as a 12-bit
binary field. There ~ o u l d be no direct processing of longer fields in the
12-bit code.

It is common practice to employ throughout a computer a fixed byte
size large enough to accommodate a 6-bit alphanumeric code. Since
numerical data predominate in many applications, this simple represen-
tation is fairly inefficient : one-third of the bits in purely numerical digits
are vacuous. The efficiency drops further as a larger alphabet is chosen.
Another common practice is to use two different byte sizes, one to repre-
sent purely numerical fields in a relatively dense code and another for
alphanumeric fields where each character is represented by two decimal

Thus the field lengths are additive.

The natural length of bytes varies.

SEC. 7.61 ACCUMULATOR OPERAND 79

digits. Assuming that 4 bits are used for a decimal digit, this 4-and-%bit
coding scheme is superior to the 6-bit code if numerical data occupy more
than half the space or if a larger than 64-character alphabet is desired.
X third scheme in current use allows 4-bit decimal digits and 6-bit alpha-
numeric characters.

The 7030 is unique in that the byte size is completely variable from
1 to 8 bits, as specified with each T7FL instruction. Bytes may also
overlap word boundaries.

7.5. Universal Accumulator

All VFL operations refer to an implied operand in the arithmetic unit.
The principle was adopted in the design of both YFL and floating-point
operations that the accumulator rcgisters would always be the source of
the major implied operand. Likewise, if oiie or more results are to be
returned to the arithmetic. unit, the major result is left in the accumu-
lator ready for IISC as an opcrand in the next instruction. It shouId not
be necessary to \\rite extra instruc.tions for moving operands within the
arithmetic unit. Oiily in operations that reqnire more than one implied
operand (cumulative niultiplicatioii) or produce more than one result
(division) is it necessary to load or unload an extra register; special
rcgisters are provided for these operations, and they are not used for
any other purpose.

This principle of the rrniversal accumulator saves housekeeping instruc-
tions, whic.h are needed in many other computers, and simplifies excep-
tion routines, because operations follow a more iiniform pattern.

7.6. Accumulator Operand

I n VE’L operations the implied operand in the accumulator has a
maximum length of 128 bits, not counting sign bits. The right end of
the accumulator operand is defined by the ofset part of the instruction
(Fig. 7.1). The offset specifies the number of bits between the right end
of the accumulator and the start of the operand; i.e., a zero offset means
that the operation starts a t the right end of the accumulator, and an
offset of 17 that the operation starts a t the seventeenth bit from the right.
The operation is executed in such a way that the right end of the accumu-
lator operand lines up with the right end of the memory operand. This
is done by selecting the bits from the desired register positions (not by
shifting the entire contents of the register).

The main purpose of specifying an offset is to provide a shifting oper-
ation as part of every VFL instruction. XO separate shift instructions
tlre needed. Thus decimal points can be aligned without first reposition-
ing the accumulator field.

The offset might also be looked upon as a bit address within the

80 VAI1IABLG-FIELD-LEPU'aTH OPERATION [CHAP. '7

accumulator. Because of the nature of an offset, the accumulator bit.
numbering goes from right to left, in contrast with the left-to-right
sequence in memory.

7.7. Binary and D e c i m a l Ari thmet ic
All VFL-arithmetic operations are available in both binary and deci-

mal modes, depending on the setting of a binary-decimal modijier bit in
the operation code (Fig. 7.2). Strictly speaking, decimal multiplication
and division are not executed directly. The instructions cause entry to
a standard subroutine via the program-interrupt system, to take advan-
tage of the higher speed of radix conversion and parallel binary arith-
metic; since programs using these operations are written exactly as if they
were executed directly, the distinction will not be made in this chapter.

In decimal arithmetic the accumulator operand is assumed to have a
byte size of 4. The byte size of the memory operand is specified by the

Unsigned

Arithmetic and

operations
L_____I

Modifier
bits

Logical

operations

FIG. 7.2. Details of T'FL operation
codes.

instruction, as mentioned before.
When the result is stored, the byte
size in memory is again specified; with
a byte size greater than 4, zone bits
are inserted in the high-order bit
positions of every byte, these zone bits
being obtained from the accumulator
sign register where they are set up
in advance as desired. This feature
permits arithmetic to be performed
directly in any alphanumeric code
where the digits are encoded as binary
integers in the four low-order bit po-
sitions with common zone bits in the
high-order positions.

In binary arithmetic the byte-size specification does not apply to the
numerical part of binary numbers, which always have a homogeneous
internal st)rurture. Regardless of the byte-size specification (which is

It should he remarked here that it was intended, a t the time this feature was
developed, to u s t ~ such an alphanumeric code for the system. Subsequently other
considerations entered the picturc, and the &bit code described in Chap. 6 is not this
kind of a codc. In a compromise among conflicting requirements, the Pbi t portion
represenhg the ten binary integers in the codes for the decimal digits was offset to
the left by one bit position. Therefore, decimal arithmetic cannot be performed
directly in this code. In practice
it is highly desirahle to edit all numerical inptit data for consistency, and it is almost
essential t o edit numerical output t h t a to suppress zeros, insert commas, etc. Because
editing usually involves t,al)lr look-up. conversion Iwtween the &bit 7030 code and
the 4-bit deciniaI-arithmc,tic rode co111t's free and provides, moreover, the very desir-
able data compression made possilde 1)y it 1-bit code.

This loss is more apparent than real, however.

SEC. 7.81 In'TEGER &UTHMETIC 81

used only to control the sign byte-- see hrlow), binary arit hmrt ir proceeds
8 bits at a time, except that the last hytc i:, shortciied aiitomntically if
the field length is not n multiple of 8 bits.

In both forms of arithmetic the accumulator operand is considered to
occupy the entire accumulator, regardless of the field length specified for
the memory operand. When the accumulator is loaded, all bit positions
to the left or right of the new field are set to zero. When a number is
added to the accumulator contents, carries are propagated as far as neces-
sary. Overflow occurs only in the rare case where a carry goes beyond the
left end of the registers.

7.8. Integer Arithmetic

In the structure of arithmetic units, a distinction may he made between
integer and fraction arithmetic according to the apparent position of the
radix point. In integer arithmetic all results are lined up a t the right end
of the registers, as if there were a radix point a t the extreme right. In
fraction arithmetic all results regardless of length are lined up a t the left
end of the registers (except for possible overflow positions), so that the
apparent radix point is a t the left. The binary and decimal VFL
arithmetic in the 7030 is of the integer type, whereas the floating-point
arithmetic (see Chap. 8) is of the fraction type. (Among earlier compu-
tJers the 705, for example, uses integer arithmetic, and the 704 fraction
arithmetic; some computers have employed intermediate positions for
the radix point.)

The distinction between integer and fraction arithmetic is rather
subtle, because a computer must in any case have shifting facilities so
as to deal with integers as well as ni th pure or mixed fractions. The
basic arithmetical operations produce the same result digits regardless of
where the point is.' The differenre lies in the alignment of the result of
one operation with the operand of a subsequent operation. E'or example,
if the product of a multiplication is added to another number without
shifting, that number mill be added to the low-order part of the product
in integer arithmetic and to the high-order part of the product in fraction
arithmetic. A similar distinction exists in the alignment of the result of
an addition for subsequent use as a dividend.

As an example of the integer approach, consider a decimal multiplica-
It is assumed here that the arithmetic unit, whether of the integer or the fraction

form, is designed to retain all result digits from any of the basic arithmetical oper-
ations. For example, multiplication of two single-length numbers is assumed to
produce a double-length product. If a designer wished to have the principal multi-
plication instruction produce only a single-length product, he would probably choose
to keep the high-order part in fraction arithmetic or the low-order part in integer
arithmetic. On the other hand, to facilitate double-precision arithmetic he would
probably include a secondary operation to produce the other half of the product.

82 JT4RI \ RLli.-FIl?:L~-LEI;GTH OPERATIOX [C H A P . 7

tion fo1loiw.d by an addition, with a field length of 2 digits:

(23 .) (45 .) = 1035.
+ 67.
= 1102.
____-

If the same fields are put through the same operations in fraction arith-
metic, without shifting, the result will be

(.23)(.45) = ,1035
+ .67
= ,7735

In VFL arithmetic all operands are aligned a t the right if the offset is
zero. The integer approach was chosen because numerical YFL operands
frequently have but few digits, which are subjected to relatively few
arithmetical operations, and these are mostly additions or subtractions.
There is thus little concern with loss of precision (which is discussed in
Chap. 8) and hence no need for carrying many low-order guard digits.
Aligning numbers a t the right then reduces the chances for overflow, so
that rescaling is seldom needed. Moreover, in data-processing applica-
tions most of the numbers are actually integers or else have only a few
places to the right of the point; the arithmetical processes for such num-
bers are more easily visualized in the integer form than in the fraction
form. On the other hand, the alignment of T'FI, numbers is readily
changed to any other radix-point location without extra instructions, 1) ~
suitable adjustment of the offset, which is avxilable in every VE'I,
instruction.

The choice of fraction arithniet>ic for floating-point operations is dis-
cussed in Chap. 8.

7.9. Numerical Signs

Signed iiumbers are represented throughout the system hy their ahso-
lute value and a separate sign.' The sign bit is 0 for + and 1 for -.

The sign bit is contained in a sign byte (Fig. 7.3) whose format depends
on the byte size specified. In decimal arithmetic it is convenient to have
all bytes, including the sign byte, of equal size; for uniformity the same
byte-size convention is applied in binary arithmetic, but only to the sign
byte.

When the byte size is 1, the sign byte just consists of the sign bit (8).
When the byte size is greater than 1, the extra bit positions becoming

Complements mag appear as intermediate results during the execution of 811

instruction (see Chap. 14), but they are always conrerted to absolute-value form
xutomaticnllp.

SEC. i.91 ~ U M E I Z I V A L S I G N S 83

available are utilized for independent functions. As the byte size is
increased, from 1 to 3 data ,flag bits (T, 71, and 1') are attached t o the
right. These flag bits set corresponding indicators whenever an operand
is fetched; the flag bit may be set by the programmer to signal, via the
program interrupt system, exceptional conditions as desired. For byte
sizes above 4, the previously mentioned zone
bits are attached on the left of the sign hit.

VFL arithmetic may be performed on
either signed numbers or unsigned numbers
from memory. For unsigned numbers the
sign byte is omitted and the numbers are
assumed to be positive. The unsigned mod-
ifier bit in the instruction specifies the choice
and determines whether the rightmost byte
of the number is to be treated as the sign
byte or as containing the low-order numer-
ical bits.

The most important reason for providing
an unsigned mode of arithmetic is the fact
that in many data-processing applications
most of the numerical data fields are inher-
ently positive. For instance, a count of
physical items can only be positive; quanti-
ties and prices in accounting transactions

B Byte s ize 1

S T U V Byte size 4 [113
S T U V Byte size 6 m

Sign
bit

FIG 7.3. Sign byte.
-

are positive, although the resulting balances may have either sign.
]:or inherently positive quantities signs are redundant, and significant
storage space can be saved by omitting sign bits.

When signs are redundant they are usually omitted in the source data
:IS well, to reduce manual recording effort. Some computers require all
numbers to be signed before arithmetic can be performed. The pro-
gramming effort to insert signs where none are needed can be avoided by
an unsigned mode of arithmetic.

The unsigned mode is also needed in order to operate arithmetically on
parts of fields, which generally do not have signs even when the entire
field does.

Thus i t becomes
possible to operate with a mixture of signed and unsigned memory
operands; for example, one can add an unsigned item field to a signed
total field. When the result is stored in memory it is again possible to
specify whether to omit or include the sign of the result. The accumu-
lator sign is held in the 8-bit accumulator sign-byte register, which also
rontains thc three data flags of the accumulator operand and four zone
bits, according to the byte-size-8 format of Fig. 7.3.

The accumulator operand always has a sign attached.

84 VAKIARI,F;-FIELI)-I,EW(:TH OPERATIOX [(>HAP. 7

Thcb VF'L jnstriirtions contain another modifier bit that affects t h c i
signs, the negative sign modifier. If it is set to 1, this modifier c a w + ; t i l

inversion of operand sign so that ADD becomes subtract, LOAD (which in
some computers is called clear and add, or reset add) becomes clear and
subtract, etc. This sign inversion is available for all arithmetical opera-
tions by virtue of the common modifier bit.

7.1 0. Indicators

Every VFL operation sets certain indicators to indicate important
characteristics of the operand and the result. Operations other than
comparison turn on indicators that show whether the result is less than,
equal to, or greater than zero, or whether the result sign is negative (which
includes the possibility of a negative zero result, as well as a result, less
than zero). For comparison operations there is a separate set of indica-
tors that show whether the accumulator operand was lower than, equal
to, or higher than the memory operand. Since these indicators are set
only by a compare instruction, it is possible to insert other instructions
between this instruction and the conditional branch that tests the com-
parison result, without danger of destroying the result.

A cornparison may be considered to be a subtraction with the result
discarded and both operands left intact; so there is a direct correspond-
ence between the result indicators and comparison indicators :

Result indicators

Eesult less than zero
Result zero
Result greater than rero
Result negative

Comparison indicators

Accumulator low
Accumulator equal
Accumulator high

The lost carry indicator is set if there is an overflow beyond the left end
of the accumulator, but, as was mentioned earlier, the accumulator is long
enough so that this would be a rare occurrence. An overflow is more
likely to become apparent when the result is stored in memory. The
memory field would normally be specified just long enough to accommo-
date all expected results. A result overflow then means that the accum-
ulator contains more significant bits than the memory field can hold,
and the partial field indicator is turned on. If the partial field indicator
remains off after a store operation, there is assurance that all higher-order
accumulator bits were 0.

There are two add to memory operations which return the result of an
addition to memory instead of to the accumulator. When the result
goes to memory there may be a carry off the left end of the specified

SEC. 7.111

memory held even if there are no excess 1 bits in the accumulator. The
lost carry indicator is then turned on.

The VFL mechanism thus protects fields adjacent to the specified field
from being altered if an overflow occurs, and it signals the occurrence of
overflow by the two, rather similar, result-exception indicators, lost carry
and partiaZJieZd. The reason for two separate indicators is that the two
conditions indicated would normally be handled by different correction
procedures.

Another exception indicator is zero divisor, which, as the name implies,
indicates an attempt to divide by zero, the DIVIDE operation having been
suppressed.

If the operand has been flagged with one or more data flags, the corre-
sponding data $as indicators are set. The to-memory operation indicator
distinguishes from all other operations those which return a result to
memory; this is an aid in programming exception routines, since it
obviates detailed testing of operation codes to see where the result, which
may have to be adjusted, has been sent. Finally, the indicators binary
transit and decimal transit may be used to enter subroutines after the
(binary or decimal) operand has been placed in the transit register; the
decimal transit indicator is used, for example, to enter the subroutines for
decimal multiplication and division.

The result-exception, data-flag, and transit indicators may interrupt
the program automatically. The result, comparison, and to-memory
operation indicators are available only for programmed testing.

7.1 1. Arithmetical Operations
The various VFL-arithmetic operations will be discussed here only

briefly, with emphasis on novel operations and features. The reader is
referred to the summary list in the Appendix and to the 7030 Reference
Manual for more complete descriptions.

LOAD (or a variant, LOAD WITH FLAG) and STORE are used to transfer
operands from memory to accumulator or from accumulator to memory,
respectively, replacing the previous contents. ADD and ADD TO MEMORY

form the sum of the memory and accumulator operands and return the
sum to the accumulator or to memory, respectively (LOAD and STORE may
be considered special cases of ADD and ADD TO MEMORY, obtained by turn-
ing off one input to the adder). ADD TO MEMORY is particularly useful in
single-address computers, in that it simplifies the process of adding an
item to, or subtracting it from, one or more totals in memory. A variant
is ADD ONE TO MEMORY, which makes it possible to develop counts in
memory without disturbing the accumulator.

Further variations of the normal addition operations are ADD TO MAG-

UITGDE and ADD MAGNITUDE TO MEMOHY, which are intended to be used for
positive-integer arithmetic. Addition is algebraic, but the accumulator
sign is taken to be positive and the result is not allowed to change sign;
if the result would have been negative, it is replaced by zero.'

STORE ROUNDED is a novel instruction which stores a rounded result in
memory while leaving the unrounded result in the accumulator for any
further operations. The offset specifies the position a t which rounding,
by adding % to the absolute value, takes place, and the field is then sent
to memory, dropping all positions to the right of this one.

All of them perform an
algebraic subtraction and turn on a low, equal, or high indicator according
to the result, but the numerical result is discarded and both operands are
preserved in their original form. Comparison may be either on proper
numherq, according to algebraic sign conventions, or on nonnumerical
data, with fields treated as unsigned binary numbers.

One or more COMPARE IF EQUAL instructions are used following a
COMPARE to continue comparison of fields longer than 64 bits. COMPARE

FOR RANGE following COMPARE can be used to determine whether a
quantity falls within a given range when exact equality is not desired.
These three instructions are paralleled by another set of three (COMPARE

permit a portion of the accumulator to be compared with the memory
operand.

The regular MULTIPLY instruction uses the accumulator operand as the
multiplier and returns the product to the accumulator. Because it is
often desired to add the product to a previous result, a cumulative multi-
plication operation is also provided. Here the multiplier must first have
been loaded into a special factor register by the instruction LOAD FACTOR.

Then MULTIPLY AND ADD forms the product of this factor with the memory
operand and adds the result to the accumulator contents. The factor
register remains undisturbed, and its contents are still available if the
same multiplier is to be used repeatedly.

In DIVIDE, the accumulator operand is the dividend and the memory
operand the divisor, with the quotient being returned to the accumulator.
At the same time a signed remainder is placed in a special remainder
register, where it is available any time until another division is per-
formed. A noteworthy feature of this DIVIDE operation is that it does not

There are several variations of COMPARE.

FIELD, COMPARE FIELD IF EQUAL, and COMPARE FIELD FOR RANGE), which

This is a modification of operations independently proposed by Brooks and

F. P. Brooks, Jr., The Analytic Design of Automatic Data Processing Systems.

R. w. Murphy, A Positive-integer Arithmetic for Data Processing, I R M J . RenParch

Murphy:

Ph.D. thesis, Harvard University, 1956, p. 6.42.

a n d h d o p m e n t , vol. 1, no. 2, pp. 158-170, April, 19.5;.

Ssr . i.131 I ~ O G I C A L CONNECTIVES OF ‘rtT.0 j7 WARLES 87

require adjustment of the relative magnitudes of dividend and divisor to
produce a proper result. In other computers it has been necessary to make
sure that division would not be halted by a dividend too large with respect
to the divisor, with the possibility of error stops (or worse) if the numbers
exceeded the predicted range. Xo scaling is needed in the 7030 for
division to proceed, although sometimes i t may be desired to offset, the
dividend relative to the divisor in order to obtain a specified number of
significant quotient bits. The indeterminate case of a zero divisor is
signaled by program interruption, and it is not necessary to make a test
before every division.

The VFL-arithmetic instruction set may be extended by using the
instruction LOAD TRANSIT AHD SET for interpretive programming. The
specified operand is loaded into a special register, the transit register, and
a program interruption is initiated. A 7-bit field in the instruction can
be used as a code of 128 pseudo operations by entering a table of branch
instructions which lead to corresponding subroutines. This feature
happened to be a by-product of the interpretive decimal multiplication
and division scheme, but it is expected to become a useful programming
tool.

7.1 2. Radix-conversion Operations

The radix-conversion operations provide for automatic conversion,
either from decimal to binary radix and format or from binary to decimal.
The numbers are treated as integers. For numbers other than integers,
a multiplication by a suitable power of 10, in binary form, must be
programmed.

The basic instruction LOAD CONVERTED obtains the original number
from memory and places the converted result in the accumulator. All
the format specifications of the VFL system are available.

Another operation, LOAD TRANSIT CONVERTED, loads the converted
result into the transit register, by-passing the accumulator. Two more
operations, CONVERT and CONVERT DOUBLE, take the operand from the
accumulator and return the result to the accumulator; these operat,ions
are designed to convert to or from binary numbers in the floating-point
format.

It is important to note that these operations combine the functions
of format conversion, done efficiently by the serial arithmetic unit, and
radix conversion, performed a t high speed by the parallel arithmetic unit.

7.1 3. Logical Connectives of Two Variables

The use of Boolean algebra to express logical functions is well known,
and Fig. 7.4 shows some of the commonest functions of two logical vari-
ables. The variables are called m and a, corresponding to the memory

8 8 JTARIABLE-FIELD-LEK\'GTH OPER.4TION [CHhI'. 7

,tnd accumulator operands. These logical connectives have found their
way into tJhe instruction repertoire of several computers.

There are sixteen ways of combining a pair of two-valued variables.
By rearranging the notation of Fig. 7.4 and adding the rest of these func-

nL a

0 0
0 1
1 0
1 1

m V a

0
1
1
1

And

m a

0 0
0 1
1 0
1 1

m A a

0
0
0
1

I_____

0 0
0 1
1 0
1 1

(Inclusive) Or

0 0
1 0 1
0 1 0
0 1 1

N o t m Exclusive or 1
I
0

FIG. 7.4. Some Common Boolean functions of two variahles.

tions, a complete table can be made, as shown in Fig. 7.5. For each
connective the values of the function corresponding to the four possible
combinations of bits m and a are shown under the heading Truth tables.
The connectives are here labeled 0 to 15 according to the binary integer

Connectit

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Common
names

And

Exclusive or
Or
Nor (dagger)
Identity (match)
Not
Implication
Not

Not and (stroke)

m a
0 0

0
0
0
0
0
0
0
0
7
1
I
1
1
1
1
1

Truth tables

m a
0 1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

m a
1 0

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1 -

m a
1 1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

__-

Symbolic
representation

FIG. 7.5. Complete tahle of logical connectives of two variables.

Ssc. 7.141 coxa ECTIVE OPER.<TIOSS 89

formed by the 4 bits in the truth tables. Thus, with the particular
arrangement chosen, the function and is connective 1 and the function or
is connective 7. The column a t the right shows a representation of each
function, in terms of symbols chosen in Chap. 6.

The sixteen logical connectives include several that might be considered
trivial, such as 0 and 15, which depend on neither variable, or 3 and 5,
which merely reproduce one of the variables disregarding the other.
Then again, connectives 4 and 13 can be obtained from 2 and 11 simply by
interchanging m and a, and the second half of the table is, of course, the
same as the first half inverted. Thus it might appear economically wise
to restrict the connective operations in a computer to a small set, such as
that of Fig. 7.4.

That all sixteen connectives be provided in the 7030 was originally
proposed for the sake of completeness and as a matter of principle. It
was decided to specify connectives by placing the 4 bits of the desired
truth table (Fig. 7.5) directly in the operation code of the instruction
(Pig. 7.2). It was then discovered that the logic unit could be imple-
mented very simply by connecting wires corresponding to bits m and a, or
their inverse, and the specifier bits to 4 three-way and circuits feeding a
four-way or circuit. Thus the extra cost of furnishing all sixteen con-
iiwtives was very low indeed. Moreover, it was found during explora-
tory programming that the “trivial” connectives were used much more
ofteii than connectives depending on both variables, since they provide
such common functions as setting, resetting, and inverting of bits.

So far we have discussed connective operations on a single pair of
binary variables with a single-bit result. To evaluate a complex logical
statement with such operations, i t is necessary to apply different con-
nectives sequentially, one pair of variables a t a time. In other applica-
tions, such as inverting or masking an array of bits, i t is desirable to
apply a single connective to a group of bits. The connective operations
are designed to make possible both modes of operation by means of the
VFL mechanism; the field length specifies the number of bits, from 1 to 64.

7.1 4. Connective Operations
The connective operations, like the other VFL operations, specify a

memory operand by the address of the leftmost bit and by the field
length in bits; the second operand is taken from the accumulator, and its
right end is defined by the offset, as before. The connective specified by
the above-mentioned 4-bit code in the instruction is applied to each pair
of correspoiiding bits from memory (m) and accumulator (a) . Some
illustrative examples are shown in Fig. 7.6.

There are three operations: CONNECT, which returns the result to the
accumulator; COSXECT To MEMORY, which returns the result to memory;

90 VARIABLE-FIELD-LENGTH OPERATION [CHAP. 7

and CONNECT FOR TEST, which leaves both operands intact and discards
the result after recording certain tests that are always made after each
of the three operations.

One test determines whether all result bits are 0 and sets the result zero
indicator. More comprehensive tests may be made on the basis of two
bit counts which are developed from the results: the left-zeros count
indicates the number of consecutive 0 bits between the left end of the
result field and the first 1 bit; the all-ones count gives the number of 1 bits
in the result. As an example, the low-order bit of the all-ones count gives
the odd-even parity of the result field.

m
a

C'onnectioe

0 0 0 1 (m A a)
0 1 1 0 (r n V a)
0 1 1 1 (m V a)
1 0 1 0 (T U)

1 0 1 1 (r n 3 a)
1 1 1 1 (1)

Operands
0 0 1 1 0 0 1 1
1 0 0 1 0 1 1 0

Left-zeros All-ones
count count Result

0 0 0 1 0 0 1 0
1 0 1 0 0 1 0 1
1 0 1 1 0 1 1 1
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1

3 2
0 4
0 6
1 4
1 6
0 8

FIG. 7.6. Examples of logical connectives. Field length and byte size are 8.

Logical fields have no internal structure, each bit being independent of
the others, and a byte size of 8 is specified as a rule. The accumulator
operand is the same length as the memory operand, all other accumulator
bits being ignored. This is unlike the other VFL operations, which treat
the entire accumulator contents as the implied operand. Thus LOAD not
only places the memory operand in the accumulator, but also resets all
other bits to 0; CONVECT, on the other hand, changes only those accumu-
lator bits which directly correspond to the specified memory bits, all
other bits being left unchanged. This very useful property of the connect
operations allows independent use of different parts of the accumulator.
In particular, CONNECT 0011 (see Fig. 7.5) can be used for assembly of
data in the accumulator, and CONNECT TO MEMORY 0101 for storing selected
portions of the accumulator. These functions are especially helpful in
programming table references, either by address selection or by searching.

Since the byte-size-determining mechanism is available, it has been put
to use also in connective operations. When the byte size is less than 8,
each memory byte is automatically filled with leading Os to make
an 8-bit byte before these are combined with 8-bit bytes from the
accumulator. (The accumulator always operates with byte size 8 in

SEC. 7.141 91

connective operations, as compared with an automatic byte size of 4 in
decimal arithmetic.) The result bytes, also 8 bits long, are cut to the
specified size in CONNECT TO MEMORY by deleting excess bits. The byte-
size controls permit expansion or contraction of bytes, or selection, inter-
leaving, and distribution of bits.

The combined facilities of the connective operations constitute a
complete, novel, and powerful system for operating upon groups of
independent bits rather than numbers. They are perhaps the most
significant new feature of the 7030. It has become clear that logical
operations are neither modifications of arithmetic nor auxiliaries to it,
but are equal to arithmetic in importance.

Chapter 8

FLOAT1 N G - PO I NT OPE RAT1 ON
by S. G. Campbell

In this chapter we shall first discuss the reasons for going to floating-
point operation and cover some general questions concerning this mode
of arithmetic. Then we shall describe the implementation of floating-
point arithmetic in the 7030 computer.

GENERAL DISCUSSION

8.1. Problems of Fixed-point Arithmetic

Two basic problems in large-scale scientific computation are the range
and the precision of numbers. The range of numbers is given by the
extreme values that the numbers may assume; too small a range will
cause frequent overflow (or underflow) of numbers, requiring excessive
intervention by the programmer. Precision refers to the number of
digits (or bits) needed during the calculation to retain the desired number
of significant digits (or bits) in the result; when the number of digits is
insufficient, the progressive significance loss and the cumulative round-off
errors, which usually occur as the calculation proceeds, may cause the
results to be meaningless.

Most of the early computers designed for scientific computation used
jixed-point arithmetic. A number was represented by a fixed number of
digits, and the machine was designed with the decimal point (or binary
point) in a fixed position, as in a mechanical desk calculator. This
arrangement automatically implies a rather restricted natural range,
which was commonly the interval from - 1 to + 1. Similarly the natural
precision was a function of the fixed word length of, say, n digits, so that
numbers within the natural range from - 1 to +1 (any number of abso-
lute value not exceeding unity) could be represented with a maximum
error of R-"/2, where R is the radix used (most commonly 2 or 10). If

92

SEC. 8.11 PROBLEMS OF FIXED-POINT ARITHMETIC 93

the natural precision of the machine was inadequate for a particular cal-
culation (and in most early machines it was about 10 to 12 decimal digits,
or the equivalent), additional accuracy could be obtained by programming
multiple-precision arithmetic, that is, by using more than one word to
represent a single number. Programmed multiple-precision operations
were very slow relative to the corresponding single-precision operations
performed on the natural unit of information, and they were wasteful of
both data storage and instruction storage.

The problem of range was handled by a completely different technique,
commonly called scaling. There were several approaches to scaling,
depending upon the problem and upon the persuasion of those who
analyzed and programmed it. Sometimes it was possible to scale the
problem rather than the arithmetic. Obviously, numbers used in
scientific calculations do not fall naturally within the unit interval, but
such problems may be transformed into problems in the unit interval,
solved there, and the results related back to the real world. For example,
if we are integrating some function f(x) between limits a and b, we may
translate and compress uniformly by some factor R p the interval (a$)
into the unit interval (0,l) on the x axis, and compress f(x) uniformly on
the y axis by some factor Rq greater than the maximum absolute value of
,f(x) in the interval (a$). The resulting integral is clearly less than unity
in absolute value, as are all the quantities involved in calculating i t ; so
the entire calculation can be performed in fixed-point arithmetic, and the
unscaled value of the integral can be obtained by simply multiplying the
scaled result by the factor R p + * . Even in this simple example it is neces-
sary to know the maximum value of the integrand, to perform a linear
transformation on the function, and to scale it properly.

For more complicated problems more and deeper analysis may be
required; it may become impractical to scale the problem, but it is still
possible to scale the arithmetic. Such scaling simply takes advantage of
the fact that, with n digits in radix R, we can represent any number whose
absolute value does not exceed Rp with a maximum error of RP-”/2.
(In the special case of p = n, the quantity represented is an integer.)
The quantity p , which may be any integer, is sometimes called the scalc
factor and may be either implicit or explicit-that is, it may exist only in
the mind of the programmer, who takes it into account in his calculation,
or it may appear explicitly in the computer memory. If the scale factor
is explicit, scaling loops may be used to modify the scale factor as cir-
cumstances dictate. In either case, a common scale factor p is shared
by an entire set of numbers, the only condition being that no number in
the set can be as large as R p in magnitude.

‘The M eaknesses of scaling the arithmetic are twofold: a considerable
;mount of mathematical analysis as w\.ell as side computation is involved

94 FLOATING-POINT OPEHATIOX [CHAP. 8

in determining and keeping track of the scale factor; and the scale factor
for an entire set of numbers is determined by the maximum value that
any of them can achieve. The first difficulty has become more acute as
the number of computers has increased relative to the number of analysts
and programmers. The second introduces a significance problem : given
a common scale factor p , the actual difference k between the scale factor
p and the order of magnitude of a given scaled fixed-point number causes
IC leading zeros to occur in the fixed-point number, leaving a maximum of
n - k , instead of n, significant digits. It is thus possible for k informa-
tion digits to be permanently lost.

8.2. FI oa t i n g- poi n t Arithmetic

To avoid difficulties of limited range arid scaling in fixed-point arith-
metic, G. R. Stibitz in the early 1940’s proposed an automatic scaling
procedure, called .floating-point arithmetic, which was incorporated in the
Bell Telephone Laboratories’ Model V Relay Computer.’ A similar
procedure was developed, apparently independently, for the Harvard
Mark I1 computer.2 Automatic scaling was a controversial subject for
quite a few years. Many opposed it on the basis that the programmer
could not be relieved of the responsibility of knowing the size of his
numbers and that programmed scaling would give him better control
over significance. n’evertheless, as early as 1950, users began to incor-
porate automatic scaling on fixed-point computers by means of sub-
routines, first on the plugboard-controlled CPC (Card Programmed Cal-
culator) and later on stored-program machines. Then, after it had thus
proved its usefulness, floating-point arithmetic was provided as a built-in
feature, starting with the IBM 704 and NORC computers, and this gave
an enormous increase in speed over the subroutines. Today floating-
point operation is available, a t least as an option, on all computers
intended to be used full- or part-time on substantial scientific computing
applications. In view of the almost universal use of floating-point
arithmetic, it is remarkable that there is very little literature on the
subject.

In floating-point (FLP) arithmetic each number has its own exponent
(or scale factor) E , as well as a numerical part, the fraction F. The pair
(E,F) represents the floating-point number

FRE

I Engineering Research Associates, W. W. Stifler, Jr., editor, “High-speed Comput-
ing Devices,” p. 188, McGraw-Hill Book Company, h e . , New York, 1950.

Ibid. , p. 186.

SEC. 8.21

where E is a signed integer, and F is a signed fraction.' The exponent is
variable and determines the true position of the decimal or binary point
of the number; whence the name Boating point.

The rules for combining FLP numbers follow directly from elementary
arithmetic and the law of exponents.2

Rlultiplication:

Division :

Addition-Subtraction :

(E I , ~ I) * (E2,Fz) = (El + Ez, F I * Fz)

(E1,Fi) / (Ez,Fz) = (E1 - Ez, F i / Fz)

(8.3)
if E, 2 E',
if El < E z

Multiplication [Eq. (8.1)] and division [Eq. (8.2)] are straightforward-
the fractions are multiplied or divided, and the exponents are added or
subtracted, respectively. Fractions and exponents can be manipulated
simultaneously; so these operations take essentially the same amount of
time as corresponding operations on fixed-point numbers of the same
lengths as the fractions. (It should be noted, however, that fixed-point
multiplication and division are often accompanied by extra scaling instruc-
tions, which are avoided with floating point. Thus the built-in FLP
operations actually take less over-all time than fixed-point multiplication
and division.)

Additions and subtractions [Eq. (8.3)] are more complex, because the
radix points must be lined up first. This is done, quite automatically, by
comparing the exponents and shifting the fraction with the smaller
exponent to the right by an amount equal to the difference in exponents.
The addition or subtraction of the fractions then proceeds, and the larger
cxponeiit is attached to the result. These steps are essentially sequential;
so FLP addition and subtraction generally take more time than fixed-

' The term mantissa is often used instead of fraction, by a rather loose analogy with
the terminology of logarithms. It is not necessary for the numerical part to be a
proper fraction; it could just as well be made an integer or a mixed fraction by adjust-
ing the exponent. The ezponent has been repre-
wited in many machines by an unsigned number obtained by adding an arbitrary
constant; this unsigned number has been called the characteristic. The signed-
csponent notation is more natural and simpler t o use, especially when fixed-point
arithmetic is to be performed on the exponent separately.

Following a convention established by the FORTRAN programming system, the
symbols * and 1 are used here for explicitly stated multiply and divide operations, in
preference to other common symbols that are harder to type and write, such as X,

This is largely a design choice.

and -:- .

point addition and subtraction. (The speed relation, therefore, is the
reverse of that for multiplication and division.)

The basic rules of FLP arithmetic are thus stated quite easily, but they
lead to several difficulties, of which some are fundamental and some can
be resolved by more or less arbitrary decisions. One difficulty arises
from the semilogarithmic nature of FLP numbers. If multiplication and
division were the only arithmetical operations, the fraction part would
not be necessary and high-speed addition of the logarithms (noninteger
exponents) would suffice. Addition and subtraction, however, require
the fraction parts, with the exponents restricted to integers, so as to
permit the associated shifting operation. Hence FLP numbers are a
mixture of rational numbers and logarithms, but the representation of a
given number is not unique. For example, in decimal notation,

0.600*102 = 0.060*103 = 0.006*104

More important problems are presented by the singularities. Like
fixed-point arithmetic, FLP arithmetic must provide for the occurrence
of two yuaxi infinitzrs (numbers whose absolute value is greater than the
largest representable niimber; that is, the exponent exceeds its largest
positive value) arid of zero (the result of subtracting equal numbers), but
the lack of a unique F1,P representation introduces subtle questions.
Thus a zero with a large exponent may represent a more significant
quantity than a zero, or even nonzero, number with a small exponent.
FLP arithmetic, unlike fixed-point arithmetic, must also allow for the
possibility of two injinitesimals (numbers whose absolute value is less
than the smallest representable number; that is, the exponent exceeds its
largest negative value). Whereas in fixed-point notation the infinitesimals
are indistinguishable from zero, a zero in 1;12 iiotation may have a true
1 alue quite different from an infinitesimal. (The ambiguity of zeros and
infinitesimals does occur also in scaled fixed-point arithmetic, where the
individual programmer has had to find his own way of programming
around the difficulty. Built-in floating-point arithmetic removes the
means of detecting singularities from the programmer’s direct control;
SO the problem must now be faced by the designer.)

Among the situations that may be corrected by decision making, the
most glaring concerns the treatment of division. Since there is no
guarantee that P1 < Fz, there is no guarantee that the quotient fraction

ill have a magnitude within the allowable range. This may be treated
hy ruling that, if F 1 < F B , the division will proceed as in Eq. (8.2); but if
1’1 2 F,, assuming F 1 # F 2 # 0, the quotient will he

SEC. 8.31

where p is an integer such that

SORMALIZATION 97

The result will always be arithmetically correct; in fact, it will be as
precise as possible n~henever F1 2 F?.

A different problem can arise in the case of a true addition (an addition
involving operands of the same sign or a subtraction involving operands
of diff wen t signs) whenever the resulting fraction exceeds the allowable
range. This is a version of the familiar fixed-point-overflow problem and
may be treated in the same way- by turning on an indicator to indicate
that a 1 has been lost off the high-order end of the fraction, leaving any
desired corrective action to the programmer. Another solution is to
replace the result (E,F) automatically by (E + 1, R-IF), which is done
in normalized arithmetic (below).

Solutions to these difficulties of FLP arithmetic will be discussed in
subsequent sections.

8.3. Normalization

To improve precision it is desirable to maintain as many significant
digits as possible. To this end all leading zeros may be removed from the
result of an operation by shifting thc fraction to the left and decreasing
the exponent accordingly. Thus the decimal floating-point number
(2 , 0.006) when adjusted becomes (4, 0.600). Such numbers are called
tiormaltzed, whereas numbers whose fractions are permitted to have lead-
ing zeros are called unnormdixed. Floating-point arithmetic is called
normalized or unnormalized depending on whether the normalization
.tep is performed at the end or not. The operands of normalized opera-
tions do not as a rule have to be normalized numbers themselves.

Another function of normalization is to correct for overflow after an
addition by shifting the result fraction to the right until the most signifi-
cant digit is again in the high-order position and then appropriately
increasing the exponent. Such a right shift to preserve the most signifi-
cant digit may cause the loss of the least significant digit, but this is
mavoidable.

The singular quantity (B,O) cannot be normalized, since its fraction is
all zeros; it is useful to regard (E,O) as both a normalized and an unnor-
rnalized FLP number, since it may serve to indicate the order of magnitude
of a result. Except for this and any other specially defined singularity, a
iiormalized FLP number satisfies the inequality

98 FLOATING-POINT ()PER.ITIOIV [CHAP. 8

8.4. Floating-point Singularities
I irst-order singularities may occur when legitimate FLP operations are

prrformed upon legitimate FLP operands with nonzero fractions.
Singular results fall into three categories:

1 . Ijxponent O I I P ~ $ O W . The exponent of the result exceeds the allom-
able exponent range. This result is outside the allowable number
representation and may be likened to a positive or negative infinity, the
sign being that of the fraction. The symbol f 00 will be used to represent
such a number.

The exponent of the result is negative and
exceeds the allowable exponent range in magnitude. This result may be
likened to a positive or negative in$nitesimaZ, since it is outside (or
inside!) the allowable number representation, is smaller than any
legitimate quantity, and is definitely not zero (unless the fraction is zero).
It has the same sign as the fraction.

This result can occur as a first-order singularity only
from a true subtraction with equal operands:

2 . Exponent underflow.

The symbol kc will be used.
3 . Zero fraction.

The result is thus an indeterminate quantit,y with unknown sign, aborit,
which all that, is known is that it satisfies the inequality

- RE-" < (E,O) < RE-"

where n is the number of fraction digits, and R is the radix. (E,O) may
('over a wide range of values including the true zero. The exponent E
arid the n zeros of the fraction indicate the maximum order of magnitude
correctly ; hence the name order-of-magnitude zero is often wed.

In dealing with first-order singularities of the FLP number system, there
are two points of primary importance: provision for unambiguous indica-
tion that a singularity has been created, and automatic tagging of the
result. The zero fraction is suitable as a tag for an order-of-magnitude
zero, but special tags are needed to distinguish exponent underflow
and overflow from legitimate operands.

Second-order singularities-those created by performing arithmetical
operations upon one or more first-order-singular floating-point quantities
--cannot in general be handled automatically (and blindly) by the com-
puter without creating serious problems. Nevertheless, it is reasonable to
pro\.idP straightforward and fairly safe procedures for the standard auto-

SEC. 8.51

matic treatment of such cases, provided that the operands arc again
automatically tagged and that interrupt signals are available to permit
programming of any other corrective action to take place, either imme-
diately after the singular result is produced or later.

8.5. Range and Precision
Problems of range and problems of precision are often confused.

Programmers somctimes go to FLP arithmetic when they actually require
multiple precision, and even to multiple precision when what they actually
need is more range.

Since the purpose of BLP arithmetic is to gain a vast increase in the
range of representable numbers, range is seldom exceeded, but even when
It is, range is not so serious a problem as precision. The exponent of R

F1,P number always indicates the range exactly, as long as the number i h

representable; one can, for instance, determine that a number is approach-
ing, but has not exceeded, one of the limits of representation. If the
exponent does overflow or underflow, the nature of the singularity may be
indicated, or, if necessary, the range can be extended by using a multiple-
precision exponent.

The
fraction always contains the same number of digits, and it is not imme-
diately evident which digits are no longer significant-unless an order-of-
magnitude zero is created by a single operation, so that all precision is lost
a t once. When serious precision loss takes place, it does not usually
occur so dramatically. Rather, precision is lost by a process of gradual
attrition, and its departure remains unnoticed unless some sort of running
significance check is made. More of this later.

,411 numerical calculation reduces ultimately to the question of pre-
rision. Precision is, so to speak, limited a t both ends of the calculation--
limited a t one end by the given precision of the input data and a t the
other end by the required precision of the result. Subject to considera-
tions of time and cost, the gap between these limits must be adequately
bridged by method and machine. If the machine is inadequate, the
method used must make up for i t ; and if the method is inadequate (as
often happens through insufficient time, insufficient analysis, or poor
definition of a problem), the machine must be designed to take up as much
.;lack as possible. Insufficiencies of method can be partially compensated
for by machine checks of exceptional conditions, just as programming
difficulties can be lessened by provision of a more powerful instruction set.

The two mechanisms that combine and interact to produce loss of
precision in normalized FLP calculations are significance loss and round-
off error. Volumes have been written about round-off error (perhaps
more has been written about i t than has been done about it), but only a

There is no corresponding mechanism to record loss of precision.

100 1'1~0 \TI\(. -POIST ~ P E R . I T I @ h [(' IL~P. 8

few papers h a w been written about significance Iosb' (though it has
possibly caumi iriorr noise to be arceptcd as pure signal). Most of the
impoi tant work done on round-off error has in fact referred to fixed-point
round-off and does not apply at all to the problems of normalized FLP
round-off. l"urthermore, i t is doubtful that a valid FLP error analysis
can be made without iiiformatioli on significance loss. The only pro-
cedure that limits the effect of both significance loss and round-off error is
to increase the number of fraction digits used, with considerations of cost,
size, and speed dictating how far i t is practical to go in this direction.

8.6. Round-off Error

Performing any of the four basic FLP-arithmetic operations upon FLP
operands with n-digit fractions gives a result fraction of from n to 2n
digits. In division
there are two results, the quotient and the remainder, each with an n-digit
fraction. In an addition or subtraction the result may range from n to
2n digits, depending upon the amount of preshift; preshift refers to the
right shift of the fractionof the operand with the smaller exponent. (This
shift may vary from no shift to a shift of 2n places; if the shift is more than
2n places, we define the two quantities as incommensurate and take the
quantity with the larger exponent as the result, with suitable sign
manipulation.) In normalized E'LP arithmetic any operation may be
followed by a normalizing left shift of less than 2n places to eliminate the
leading zeros of the result fraction or by a normalizing right shift of one
place to correct for overflow of the fraction. These shifts are referred to
as postshzfts. (Rinary normalized FLP operations involve always a t
least one preshift or one postshift or both.)

In the interest of speed, economy of storage, and programming direct-
ness, the result of a 1;LP-arithmetic operation is ordinarily reduced to the
same number of digits n as are possessed by the operands from which the
result was produced. The simplest and fastest way to accomplish this is
to shorten the result by merely dropping all except the high-order digits;
this produces results that are consistent>ly somewhat smaller in magnitude
than the true value.

To avoid the downward bias of the simplest method it is common
practice to round the result by adding R-n/Z to the magnitude of the frac-
tion before dropping the excess digits; this procedure also tends to reduce
the magnitude of the error. This form of rounding poses difficulties: i t

In multiplication the product always has 2n digits.

' J. W. Carr, 111, Error ilnalysis in Floating Point Arithmetic, Communs. B C A l ,
vol. 2, no. 5, pp. 10-15, May, 1959; R. L. Ashenhurst and N. Vetropolis, Unnor-
inalized Floating Point Arithmetic, J . A C M , vol. 6, no. 3, pp. 415-428, July, 1959;
i y . G. Wadey. Floating-point, Arithmetics, ibid., vol. 7, no. 2, pp. 129-139, April, 1960.

SEC'. 8.7j

iiiust follon- nornialization, is therefore postponed until the operatlor1
i b otherwise complete, and requires extra time and an extra register
position to boot. X simpler but more artificial form of rounding is to
force a 1 in the remaining least significant bit of the shortened result (in
binary machines) ; although this decreases the bias, it docs not decrease
the maximuni error, and i t leads to logical problems.

Rounding is, therefore, not necessarily the best way to remove excess
digits. In fact, automatic rounding on all E'LP operations can lead to
serious problems of error analysis, and it gives multiple-precision arith-
metic a nightrnarish quality. The
most prudent approach is to give the user his choice of how to control
round-off error-this term being used for the error resulting from the loss
of the extra digits, whether true rounding takes place or not.

There are two important cases in which more than n digits are kept:
1. The extra digits, which are normally discarded, may be required for

some special purpose-e.g., the remainder may have to be kept and tested
for zero in order to know whether the divisor was a perfect divisor.

2 . Multiple-precision arithmetic may be required because the natural
precision of the machine is inadequate for the particular computation;
so all 2n possible digits of the result must be made available.

Higher precision is actually obtainable a t little extra cost for some
important activities even in single-precision calculation. 1;or example,
one of the most frequently occurring activities in scientific or statiqtical
problems is the calculation of the inner product Xu&,. This may be
accomplished by cumulative mitltiplication, in which an-digit products of
n-digit factors are repeatedly added to the 2n-digit partial sum, thus
minimizing the effect of both round-off error and significance loss.

8.7. Significance Checks

Programmed significance checks have been used by programmers in a
number of installations for many years and have proved effective in
trapping many actual cases of total significance loss. When used with
built-in FLP arithmetic, however, such a programmed significance check
slows down effective arithmetic speeds by a considerable factor, for the
significance check takes much more time than the actual arithmetic.

There are two possibilities:
either the check may be made in parallel with the operation, in which case
there is no time loss, but roughly logR n extra digits are required to keep
the significance check (and such extra digits are required in all positions
of data memory) ; or else a record of lost significance is encoded into the
area of the fraction normally occupied by nonsignificant digits, requiring
at least one extra flag digit and a relatively long time for encoding and
decoding. Most users would rather keep any extra positions of storage

(How do you unround a number?)

The significance check may be built in.

102 FLOATING-POIST OPERATION [CHAP. 8

to maintain more precision and use any extra cyuipment to improve the
FLP instruction set itself.

Another approach involves the injection of deliberate noisr into thv
computation, so that results affected by significance loss will have a very
high probability of indicating the loss by differences between normal runs
and ‘(noisy” runs of the same problem. This approach, which requires
little extra hardware arid no extra storage, was chosen for the 7030. After
an extensive search, the most effectiw technique turned out to be both
elegant and remarkably simple.

By definition of ordinary normalized FLP operations, numbers are
frequently extended on the right by attaching zeros. During addition
the n-digit operand that is not preshifted is extended with n zeros, so as to
provide the cxtra positions to which the preshifted operand can be added.
Ainy operand or rcsiilt that is shifted left to be normalized requires a
corresponding number of zeros to be shifted in a t the right. Both sets of
zeros tend to produce niimbers smaller in absolute value than they would
have been if more digits had been carried. In the noisy mode these num-
bers are simply extended with 1 s instead of zeros (1 s in a binary machine,
9s in a decimal machine). Sow all numbers tend to be too large in
absolute value. The true value, if there had been no significance loss,
should lie between these t v o extremes. Hence, two runs, one made with-
out and one made with the noisy mode, should show differences in result
that indicate which digits may have been affected by significance loss.

The principal weakness of thtl noisy-mode procedure is that i t requires
two runs for the same problem. A murh less important weakness is that
the loss of significance cannot be guaranteed to show up-it merely has a
very high probability of showing up-whereas built-in significance checks
can be made slightly pcssimistic, so that actual significance loss will not
be greater than indicated. On the other hand, little extra hardware and
no extra storage are required for the noisy-mode approach. Fnrther-
more, significance loss is relatively rare, so that running a problem twice
when Significance loss is suspected does not pose a serious problem. What
is serious is the possibility of unsuspectrd significance loss.

In discussions of significance two points are often overlooked. The first
of these is trivial: the best way of ensiiring significant results is to use an
adequate iiumber of fraction digits. Thc swond is almost equally
mundane : for a given procedure, nornialized I;LP arithmetic will ordi-
narily produce the greatest precision possible for the number of fraction
digits used. Xormalized FLP arithmetic has been criticized with respect
to significance loss, because such loss is not indicated by the creation of
leading zeros, as it is with fixed-point arithmetic. In other words, the
contention is not that normalized FLP arithmetic is more prone to signifi-
cance loss than equivalent fixed-point arithmetic, which would be untrue.

QEV. 8.81 FORMS OF Fto ~TIUG-POINT ~ I T H M E T I P 103

but that an c~quivalent indication of s w h loss is not provided. Loss of
significance, however, is also a serious problem in fixed-point arithmptic ;
multiplication and divisioii do not handle i t at all correctly by means of
leading zeros. (In particular, fixed-point multiplication may lead to
wious or even total significance loss, which would not have occurred with
iiormalized FLP arithmetic : and although leading zcros in addition and
Yubtraction of fixed-point operands do give correct significance indications,
the use of other operations and of built-in waling loops frequently
destroys entirely the leading-zeros method of counting significance.)

There arc other points of common confusion Iwtween fixed- and ffoating-
point calculation. For example, given a set of fixed-point numbers with
a common scale factor, the most significant number is the one with the
largest absolute value ; accordingly, many optimal procedi1re.s depend
upon selecting this element. Frequently, the rquivalent iiornialized
I X P procedure would be to select the element with most significance
lather than the element of largest absolute value. In the absence of any
information about significance, however, i t is statistically best to pick
the clement of largest absolute value, since loss of significance is asso-
riated with a corresponding decrease in the exponent and so the element
of largest absolute value does have the greatest probability of being also
the most significant number. Similarly, fixed-point error analysis ordi-
narily concentrates on some statistical characterization of the absolute
error, whereas in normalized FLP operations it is the rrlative error that
is important. Thus a polynomial approxiniation should be chosen to
minimize the appropriate statistical function of the relative error, rather
than the absolute error. (The relative error in FLP c*alculations is analo-
gous to the noise-to-signal ratio in information thcorp.)

8.8. Forms of Floating-point Arithmetic
It is difficult to formulate a single set of floating-point operations that

IT ould satisfy all requirements. Xormalized operat io~~s are required for
most of the heavy calculation, but there are uses for unnormalized oper-
ations that cannot be ignored. Unnormalized arithmetic is needed, for
instance, to program multiple-precision operations; it may also be used
for fixed-point calculation in lieu of separate high-speed fixed-point-
arithmetic facilities that would otherwise bc essential. (Thus the 7030
has high-speed floating-point arithmetic as basic equipment, and it was
decided t o omit high-speed fixed-word-length fixed-point operations.
This is the inverse of the situation with the early scientific computers,
which had only fixed-point arithmetic until a floating-point set was
grafted on.) Again, in order to permit extended precision whenever
necessary, double-length slims, products, and dividends (i.e., numbers
with 2n-digit fractions) should be available, but this would slow down

104 1’ LO.\TISG-POINT OPERATIOX [CRAP. 8

all operations arid penalize niost applications, which require only single-
length numbers (with n-digit fractions for operands and results). Hence
both single- and double-length operations are desirable.

-4nother decision, which only the user can make, is whether to round
the results or not. As mentioned before, true rounding tends to reduce
errors but consumes extra time. Moreover, in actual practice, it is often
desired to store the accumulator contents rounded to n digits while
leaving the complete 2n-digit result in the accumulator for further
calculation.

The various procedures that result froni decisions about normalization,
rounding, and the treatment of extra precision and of singular quantities
i n reality define various FLP “arithmetics.” A primary task in largr-
scale computation is determining which of these numerous “arithmetics”
is really desired.

8.9. Structure of Floating-point Data

To each form of FLP arithmetic there corresponds a particular FLP
data structure. Sometimes the same data structure can be used for
different forms of arithmetic; normalized and unnormalized arithmetic
are an example. In other cases different formats are required (as is
obviously true for single- and double-precision arithmetic). The machine
designer must decide which arithmetics and corresponding data formats
to build into the machine and which to leave to programming. In a
given machine environment i t is not usually practical to implement all
forms of FLP arithmetic and all formats that any potential user might
possibly desire. The designer must, therefore, determine what facilities
are needed to assist in programming the others.

The FLP number itself may be regarded as composed of a t least two
partially independent parts (the exponent and the fraction) ; this becomes
four parts if we consider the signs attached to each and increases to five
or six parts if we flag the exponent, the fraction, or the entire number.
In many situations it is desirable to manipulate one or more of these
parts independently of the others, and such manipulation has been a
source of much added programming complexity on earlier computers.

The most fundamental question of numerical data structure is that
of the radix. This has been considered in general terms in Chap. 5 .
The high storage eiiiciency of the binary system, as opposed to the deci-
mal, is particularly important in extending both the range and the pre-
cision of the FLP number: a 10-bit exponent gives an exponent range of
1,023, whereas the same bits used in the 4-bit coded decimal represen-
tation will handle a maximum exponent of only 399.

FLP arithmetic really involves three radixes: the radix R E used in the
mponent representation, the radix RF used in the fraction representation,

SEC. 8.91 STRUCTUEE OF FLOATING-POINT DATA 105

and the FLP radix R used in the representation (E,F) = FRE. In princi-
ple these three radixes are independent; in practice they are not. If we
were doing only unnormalized multiplication and division, all three
radixes could be arbitrary integers greater than unity. But the neces-
sity of preshifting before addition and subtraction and of postshifting
for normalized operations implies that the FLP radix R must be some
positive, integral, nonzero power of the fraction radix RF, since only
shifts by integer amounts are meaningful.

The exponent radix RE is still arbitrary. As a matter of fact, it would
make perfectly good engineering sense in a decimal floating-point machine
to make the FLP radix and the fraction radix both 10 and to let the
exponent radix be 2. Thus, using the previous example of a 10-bit expo-
nent, the range would be enlarged from for RE = 10 to 1 0 ' 0 2 3 for
RE = 2 (a factor of and the decoding circuits for driving the pre-
shifter mould be simplified. On the other hand, proponents of either
radix are likely to extend their reasoning to the exponent as well; so the
exponent radix is ordinarily chosen to be the same as the fraction
radix.

Several biliary floating-point machines have been desjgiied t o use the
floating-point radix R = 2 k , where k is an integer greater than unity.
If k = 3, the radix is octal; if' k = 4, it is hexadecimal. The Los Alamos
MAKIAC I1 computer uses k = 8, that is, a FLP radix R of 256. The
advantages of a larger FLP radix are twofold: the maximum range is
extended from, say, Rm to RLm; and the number of times that pre- and
postshifts occur is drastically reduced, with a corresponding decrease in
the amouut of equipment required for equivalent performance. There is
just one disadvantage: precision is lost through increased round-off and
significance loss, because, with FLP radix 2k, normalized fractions may
have up to k - 1 leading zeros. Such precision loss may partly be com-
pensated for by decreasing the number of exponent bits and using the
extra bits in the fraction instead. This reduces the gain in range in
order to limit the loss in precision, but the advantage of reduced shifting
is retained. It should also be noted that special procedures are avail-
able to reduce tthe actual amount of shifting, particularly for the binary
radix; the average amount of postshifting needed with normalized FLP
arithmetic and R = 2 may be reduced, a t the cost of extra equipment,
until i t approximates that of R = 8.

In prartice, the use of a larger FLP radix results in an operation more
nearly resembling scaled fixed-point calculation, except that it is auto-
matic. The designers of a particular FLP system must consider the
radix problem in the light of the machine environment and the expected
problem mix. There is no substitute for a careful statistical analysis of
the various available procedures to determine the specific implementation.

106

10 Operation
code

Address
18

FLOATING-POINT OPERATION

I
8 4

[CHAP. 8

FLOATING-POINT FEATURES OF THE 7030

8.1 0. Floating-point Instruction Format

The floating-point instructions in the 7030 use a tightly packed half-
word format (Fig. 8.l), as do the indexing and branching instructions
commonly associated with them in high-speed computing loops.

Indicates FLP instruction Index
I

FIG. 8.1. FLP instruction format.

Normalized-Unnormalized

Negative sign

Codes for

,I, 1 f o ; u t ; va,lue, ,
A 29 operations

u
Modifier

bits

FIG. 8.2. Details of FLP operation code.

The operation code (Fig. 8.2) consists of 5 bits to encode 29 different
E'LP operations and 3 modifier bits which apply uniformly to any of the
29 operations. The three modifiers are:

1. Normalization modifier.

2. Absolute value modifier.

This specifies whether postnormalization
is t80 take place (normalized) or not (unnormalized).

If set to 1, this specifies that the memory
operand is to be considered positive, ignoring the actual sign in memory.
(This modifier is analogous to the VFL unsigned modifier, except that in
the fixed-length FLP format the sign position is always there, whether
used or not.)

If set to 1, this inverts the sign of the
unreplaced operand, that is, the memory operand in a from-memory
operation or the accumulator operand in a to-memory operation. It is
applied after the absolute value modifier. Thus ADD and related oper-
ations are changed to subtract operations, etc. (This is the same as the
corresponding VFL modifier.)

3. Negative sign modifier.

8.1 1 . Floating-point Data Formats
The reasons

for choosing as the length of the memory word a number of bits that is
a power of 2 are discussed in Chap. 5. Considerations of speed dictated
that a FLP number he located in a single memory word, so as to avoid
the time penalty of crossing word boundaries. This soon resbricted thcx
choice to 64 bits; experience had shown tthat the 36-hit word of the 704

The FLP number occupies a full 64-bit memory word.

Sxc. 8.1 11 FLOATING-POINT D.YF.1 FORM.4TS 107

would be too tight for a much more powerful machine but that lengths in
the range of 50 to 60 bits would be adequate for most applications.

A number
longer than really necessary carries some penalty in extra equipment and
possibly lower speed. (The possibility of a variable FLP number length,
giving the user his choice of speed or storage efficiency, was discarded as
impractical for reasons of both speed and cost.) Offsetting this penalty
is the greater range and precision of single-length numbers, which reduces
the amount of exception handling and permits fast single-precision oper-
ations to be retained in many large jobs that would otherwise require
much slower multiple precision.

It consists of a 12-bit
exponent field and a 52-bit fraction field including a 4-bit sign field. The
exponent field consists of 10 numerical bits, an exponent sign bit, and
an exponent flag to signal a previous overflow or underflow. The sign
field contains the fraction sign bit (the sign of the nnrnber) and threr
data flags which, a t the programmer’s option, may be used to mark
exceptional data, such as boundary values. It should be noted that the
1 1 -bit signed exponent and the 52-bit signed fraction arc each compatible
with VFL data formats, so that VFL instructions can bc used clirwtly to
execute those operations on parts of a E’LP number for which there are no
specialized FLP instructions. One example is multiplication or division
of exponeuts.

The
format in the accumulator is somewhat different (Fig. 8.4). For single-
length numbers, the 12-bit exponent field and the 48-bit fraction field
occupy corresponding positions in the left half of the accumulator. The
4-bit sign field, however, is stored in a separate sign-byte register (as in
VFL operations). The low-order 4 bits in the left half of the accumulator
are not used, and neither is the right half of the accumulator.

For double-length FLP numbers, that is, numbers with a 96-bit frac-
tion, an additional 48 positioiis of the accumulator are activated; so the
double-length fraction in thc accumidator forms a homogeneous 96-bit
number. Since the accumu-
lator is 128 bits long, this leaves 20 bits unused in the right half. It
should be noted that the unused parts of the accumulator (shown shaded
in Fig. 8.4 for the two classes of opwations) are always left undisturbed
during FLP operations and may be used for temporary storage of other
kinds of data.

Sixty-four bits certainly seemed to be a liberal amount.

The basic data format is shown in Fig. 8.3.

The format of Fig. 8.3 is used for all E’LP numbers in memory.

The exponent and sign remain the same.

Symbolically we can represent a single-precision FLP number as

(Ef,E,F,Sl T, Ul V)
where Ef is the exponent flag, E the (signed) exponent, F the (unsigned)

108 FLOATING-POINT OPEHATIOX [CHAP. 8

fraction, s’ the fraction sign, and T , I’, I’ the data flags. Then the single-
length format in the accumulator is given by (Ef,E,F) with S , T , U , I;
in the sign-byte register. The double-precision FLP format in memory
becomes the pair (EfH,E,FH,~, T H , U H , V H) , (EfI*, E - 48, FL, 8, TL, UL, VL).
The exponent flags are usually, but not always, the same; the exponents
differ by 48, except when one part is singular and the other part is not;
the fractions are independent, F L being a continuation of the fraction F H ;

the sign bits are identical, but the data flags may be independent. The
double-length FLP number in the accumulator, however, is quite differ-
ent: it is (EfH,E,FH,FL), with the sign-byte register containing s, T , U , V .

Exponent flag
Exponent (10 bits) Fraction sign

3 data flags (T, U, v) Exponent sign

Fraction (48 bits)

FIG. 8.3. FLP data format.

,-Exponent flag
Exponent (10 bits) i / ,-Exponent sign

/Fract ion sign
3 data flags

(T, U, V)

SINGLE
LENGTH
OPERAND

Ffaction (48 bits)

Left hal f accumulator register Right half accumulator register Sign byte
reqister n :I I I DOUBLE

I I OPERAND
LENGTH Fraction (9 6 bits)

FIG. 8.4. FLP accumulator formats. Shaded areas are left undisturbed.

A special store instruction is available to convert the low-order part of a
double-length number in the accumulator to a proper FLP number in
memory with correct exponent and sign.

It should be noted that a word may have a nonsingular representation
in the double-length accumulator, although the corresponding number in
memory is singular (i.e., the low-order exponent has an exponent flag).

8.1 2. Singular Floating-point Numbers

The range of numbers representable by the above format is indicated
schematically in Fig. 8.5. Normal numbers (5 - N) are bounded by
infinities (5- to) and infinitesimals (zk e). Not shown is the previously
discussed order-of-magnitude zero (OMZ), which may result from sub-
tracting numbers in the N range and may thus have a true value any-

SEC. 8.121 SINGULAR FLOSTISG-POINT XUMBEHS 109

\+-here in this range.
the dividing line between positive and negative numbers.)

the 7030 is straightforward :

(An OMZ is different from the true zero, shown as

The representation of singular numbers in

Inf ini ty (c~). The exponent flag is set to 1,
and the exponent sign is positive. Hence this
is also called an exponent jlag posztiue condition
(XFP).

The exponent flag is set to
1, and the exponent sign is negative. IIencc T~~~
this is also called an exponent jlag negative con-
dition (XE”).

Zero fraction, or order-of-magnitude zero
(OMZ). All 48 bits of the fractioii (or all
96 bits for results of double-length operations
in the accumuIator) are 0.

Injni tes imal (E) .

The rulrs for doing arithmetic with infin-
ities or infinitesimals as operands follow the FIG. 8.5. FLP nunihrr
notion that an infinity is larger in magnitude r a n g e . Represen tab le

numbers iV lie in unshaded than any normal number and an infinitesimal areas.
is smaller in magnitude than any normal
number. All infinitesimals behave arithmetically like zeros, but ai1

infinitesimal with a zero fraction (an X F N zero) is the closest to a true
zero. The sign of a singular number is the fraction sign and is manipu-
lated like the sign of a normal number.

Thus the rules for arithmetically combining a normal number A‘ with an
infinity or infinitesimal are evident from the definitions. For addition
and subtraction these rules are

cc * N = cc s- SC = - x

s * € = N E - = -A- (8.4)

For multiplication and division the usual rule of signs determines the
fraction sign of the result, and the magnitude is given by

Some of the operations on two singular numbers likewise follow from
their definition :

c o + o c = a , x * x = n

110 FLOATING-POINT OPERATION [CHAP. 8

Other operations have indeterminate results (since in the discrete num-
ber system of a digital computer there is no satisfactory substitute for
L'HBpital's rule). It was thought important to propagate singularities
through the course of calculation, and, of the two possibilities, infinity
and infinitesimal, infinity was chosen arbitrarily because the programmer
would consider it more alarming:

[The purist may argue that the results in (8.7) should have a zero fraction
part as well as a positive flagged exponent, which would indicate that the
number is both indeterminate and outside the normal range. This
distinction may be programmed in the rare case when it is important.]

In comparing infinities and infinitesimals, the inequality relations are
self-evident :

+ a > + N > + E > - E > - N > - * (8.8)

When infinities of like sign are compared, they are considered equal;
similarly, infinitesimals of like sign are equal :

+ e = + E

- E - 6 = (8.9)

[Definition (8.9) is consistent with some but not all of the rules (8.4) to
(8.7). For example, E - E = E implies that infinitesimals are equal, but

This problem arises
because no consistent logic applies when both operands are singular.]

In the case of order-of-magnitude zero (OMZ), the operation takes its
normal course. So long as only one operand is an OMZ, this gives a
reasonable result. Since an OMZ represents a range of indeterminacy,
multiplication or division by a legitimate number simply increases or
decreases the size of the range of indeterminacy appropriately. Division
by an OMZ is suppressed and, when it would occur, the zero divisor
indicator is turned on. Addition of an OMZ to either a legitimate
operand or another OMZ produces either a legitimate result or an OMZ,
depending upon the relative magnitudes of the quantities involved.
(However, comparison operations call equal all OMZs whose exponents
differ by less than 48.)

The single-length product of two ORilZs raises a particularly difficult
problem. We define

- cc: = -oo implies that infinities are different.

(E1,O) * (E2,O) = (E , + E ' Z , 0) (8.10)

The double-precision product of the two zero fractions was a 96-bit zero
and correctly represented the result of the mult,iplication. When the

number IS cut to single-preclslon length, howevel, 48 meaningful Os ar?
thrown away.

In a sense the product has been “normalized” 48 places. This may
be seen by considering that (E,O) may be approximately represented by
(E,2-48), and Eq. (8.10) may be replaced, to within a small error, by

After truncation the result will henceforth be indistinguishable within
48 bits from (E , + ES, 2-48), a number that is too large by a factor of 248.

Thus (8.10) is the correct definition for the double-length product in
the accumulator, whereas for storing in memory the correct answer
should be (E , + E z - 48, 0). Since only the programmer can decide
when to store a result, the exponent adjustment can only be made by
programming. For this purpose a zero multiply indicator is turned on
whenever multiplication results in a zero fraction. The programmer may
then define any desired exponent adjustment or choose to ignore the
condition.

The zero problem in multiplication \vould perhaps not be so serious,
were i t not for the fact that OMZs are frequently successively squared,
which can lead to an unrestricted growth of the exponent, creating a large
indeterminacy that can wipe out legitimate numbers.

For the square root we have automatically (E,O)’$ = (E/2, 0) if E is
even, or [(E + 1)/2, 01 if E is odd. To be compatible with the foregoing,
the root should really be [(E /2) - 24, 01 or [(E + 1)/2 - 24, 01; other-
wise squaring and square-rooting are not inverse procedures. In this
case, however, the magnitude of the result is made too small. It loses its
ability to grow without bound and hence most of its ability to damage the
calculation. For this reason no indicator is set for the square root.
(If an indication is desired, i t may be obtained by setting the fraction
sign negative on all OMZs and using the imaginary root indicator.)

As both computers and computations have increased in complexity,
the amount of analysis per instruction written must decline; so automatic
treatment of FLP singularities becomes more important. The absence
of test instructions also leads to cleaner programs, making coding and
debugging much easier. In some physical problems, not only zeros and
infinitesimals but also OMZs are common : a steady-state condition may
prevail with everything initially a t rest, and the difference equations used
to move out in time are likely to create OMZs during the early part of
the calculation. OMZs must either be handled by the system or circum-
vented at the cost of considerable extra analysis and programming. In
the 7030 these are handled automatically and may die out during the
Course of the calculation, so that no special starting procedures are
required. .I different situation, i n which the automatic handling of

11 2 I"LOATIKG-POINT OPEHATION [CHAP. 8

singular quantities is important, is that in which they are produced
unexpectedly as intermediate quantities in a calculation, but have no
effect on the result. The fact that such singularities may arise infre-
quently, and may not even arise a t all, does not obviate the necessity for
dealing with them when they do occur.

8.1 3. indicators
The FLP indicators fall into three categories: (1) those which are set by

both VFL and FLP operations and have analogous meaning for both;
(2) those which are set only by FLP operations; and (3) the noisy mode
indicator.

Indicators Common to V F L and FLP Operations
The following indicators are shared by VFL and FLP operations:

1. Arithmetic result indicators.

2. Comparison indicators.

They show whether the result is less
than zero, zero, or greater than zero, or whether the result sign is negative.

They indicate after a comparison operation
whether the accumulator operand was low, equal, or high relative to the
memory operand.

These apply only to unnormalized
operations because the conditions are otherwise taken care of by
normalization.

It indicates an attempt to divide by a zero fraction.

This indicator distinguishes between store

3. Lost carry and partial Jield.

4. Zero divisor.
5 . Data flag indicators.
6. To-memory operation.

They signal flagged operands.

and fetch operations, for easier exception programming.

FLP Indicators
The indicators that are private to FLP operations are listed below:

1. Exponent range indicators.

a. Exponent overjlow.

These indicators signal that the result
exponent E lies in a certain range; they are as follows:

The exponent flag Ef is turned on.
This indicator shows that an overflow has been generated during the cur-
rent operation.

E 2 +21°.

b. Exponent range high. +F' S E < +21°.
c. Exponent range low. +2'j S E < +29.
d. Exponent underflow. E S -2'O. Ef is turned on. This indicator

shows that an underflow has been generated during the current operation.
e. Exponent flag positive. This

indicator shows that an overflow has been propagated; that is, the overflow
was forced because the operand was an infinity.

E 2 +210 and Ef was already on.

S E C . 8.141 USIVERS.'LL ACCUMULATOR 11 3

The exponent owr j low itiitl cxponent ~rnder.flow indicators signal that thc
number has already gone out of range. The exponent range high and
exponent range low indicators may be used as a warning that numbers
have entered a larger range than anticipated before the damage has been
done, since the result is still a representable number. The last indicator
warns that the operand was an in$nity, in case corrective action other
than the built-in procedure is desired. A corresponding indicator for
infinitesimals is not provided, since these are less likely to cause serious
damage; if flagging is desired, the programmer could turn on a data flag
after detecting the original exponent underflow.

2 . Lost signijcance. Adding or shifting nonsingular operands has
resulted in a zero fraction, leaving no significant bits.

3. Zero multiply. A multiplication has resulted in n zero fraction;
so the result may not indicate the proper order of magnitude.
4. Preparatory shift greater than 48. During addition the exponent

difference is found to be greater than 48; so some or all of the bits of the
number with the smaller exponent have been shifted off the right end of
the double-length result and are lost. In a single-precision sense, the
operands are incommensurate.

5 . Imaginary root. The operand for a square-root operation is
negative.

6. Remainder underflow. Same as exponent underjlow, except that i t
applies to the remainder produced after a double-length division, whereas
exponent underflow after division applies to the quotient.

1L'oisy Mode Indirator
This indicator, when on, causes all normalized FLP operations to be

performed in the noisy mode, n-here I F replace Os a t the right.
The noisy mode indicator i? a programmed switch, which can be

turned on and off only by the programmer. It is placed among the other
indicator6 in order to simplify program interruption. When interruption
occurs, the indicator register is stored in memory aiid subsequently
reloaded. Thus the noisg mode and other indicators are restored to the
same state they were in a t the point of interruption.

8.1 4. Universal Accumulator

The principle of the iiniversul ac.cwmulator, where the accumulator is
the source of the major implied operand aiid the destination of the major
result of every arithmetical operation, was stated alrcady in Chap. 7.
I t deserves restating here because it is an important factor in reducing
the housekeeping burden of floating-point calculations and increasing
their speed.

1 14 FLOATI&G-POINT OPERATION [CHAP. 8

8.1 5. Fraction Arithmetic

The distinction between integer and fraction arithmetic has already
been discussed in Chap. 7, where reasons are given for choosing integer
VFL arithmetic. Fraction arithmetic, on the other hand, was preferred
for floating-point operations in the 7030.

The fraction notation is a natural choice for numbers that approxi-
mately represent continuously variable mathematical quantities to a
given number of significant digits, the remaining low-order digits being
discarded. This is especially so when the numbers are normalized for
maximum precision. In multiplication, for example, i t is desirable tjo
have available either a single-length or a double-length product for single-
or double-precision work. If fraction arithmetic is used, the high-order
part of a normalized double-length product is the same as the correspond-
ing (unrounded) single-length product. With integer arithmetic the
two have different positions and exponents, which makes this convention
a little more awkward, although one can readily formulate a consistent set
of rules for integer FLP arithmetic. In most respects the practical dif-
ference between fraction and integer FLP numbers is just a matter of
changing all exponents by an additive constant.

8.1 6. Floating-point-arithmetic Operations

The FLP operations may be placed in three categories: (1) single-
length operations (which produce a result with a 48-bit fraction), (2)
double-length operations (which produce a 96-bit fraction), and (3)
special operations.

Internally, operations are actually performed in double-length form.
Thus the parallel adder for the fractions is 96 bits long, and 48-bit
operand fractions are extended with Os (or 1 s in single-length noisy mode)
after shifting, to make up 96 bits a t the input of the adder. A full
96-bit result is produced. The difference between single- and double-
length operations is primarily whether the fraction part of the accumula-
tor operand is taken to be 48 or 96 bits long and whether the result in the
accumulator, after normalization if specified, is truncated to 48 bits or not.

The fraction arithmetic takes place in 96-bit registers which are dif-
ferent from the accumulator registers. Thus it becomes possible, in
single-length operations, to leave unmolested all bits t o the right of the
48th fraction bit in the accumulator, even though intermediate results
may require more than 48 bits of register space.

Since the bulk of the computing was expected to be in single precision,
the design of the arithmetic unit was biased i n favor of performing single-
length operations a t high speed, sometimes at the sacrifice of speed for
double-length operations. Thus no time is taken to preserve the rarely

SEC. 8.161 ~iLOATI;h;G-POINT-ARITHME~IC OPRXATIONS 1 1 5

needed remainder in single-length DIVIDE, even though this remainder is
obviously generated, leaving the dressing up and storing of the remainder
in the remainder register to DIVIDE DOUBLE.

Many of the basic FLP operations are analogous to the VFL operatiow
of the same name (Chap. 7):

LOAD

LOAD WITH FLAG

STORE

STORE ROUNDED

ADD

ADD TO MAGNITUDE

ADD TO MEMORY

ADD MAGKITUDE TO MEMORY

COMPARE

COMPARE FOR RANGE:

MULTIPLY

LOAD FACTOR

MULTIPLY A N D ADD

DIVIDE (except that no remainder is kept in FLP)

The nature of these operations is indicated by their names and follows
from what has been said in previous sections. A summary of all opera-
tions is given in the Appendix. If more detail is desired, the reader is
referred to the 7030 Reference Manual. A few comments will be made
here on certain specific features that will be important in subsequent
discussion.

STORE ROUNDED provides a means of storing a rounded single-precision
number in memory while leaving the original, unrounded, double-pre-
cision number in the accumulator for any further calculation. There is
no automatic rounding in any other operation. Rounding is performed
only when and where desired. Rounding is done by adding a 1 to the
49th fraction bit of the absolute value of the accumulator operand;
rounding is followed by normalization, if specified, and storing of the
high-order 48 bits.

The unnormalized add operations are interpreted to mean that there is
no normalizing right or left shift after the addition. Consequently,
any carry out of the high-order position of the fraction is lost, and the
lost carry indicator is turned on. This feature is important in pseudo
fixed-point arithmetic. There is no lost carry in normalized addition, of
course; a right shift with exponent adjustment takes care of the matter.

The
product of the memory operand and of the operand in the factor register
(previously loaded with a LOAD FACTOR instruction) is formed and then

MULTIPLY AXD . ~ D D is designed for cumulative multiplication.

116 FLOATING-POINT OPERATION [CHAP. 8

added to the accumulator contents. The sum is a double-precision
number. Thus in important caIculations-like forming the inner product
SA,B,, which can be done with a three-instruction loop-the double-
precision sum avoids round-off error until a single STORE ROUNDED is
given at the end. MGLTIPLY . ~ X D ADD is the only double-length operation
in the above list of basic operations; all others are single-length.

Not shown in the above list are two instructions, COMPARE MAGNITUDE

and COMPARE MAGNITUDE FOR HANGE, which correspond to the T’FL
operations COMPARE FIELD (FOR RAXGE) in that the ac.c.umulator hign is
ignored in the comparison ; the difference in nomenclature arose because
the VFL operations may include only a partial accumulator field, whereas
the FLP operations always deal with the entire operand.

Two other single-length operations occur only in the FLP repertoire,
since they did not seem so important for VFL use. One is RECIPROCAL

DIVIDE, which is the same as DIVIDE but with dividend and divisor inter-
vhanged; the other is STORE ROOT, which extracts the square root of the
accumulator operand and stores it in memory.

The double-length operations (we intentionally avoid the term double-
precision because only the accumulator operand is really of double pre-
cision, the memory operand necessarily being of single precision, and SO

the operations are a t best of “one and a half precision”) include the
following variations of the single-length operations:

LOAD DOUBLE

LOAD DOUBLE WITH FLAG

ADD DOUBLE

ADD DOUBLE TO MAGSITUDE

MULTIPLY DOUBLE

DIVIDE DOUBLE

STORE LOW ORDER

The double load operations reset all 96 fraction bit positions in the
accumulator to 0 before loading the single-length memory operand,
whereas the single load operations affect only the high-order 48 fraction
positions. The double add operations combine a single-length memory
operand with a double-length accumulator operand and return a double-
length result to the accumulator. To store a double-length accumulator
operand in memory, i t is necessary to create a pair of single-length
operands; this is done by using STORE, for the high-order part, and STORE

LOW ORDER, which attaches the correct exponent (E - 48) and the sign to
the low-order part to form a proper FLP number. n‘ormalization may
be specified if desired. Loading a double-precision number pair may be
accomplished by LOAD DOUBLE follotved by ADD DOUBLE, specifying the
operand in either order since the exponents take care of themselves.

Multiplication, whether single or double, operates only on single-
-

QEP. 8.1 61 ~“I ,O. \TING-POINT-~I~ITHMF:TI(’ OPF:R\TIO\~ 11 7

length factors from nir’mory and from thr accwniilator. MULTIPLY and
MULTIPLY DOUBLE differ in whether a single-length or double-length
product is returned to the accumulator.

As might be expected, division is the most complex of the FLP opera-
tions to implement, because there are many exceptional conditions to be
considered if they are not to be a burden on the programmer. The
principles followed were that (1) no scaling should be required in advance,
and (2) the quotient should be developed with maximum precision.
We must distinguish here between normalized and unnormalized division.

In normalized division the first step is to normalize both the dividend
and the divisor. Since i t is still possible
for the normalized dividend fraction to be greater than the normalized
divisor fraction, the quotient may have an overflow bit and require a
single right shift for normalization; otherwise the quotient will be already
normalized.

Even for unnormalized division the divisor is fully normalized, so as to
guarantee the greatest quotient precision. The dividend, however, is
normalized only to the extent that the amount of the left shift does not
exceed the left shift of the divisor. If the dividend has as many or more
leading zeros than the divisor, both will have been shifted by the same
amount ; the difference between dividend and divisor exponents is then
still the correct quotient exponent, but the quotient fraction may have
leading zeros as in any other unnormalized operation. If the dividend
has fewer leading zeros than the divisor, i t cannot be shifted so far. In
the fixed-pointj sense the division is illegitimate, since the quotient will
overflow (which also happens when the number of leading zeros in the
dividend and the divisor are the same and the dividend fraction is equal
to or greater than the divisor fraction). So as not to require the program-
mer to test and scale his numbers beforehand to avoid this situation, the
division is carried out and the scale factor is made available for adjust-
ments only if and when overflow occurs.

The dividend is normalized either as far as it will go or as far as the
divisor, whichever requires the lesser amount of shift. Division then
proceeds as in the normalized operation, and the quotient exponent is
adjusted for the amount of shift that occurred. The difference between
the amount of left shift of the divisor and the left shift of the dividend is
entered into a counter, the left-zeros counter, which is conveniently
available for this purpose; to this a 1 is added if the quotient had to be
qhifted right once to remove the overflow. If the final counter setting in
iiniiormalized division is greater than zero, the partial field indicator is
turiied on as a signal. The counter contains the proper scale factor.
If t h e left-zeros counter contents are zero, the dividend was shifted as
far as the divisor, the quotient did not nverflow, and no scaling is required.
(The counter contents cannot be negative.)

The quotient is then developed.

The procedure is as follows.

[CHAP. 8

DIVIDE DOUBLE dift'erb from D I V ~ U E in several respects. ,4 double-
length dividend in the accumulator is used. A correct 48-bit remainder
corresponding to a 48-bit quotient is produced and deposited in a separate
remainder register (whereas DIVIDE produces no remainder). The
quotient is left in the accumulator; it is a 48-bit number in DIVIDE, but a
49-bit number in I)JVII)E DOUBLE. The 49th quotient bit is intended
to be used with STORE ROUNDED to obtain a rounded 48-bit quotient in
memory, but i t does not affect the magnitude of the remainder. Thus
the remainder has the correct value for programming extended precision.
(Strictly speaking, the remainder also has 49 bits when the normalized
dividend fraction equals or cxceeds the normalized divisor fraction.
Only the high-ordrr 48 remainder bits are prescrved. If a low-order I is
thus dropped in unnormalized division, the lost carry indicator is turned
on, so that a correction may be programmed when desired.)

E'our special operations on the accumulator operand, which alter the
fraction or exponent part independently except for possible normaliza-
tion after an addition, complete the FLP set:

ADD TO FRACTION

SHIFT FRACTION

ADD EXPONEKT

ADD IMMEDIATE TO EXPONEKT

The question naturally arises why these spwial operations are provided
in the FLP set if the same functions could be performed by VFL instruc-
tions. An important reason is that FLP instructions are faster and take
up only a half word each. More decisive is the fact that VFL operations
would not set the special FLP indicators.

8.1 7. Fixed-point Arithmetic Using Unnormalized
Floating-point Operations

As has been mentioned before, there are two ways of performing binary
fixed-point arithmetic in the 7030. One way, which is fast but relatively
wasteful of storage, is to use unnormalized FLP operations. The other
way is to perform binary VFL operations; this uses storage efficiently but
is slower.

With uniiormalized FLP arithmetic a fixed-point fraction f is ordinarily
represented by the IqLP number (0,f). It is clear from definitions (8.1)
to (8.3) that addition, subtraction, and multiplication of such numbers
iesult in numbers of the same kind, so long as the fraction has enough bits
to avoid overflow. Division produces such numbers only if the divisor
Iraction is greater in magnitude than the dividend fraction. Otherwise,
the quotient is (k,f), where k > 0; this is a correct quotient, but it is no

SEC. 8.191 MULTIPLE-PRECISIOK ARITHMETIC 1 19

longer of the pseudo fixed-point form (0,f). As discussed earlier, the
quantity k is available in the left-zeros counter for use by the program in
scaling results after the partial field indicator signals the condition.

Treatment of singularities is indicated by Eqs. (8.4) to (8.7). It
should be noted that multiplication and division of singular quantities,
as executed automatically in the 7030, are not always inverse operations.

8.1 8. Special Functions and Forms of Arithmetic

In planning the FLP instruction set, consideration was given to the
implementation of several common functions other than the basic arith-
metical operations, such as logarithmic and trigonometric functions,
complex-number arithmetic, polynomial evaluation, and the vector
inner product. It was found that the high degree of concurrent opera-
tion within the CPU reduced the time spent on housekeeping instructions
so much that built-in macro-instructions would not be appreciably faster
than programmed macro-instructions, and they would be much less
flexible.

It was built in because i t
could be carried out economically by an algorithm quite similar to the
division algorithm chosen.

The syuare-root function is an exception.

8.1 9. Multiple-precision Arithmetic

Built-in double-precision operations were among the special forms of
1:LP arithmetic that were considered but rejected because of insufficient
speed advantage. A second reason for not providing such operations
directly was the greater fraction length of the 7030, which would minimize
the need for double-precision arithmetic. (Double-precision accuracy on
the 7030 is more than 3.5 times single-precision accuracy on the 704.)

When the occasion for extending precision arises, furthermore, double
precision is not necessarily sufficient; so triple- or higher-precision pro-
grams would have to be written anyway. The step from double to triple
or quadruple precision will be as important as the step from single to
double, and there is little justification for favoring the latter to the
detriment of the former. Accordingly, the objective in the 7030 was to
facilitate the programming of any multiple-precision arithmetic. The
facilities provided include the double-length accumulator, appropriately
defined unnormalized instructions, and exception indicators.

Tables 8.1 and 8.2 illustrate programs for double-precision addition
and multiplication, respectively. These examples assume that a double-
precision operand A is in a pseudo accumulator at memory addresses
200.0 (high-order part) and 201.0 (low-order part). The second operand
B is a t memory addresses 202.0 and 203.0. The result is to be returned
to the pseudo accumulator.

The wldition program illustrated takes six instructions, and the

120

ADD DOUBLE (FN), 203.0
ADD DOUBLE (FN), 200.0
ADD DOUBLE (FN), 202.0
STORE (FU) , 200.0
STORE LOW ORDER (FU) , 201.0

Form

'

[CH-kP. 8

T 4 R 1 , R 8.1. I>OtJBLX-I'RECISIOh' ADDITIOX
(7 -4 + H = aH + ar, + bH + bL where the subscripts H and L indicate

high-order and low-order parts of each double-precision number.
1

Location

100.0
100,32
101 . 0
101.32
102.0
102.32

200.0
201 . 0
202.0
203 . 0

Statement , Notes

DATA, AH

DATA, AL

DATA, H I I

DATA, BIr

I } Pseudo accumulator

Notes: (I) Add low-order parts.
(2) Add high-order parts last for greatest precision.
(3) Result in pseudo accumulator.
(FU) : unnormalized floating-point.
(FN): normalized floating-point.
100.32: bit 32 of word 100, that is, the right half word.

TABLE 8.2. DOUBLE-PRECISION MULTIPLICATIOX

product term aLhL may cause an error of 2-96 in the fraction magnitude.)
Form C = A * R = a ~ b ~ + a ~ b H + a H b ~ (approximately). (Omitting the

Location

100.0
100 .32
101 .o
101.32
102.0
102.32
103.0

200.0
201 .o
202.0
203.0

Statement I Notes

LOAD (FT), 200.0
MULTIPLY DOUBLE (FV), 203.0 ,
MULTIPLYANU A D D (FN) , 201.0 I
MULTIPLY AND ADD (FN), 200.0

(1)

(2)
(3)

LOAD FACTOR (F U) , 202.0 1

i STORE (FU), 200.0
STORE LOW ORDER (FU), 201.0

DATA, AH

DATA, AL

DATA, BH

DATA, BL

~ Pseudo accumulator :I
Notes: (1) Form a H b L .

(2) Add aLbH.
(3) Add high-order term a ~ b x last.

SEC. 8.201 G E A E I I ~ L REMARKS 121

multiplication program takes seven. For double-precision addition only,
i t is possible to hold the implied operand in the real accumulator, and no
more than two ADD DOUBLE instructions are needed in that case. This
compares with a t least twelve and sixteen instructions, respectively,
needed for double-precision FLP addition and multiplication in the IBM
704, which has no special facilities for multiple precision. The IBM 704
figures are a minimum; they allow for testing only once for accumulator
overflow and quotient overflow. A practical 704 program may require
more instructions for additional tests and sign adjustments, the actual
number being a matter of individual needs. The length and intricacy
of douhle-precision programming for the 704 make it advisable to use
subroutines; whereas the 7030 programs are short enough to justify
either writing the few instructions needed into the main program or using
macro-instructions to compile them. The net result is a substantial
reduction in the ratio of execution times for double- and single-precision
arithmetic.

Triple- and higher-precision arithmetic is more complex for both
mwhiiws, hut the 7030 facilities again provide an advantage.

8.20. General Remarks

Thc key problems in planning and implementing a normalized floating-
point instruction set in a digital computer involve, first of all, attaining
the highest performance consistent with the required precision and range,
and, m‘ond, a really adequate instruction set. By its very nature, the
FLP instruction set is highly specialized and will always be incomplete.
For this reason the accent must be on very high performance for special-
ized operations. Insofar as completeness and generality of the FLP
instruction set have any meaning at all, i t is in the facilities for the impor-
tant E‘LP “arithmetics” and representations and for conversion among
them. Symmetry of the instruction set is important, both because the
instructions added for symmetry are likely to be important on their own
and because symmetry simplifies the programming system.

The goal of highest possible performance must also be viewed in the
context of the total operating system within which the computer proper
is to perform : the automatic programming system, the programmers,
the operators, and all the rules that they must follow. The goal is
maximum total throughput, rather than maximum performance on any
particular operation or set of operations. Nevertheless, it is obvious
that the total throughput of a large-scale scientific computer will not be
very high unless i t possesses a fast, powerful FLP instruction set that
performs very well all those operations which we know must be performed
well by such an installation and performs adequately those operations
which are only sometimes important.

Chapter 9

INSTRUCTION FORMATS
by W. Buchholt

9.1. Introduction

The importance of devising a good instruction set for a stored-program
computer has been recognized by computer designers from the beginning.
Most designers lavish a great deal of care on this aspect of their job, and
so the instruction set contains the most easily distinguishable character-
istics of a computer. It is not surprising, therefore, that different schools
of thought have existed as to the best format for instructions. An
especially popular subject for debate-more in private than in print-
used to be whether it was easier to program with single-address or multi-
ple-address instructions. By now this question has become rather
academic. The importance of machine language programming is decreas-
ing rapidly with the advent of problem-oriented programming languages.
More attention is now focused on efficiency in the compiling of programs
and on speed in running the finished product.

This is just one of several changes in environment which have resulted
in a trend, over the years, away from the simple inst,ruction formats of
early computers. It may be instructive to illustrate the trend by some
examples before considering the choice of formats for the 7030.

9.2. Earlier Instruction Languages

Fig. 9.1.

address instruction formats.
one of the operands.
register.

The instruction formats of some earlier computers are reviewed in

The M I T Whirlwind computer represented the simplest of single-
It specified the operation and the address of

The other operand was implied to be in a working

Note: Chapter 9 is an updated version of an earlier paper: W. Buchholz, Selection
of an Instruction Language, Proc. Western Joint Computer Conj., May, 1958, pp. 128-
130.

122

SEC. 9.21

1103 Op. Address U Address V
6 15 15

EARLIER INSTRUCTION IdANGUAGES 1 23

36 bits

The CKIVAC 1103 scientific computer, made by Remington Rand,
uses a two-address scheme where two operands may be specified. The
result may be returned to one of the two addresses.

Only one
address specifies an operand, the other operand residing in an implied
working register. The second address specifies the next instruction.
This technique is advantageous in association with a revolving storage
device, for it permits instructions to be located so that access time is
minimized.

The IBM 650 employs a different two-address scheme.

SEAC

Whirlwind Op. Address 16 bits m

Address a Address /3 Address y Operationt etc. 44 bits
12 12 12

. decimal digits

From Next

From From To

FIG. 9.1. Some classical instruction formats with one, two, and three addresses

The n’ational Bureau of Standards SEAC computer had available two
instruction formats, one with three addresses and another with four.
The three-address format is shown. Two operands and a result could be
specified.

In retrospect one wonders whether, in each choice, fitting instruction
words to a desired data-word length was not just as strong a factor as the
intrinsic merit of the instruction format which gave rise to so much dis-
cussion. The distinction is mainly in whether one chooses to write
related pieces of information vertically on a sheet of paper or horizontally.
There was remarkably little difference among most of the early computers
with respect to the operations that they performed.

In the early computers, simplicity was an important engineering con-
sideration. After all, no one was quite sure in those days that the com-
plex electronic devices parading under the imposing name of large-scale
electronic data-processing machines would actually work.

124 INSTRUCTION 1"OHMATS [CHAP. 9

The computers, however, turned out to be really usable and productive.
They provided valuable experience for the designers of later computers.
They clearly showed a need for much higher speed and much larger
storage. At the same time, it became evident that speed could be gained
and storage space saved by providing more built-in operations. A
larger vocabulary can mean a quite drastic reduction in the number of
instructions written and executed to do a given job. Floating-point
arithmetic and automatic address modification, or indexing, are two
features that have become standard equipment on scientific computers.
Alphabetic representation and variable field length have similarly become
accepted as built-in functions for business data processors. The instruc-
tion set has been growing steadily in size and complexity.

The desire to specify more things with one instruction has left no room
in most instructions for more than one major address. The debate over
multiple addresses has thus been settled by a process of evolution.

9.3. Evolution of the Single-address Instruction

experience gathered a t IBhl over a number of years.
not unique, and similar examples could be chosen from other designs.

The illustrations for this evolutionary process will be taken from
The experience is

Operation cede Address
12 15

Data length (half or fu l l word) Le f t or r ight half word

1
I

- _ _ _ _ - _ - _ - --2J

Another instruction 136 bits

FIG. 9.2. Instruction format for IBM 701.

36 bi ts

FIG. 0.3. Typical instruction format for IBM 704, 709, and 7090.

The IBM 701 followed the simple single-address pattern (Fig. 9.2).
To make efficient use of the word length selected for data representation,
two instructions are packed in each word.

The 704 and, later, the 709 and 7090 are all direct descendants of the
701, but they have a much bigger repertoire of instructions and features.
As a result, the instruction has grown to fill the entire word (Fig. 9.3).

Bigger computing problems were found to require much larger mem-
ories. The address part of the instruction, therefore, was increased from
11 to 15 bits, giving sixteen times the capacity of the 701 memory.
Three bits were added to specify indexing. The portion of the instruc-
tion that specifies the operation was increased from 5 to about 12 bits.

SEC. 9.41 IMPLIED ADDRESSES 1 2 5

Part of this increase was needed because several times as many opera-
tions were made available to the user. Some bits were added to govern
the interpretation of other bits, thus permitting more than one instrucs-
tioii format. For instance; there is a format in which two 15-bit quan-
tities can be specified to provide a limited two-address repertoire in the
704.

More
functions and more addressing capacity were desired. For other reasons,
a much greater basic word length was chosen: 64 bits, or almost twice
that of the 704. On the other hand, it became clear that extra memory
accesses resulting from inefficient use of instruction bits would sig-
nificantly reduce performance; so the more frequent instructions were
compressed into a 32-bit format, which is shorter than the 704 instruction
format. Since it was decided not to impose the restriction of compati-
bility with earlier machines, the 7030 instruction set could be made much
more systematic and also more efficient than that of its predecessors.

For Project Stretch the evolution was carried a step further.

9.4. Implied Addresses

We have already scen that single-address instructions differ from
multiple-address instructions not in the number of operands required for
a given operation but in that oiily one of the operands is located a t an
explicitly specified address, any other operands heiiig located a t implied
addresses. A single-address add instruction, for instance, may have one
implied operand in the accumulator, to which an explicitly specified
operand is added. The sum replaces either the implied operand or the
specified operand. Of the three addresses required by the operation,
only one is stated explicitly. This gain in efficiency is nullified when add
is preceded by load and followed by store. Therefore, implied addresses
provide a gain in instructon-bit efficiency only when repeated reference
is made to the same implied operand. In arithmetical operations
repeated reference to the same implied operand occurs sufficiently often
to justify the single-address instruction format.

As will be men in the following section, the instruction formats for the
7030 still follow primarily thc single-address pattern with an implied
accumulator oprrand, but each format has one or more secondary
addresses, such as index addresses. Some less frequently used instruc-
tions have two complete addresses, each accompanied by its own index
address; and these do not require the accumulator.

It may be noted here that an accumulator may be designed to hold
more than one implied operand. An interesting version of a multiple-
operand accumulator has been called a nesting store by its originators,' or

Davis, The English Electric K D F 9 Coinputer System, The Computer
R~Zkfi iz , vol. 4, no. 3, pp. 119-120, December, 1960.

G. 11

126 INSTRUCTIOX I'ORMATR [CHAP. 9

more descriptively a push-down accumulator. It may be pictured as a
(theoretically infinite) stack of operands, with the most current operand
on top. If a new operand is loaded a t the top, the remaining ones are
pushed down. If the topmost operand is removed and stored in main
memory, all others below i t are pushed up automatically. By avoiding
instructions for transferring intermediate results to and from temporary
storage locations, this scheme may show a gain in efficiency when a
calculation can be arranged so that the order of using operands is: last in,
first out (or any other prespecified rule of accession). The push-down
scheme appeared too late to be evaluated for its effectiveness in the 7030.

9.5. Basic 7030 Instruction Formats

The basic pattern of instruction formats is shown in Fig. 9.4. A
simple half-word format (Fig. 9 . 4 ~) consists of an address, an index address
I to specify the index register to be used for automatic address modifica-
tion, and a code OP that defines the operation to be executed. The 4-bit
I address specifies either one of fifteen index registers (1 to 15) for address
modification, or no address modification (0).

A second index address, J , is added to the format for index arithmetic to
designate the index register on which the operation is to be performed
(Fig. 9.4b). The 4-bit J address may specify one of sixteen index regis-
ters (0 to 15), including one register (0) that cannot participate in auto-
matic address modification.

A full-word instruction consists essentially of two half-word formats,
each half having an address, a modifier index address I , and an operation
code OP. The operation code in the left half is merely a unique code to
distinguish i t from all the half-word instructions and to ensure proper
interpretation of the right half. Full-word instructions may occupy a full
memory word; or they may overlap the memory-word boundary, the left
half being in one memory word and the right half in the next higher
word. Thus full-word and half-word instructions may be freely
intermixed.

A good example of a full-word instruction (Fig. 9 . 4 ~) is TRANSMIT,
which may be used to transmit a word (or a block of words) from the
memory area starting at the address in the left half of the instruction to
the memory area starting a t the address in the right half. Another
instruction, SWAP, interchanges the contents of the two memory areas.
Input-output transmission instructions use a similar format, except that
the left address gives the number of an input-output channel, and the
right address is used in an indirect fashion, specifying a control word
which in turn defines the memory area (see Chap. 12).

The fourth example (Fig. 9.44 is the format of the variable-field-
length (VFL) operations. The left half contains a memory address, but

SEC. 9.61

I Address
18

INSTRUCTION EFFICIENCY 127

Op. code

the corresponding part of the right half is occupied by additional speci-
fications. P is a modifier to indicate different kinds of address manipu-
lation, including progressive indexing (Chap. 11). Length and byte size
(BS) furt.her define the operand in memory (Chap. 7). The second
operand is implied to be in the accumulator; separate specifications are
not essential, but an ofset is provided as a partial address of the second
operand for greater flexibility. It designates the starting position within
the accumulator, thus avoiding extra shift instructions to line up the
operands. The I address in the right half is there primarily for consist-

Address
19

J Op. I 4
4

Address OP. I 4 Address
19 24

Op. code

Address Op. I P Length BS Offset 0p.code
24 4 3 6 3 7

(d) Variable field length operations

I
4

I

Value t Count
24 18

FIG. 9.4. Basic instruction formats for IBM 7030.
shown for comparison.

ency with other formats; automatic modification of the bits in fields
length, BS , and offset, as if they were an address, is possible and occasion-
ally useful.

9.6. Instruction Efficiency

It was pointed out in Chap. 4 that different natural data units require
different amounts of specification. The most complex data unit, the
floating-point number, has a rigid format. Its specification is built
into the arithmetic circuits for greatest speed. There is relatively little
left for the instruction to specify: an address, an index register, and an
operation.

The index-word format (e) ie

A complete list of instruction formats is given in the Appendix.

Hence a simple instruction format suffices (Fig. 9 . 4 ~) .

Refi l l
18

1 28 INSTHI-CTION I~OIZMATS [CHAP. 9

The most complex instruction format (E’ig. 9.4d) is provided to operate
on variable-field-length data, which are the most flexible data units.
VFI, data are, to the computer circuits, a mere collection of bits until
their structure is specified in the instruction. The intent here is to give
the programmer a very versatile tool with which, despite relatively low
speed, certain important tasks can be performed more expeditiously
than they could be with faster but more restricted operations.

It is obvious from information theory that instructions of varying
information content can be expressed by a varying number of bits. It is
not so obvious that the saving in memory space for programs, which results
from having multiple instruction formats, would alone pay for the addi-
tional equipment cost of decoding these formats. What really prompted
thc introduction of multiple instruction formats was the observation that
the speed of the 7030 was in danger of becoming severely limited by the
time taken to fetch instructions from memory during the execution of the
all-important inner loops of arithmetical programs. At that point in the
design, it was found that almost all the instructions usually needed in
the inner loops (floating-point arithmetic, indexing, and branching) could
be expressed in terms of 32-bit half words and that, if they were so
expressed, the number of accesses to memory for instructions could be cut
almost in half.

Completely variable instruction lengths, though desirable in theory,
are not practical. Either instructions would have to be scanned serially,
which would be slow, or they would have to be passed through a complex
parallel switching network with cumulative circuit delays, which would
again slow down the computer. In practice, with binary addressing,
instruction lengths must be kept to binary submultiples of the memory-
word length. Half-length, quarter-length, and even eighth-length
instruction vocabularies were actually tried. It was found that, although
short instructions saved space, the saving could be quickly eaten up by
the extra bits needed to define each format. The greatest economy of
memory space and memory references was gained in a mixture of half-
length and full-length instructions.

Since
it was not possible to add a bit or two to an instruction when needed, it
was necessary to vary the length of fields within the 32-bit space in order
to provide all the functions that were thought desirable. These measures
resulted in multiple 32-bit formats, which required additional decoding
equipment as well as certain compromises.

It will be seen
that a 4-bit I address for indexing is not available in all formats. In
particular, the conditional branching operations have only a l-bit I
address, permitting choice between no indexing and indexing against a
single index register. It was felt that full indexing facilities, though

The 32 bits are rather tight for some of the short instructions.

Some of the additional formats are shown iri E’ig. 9.5.

SEC. 9.61

i Address
19

INSTRUCTIOS EFFICIEYC'T 1 29

I I4 O p . code

Address
19

Indic- op. I
6 1

(b) Indicator branching

Address
19

J Op. code
4

I Address
19

J Op. code
4

I Address

FIG. 9.5. Other 7030 instruction formats.

OP. I4 Any half word branch instruction

Operand addresses also vary in length for different formats. 18-,
19-, and 24-bit addresses are used depending on whether addressing is
to be carried to the word, half-word, or bit level. The index-word
format, shown in Fig. 9.4e for comparison with the instruction formats,
has a full 24-bit value field as well as a sign; no sign bit could be provided
in any of the instruction formats. To simplify indexing, all addresses line
up against the left boundary of the word (or half word) in such a manner
that the significant bits fall into corresponding positions in every format.
Missing bits, including a 0 (+) sign bit, are automatically supplied to
the right as the instruction is decoded, so that indexing always results in
an effective address 24 bits long (Fig. 9.6).

Address OP. 1 Address Op.code
24 4 19

I
1

130 TNSTRGCTION FORMATS [CHAP. Y

The operation codes of different classes of instructions, especially half-
length instructions, differ in length, position within the format, and
variability. There are 76 distinct operation codes among the half-length
instructions; a t least 7 bits are required to specify them. Up to 8 more
bits are used as modifiers common to all operations in the same class, so
as to make the set as systematic as possible. For example, all arithmetical
instructions have a modifier bit to indicate whether the operand sign is to
be inverted, which eliminates the need for separate add and subtract codes.
Thus adding 7 operation bits and 8 modifier bits to the 19 address bits and
4 index-address bits required by many instructions gives a total of a t least
38 bits that mould have been needed to encode these operations in a simple
and straightforward manner. By eliminating redundancy. it was possible

B i t
Word address address (Sign

r--- 1-

xxx xxx xxx xxx xxx xxx 000 000 0 1 8 - b i t address

xxx xxx xxx xxx xxx xxx xoo 000 0 1 9 - b i t address

xxx xxx xxx xxx xxx xxx xxx xxx 0 24-b i t address

Index address xxx xxx xxx xxx xxx xxx xxx xxx x

x Indicates a b i t which may be 0 or 1

FIG. 9.6. Expansion of addresses of various lengths.

to compress the format to 32 bits. The only functional sacrifice was
the reduced index address in some of the branching operations, as noted
before.

An analysis of the operation codes shows that only 0.05 bit of informa-
tion is left unused in the 32-bit formats.' The 0.05 bit actually repre-
sents, at the time of writing, unallocated space in the formats for three
more floating-point operations with their modifiers and nine more miscel-
laneous operations, each with a full 4-bit I address, which is not a trivial
amount of space. The
64 bits are found to contain almost G bits of redundancy.

Yet another technique for increasing instruction efFiciency is to use
extra half words to define important but less frequently needed functions.
This arrangement raises the instruction information content, because i t
uses one out of many operation codes, instead of tying up 1 bit in every
instruction. Also, the efficiency with which a program can be stated is
improved, since the infrequent use of an extra instruction is easily offset
by the greater information content of each frequent instruction, whereas
omitting the instruction entirely from the repertoire would require use of
a subroutine each time the need arose.

This assumes that all defined combinations are equally probable and all 18 bits
of memory address are fully justified from the start to permit future expnnsion in a
clean way.

The full-word formats are not so closely packed.

SF,(*. 9.71 T H E SIMPLICITS OF COMPLFXITY 131

an example, indirect addressing is a powerful tool when needed,
but its use is not very common; hence a separate half-word instruction is
used as a kind of prefix for the instruction to which indirect addressing is
to be applied (see Chap. 11 for more details). 1;igure 9.5e shows another
example. .I half-word prefix is attached directly to any half-word
branching instruction, to make what is actually a complete set of full-
length branching instructions; these permit the current setting of the
instruction counter to be stored anywhere in memory before the instruc-
tion counter is changed to its new setting. The significance of making
this a single full-length instruction is that, for conditional branching,
the instruction counter setting is stored only whcn the braiiching actually
takes place, thus saving vali~able time. ,I filial example is the very
flexible full-length bit-testing instriirtion (Fig. 9.5f). This allows any
addressable bit in memory or in the computer registers to be tested and
set, and branching occurs if the test is satisfied. more limited test of
only the indicator bits (such as zero and overflow indications) satisfies
the most frequent demands for testing, and the half-length indicator
branching operation of Fig. 9.5b was provided for this reason, even though
i t is logically redundant.

These rather elaborate measures to increase instruction efficiency do
not come cheaply in terms of decoding equipment and program-compil-
ing time, but they do help materially to shorten the program-running
time. Compared with the 704, for instance, the typical instruction length
has gone down from 36 to 32 bits, and the power of the instruction has
been increased. As a rule, the number of 7030 instruction half words to
be executed is substantially less than the number of 704 instruction words
for an equivalent program. This gain, of course, is to be added to the
large gain in speed of corresponding individual instructions.

9.7. The Simplicity of Complexity
One may ask whether a more complex instruction set does not lead to

more difficult programming. One answer is that programming can be
simplified by adding instructions to complete a set (branch on plus, as
well as branch on minus) and arranging them systematically. Another
answer can be obtained by looking a t the other extreme.

Van der Poel has shown’ that the simplest instruction set theoretically
consists of just one instruction. This instruction contains no operation
code, only an address. Every instruction causes a combination of sub-
tract and store to be executed; the difference replaces the contents of both

W. I,. r a n der PoeI, The Essential Types of Operations in an Automatic Computer,
~:achrichtentechnische Fuchberichte, vol. 4, 1956, p. 144 (proceedings of a conference
on Electronic Digital Computing and Information Processing held at Darmstadt,
Germany, October, 1955); also, “The Logical Principles of Some Simple Compiiters,”
a monograph by the same author, Excelsior, The Hague, Setherlands, p. 100.

1 3 2 [(:HAP. 9

t hc accumulator and the specified rncniory address. All other computing
operationb, iiicluding conditional branching, can be built up from this one
instruction, which is a very easy instruction to learn. But the programs
needed to simulate no more than the elementary instruction set of early
computers would be enormous. It would be quite a task just to estimate
the size of the program for a real job. It seems safe to say that the stor-
age required would be gigantic, ant1 a desk calculator would probably be
faster.

A complex, but appropriate, language will in fact simplify the pro-
grammer’s task as the problems to be solved become more complex.

9.8. Relationship to Automatic Programming Languages

In tracing the development of instruction sets, we have found that the
advent of more powerful computers designed to tackle larger problems is
accompanied by more elaborate and versatile instruction vocabularies.
Programs to do the same job require considerably fewer instructions and
fewer references to memory. Or, to look a t it another way, sequencing
of simpler instructions stored in a relatively slow memory is replaced by
internal sequencing with high-speed control circuits. This is a form of
microprogramming using the fastest available memory, one made of
transistor flip-flops.

Such an instruction set is still a long way from the “superlanguages”
being developed under the heading of automatic programming. These
languages are intended to simplify the task of the problem coder, not to
raise the performance of the machine. The instruction set is an inter-
mediate level between the programmer’s language and the language of the
elementary control steps inside the niachine.

One is the pro-
grammed assembly of machine instructions from the statements in the
superlanguage. The other is the internal translation of instructions to
control sequences. The two-step process is a matter of necessity a t this
stage of developmcnt to keep thc complexity of the computer within
bounds. It has the advantage that each language can be developed
independently of the other to be most effective for its own purpose.

At the level of the user, there may be a need for developing specialized
languages that facilitate programming of different jobs with varying
emphasis on arithmetic, logical operations, data manipulation, and input-
output control. At the machine level, where all these jobs come together,
t,he need is clearly for a versatile and relatively unspecialized language.
Perhaps the greatest demand on versatility is made by the process of
translating from an automatic programming language to machine
language. The performance of a computer in translating its own pro-
grams is a significant measure of how effective a tool the instruction set
really is.

A two-step process of translation is thuh required.

Chapter 1 O

INSTRUCTION SEQUENCING
by F. P. Brooks, Jr.

10.1. Modes of Instruction Sequencing

It is possible to distinguish four modes of instruction sequencing,
which define the manner in which control may or may not pass from an
original instruction sequence A to a new sequence B :

1. Kormal sequencing.
2 . Branching.
3. Interruption.
4. Executing.

The first two are the basic modes of instruction sequencing found in the
earliest automatically sequencpd computers. Each instruction normally
has a single successor, which may be defined by an instruction counter
or by a next-instruction address within the instruction itself. Selection
of an alternative sequence or modification of the original sequence may be
accomplished a t a point defined in the original sequence by conditional
branching (also called jumping, or transfer of control), by indexed branch-
ing, or by the skipping or suppressing of one or more of the operations in
the original sequence. In computers in whirh the normal sequence is
defined principally by a counter, an unconditional branch instruction is
used to specify a normal successor that does not occupy the next address.

Some condition? that may demand a change in instruction sequence
arise either very rarely or a t arbitrary times with respect to the program
being executed. Testing for such conditions may be unduly awkward
and time-consuming. Facilities for program interruption allow sequence
changes to be set up in advance of the occurrence of the exceptional

Sote: The major part of Chap. 10 has been adapted from two papers by the same
author: A Program-controlled Program Interruption System, Proc. Eastern Jmnt
Computer Conf., December, 1957, p. 128; The Execute Operations: A Fourth Mode of
Instruction Sequencing, Communs. ACM, vol. 3, no. 3, pp 168-170, March, 1960.

133

A keeps control.
A gives control to B.

A leiids control to B.
B takes control from A.

1 34 INSTEUCTIOS SEQUENCING [CHAP. 10

condition, which is monitored continaously ; when the exception occurs,
the current program is interrupted and the new sequence is started.

A rudimentary form of interruption upon the occurrence of an exception
condition during an instruction execution (such as overflow) was pro-
vided in as early a computer as the UNIVAC I. A more general system,
which monitored external, independently timed conditions, first appeared
more recent1y.l

The fourth mode allows the original sequence to execute instructions
from another sequence, without changing the normal sequencing control
to specify the second sequence. Implementations of this mode of opera-
tion are found in two earlier computer^.^^^

The instruction-sequencing modes of the 7030 are described in the
following sections, with emphasis on the interrupt and execute features,
which go considerably beyond those found in earlier computers.

10.2. Instruction Counter

The normal instruction sequence in the 7030 is determined by an
instruction counter which is stepped up automatically by one or two half-
word addresses for each instruction, depending on whether the instruction
is a half word or full word long. A full-length instruction may begin at
any half-word boundary; branch instructions specify a half-word branch
address. Any instruction may alter its successor, even if both are located
in the same memory word, and the successor will be executed
correctly.

For entry to a closed subroutine it is necessary to preserve the current
setting of the instruction counter. There are several known techniques.
One is a programming trick, called after its originator the Wheeler sub-
routine linkage,3 where an instruction is written to load itself into some
available register (the accumulator or an index register) before branching
into the subroutine takes place. This technique always takes time and a
register, whether the branch is actually taken or not. Another solution is
to employ more than one instruction counter; but if nesting of sub-
routines to any number of levels is desired, i t is still necessary for the
program to store the original counter contents after the branching to the

’ Jules Mersel, Program Interruption on the Univac Scientific Computer, Proc.
Western Joint Computer Conf., February, 1956, p. 52.

Reference Manual, IBM 709 Data Processing System.
U. A. Machmudov, LEM-1, Small Size General Purpose Digital Computer Using

Magnetic (Ferrite) Elements, Commzms. A C M , vol. 2, no. 10, pp. 3-9, October, 1959,
translated from the Soviet publication Radiotechnika, vol. 14, no. 3, March, 1959.

h1. V. Wilkes, D. J. Wheeler, and S. Gill, “The Preparation of Programs for an
Electronic Computer,” p. 22, Addison-Wesley Publishing Company, Cambridge,
Mass., 1951.

SEC. 10.31 UNCONDITIONAL 8 R A N C “ I N G 1 35

subroutine. A more economical method, where the instruction-counter
contents are stored in a fixed location at every branch point automatically,
was discarded because i t takes time in the many cases when the contents
are not needed after branching.

The method adopted in the 7030 requires the programmer to specify
when and where the instruction-counter contents are to be stored before
branching. This is done by inserting ahead of any of the half-length
branch instructions, to be described below, a half-word prefix, called
STORE INSTRUCTION COUKTER IF. The “if” signifies that the counter con-
tents are stored only if branching actually takes place, thus saving time.
Since the counter contents can be stored at any memory address. it is
not necessary to tie up a register for this purpose.

The ability to use the instruction counter to index addresses, which
would make program relocation easier, is not provided in the 7030.
The main reason for the omission was the lack of index-address bits in
the tight instruction formats (see Chap. 9). Most instructions can refer
to one of fifteen index registers, but the most important conditional branch
instructions can specify only one index register. It seemed undesirable
to restrict that one register permanently to be the instruction counter.
It was even questioned whether the instruction counter should use one
of the other fourteen index addresses; some felt that fifteen index registers
was still not a large number and would have found 31 more comfortable
for large problems. Without these format restrictions, however, the
instruction counter could have been profitably included among the index
registers. As it is, for simple unconditional branching only, a separate
instruction BRANCH RELATIVE achieves the desired effect; for other
branching operations, an extra half word is needed to store the instruc-
tion counter first in an index register for subsequent indexing of a normal
hranch instruction.

10.3. Unconditional Branching

The unconditional BRANCH instruction is accompanied by several
variations. BRANCH DISABLED and BRANCH ENABLED are used to turn the
program-interrupt mechanism off and on, as will be discussed later;
these functions are combined with unconditional branching because they
are frequently needed during entry to and exit from the subroutine that
takes care of the interrupting condition. BRANCH ENABLED AND WAIT

is the nearest equivalent to a stop instruction in the 7030: program execu-
tion is suspended while waiting for an interrupt signal. This con-
ditional stop instruction allows the computer program to get back into
step with external operations when they take longer than the internal
operations. The built-in interval timer may also restart the computer
when it is Jvaiting. An unconditional stop instruction is neither necessary

1 36 ISSTHUCTION SEQUEKCING

iwr desirable, since its presence would perinit w e program inadvertentIy
to kill other programs that might be sharing the machine.

BRANCH RELATIVE creates a branch address by adding the curreiit con-
tents of the instruction counter to the specified address. NO OPERATIOS

IS a pseudo branch instruction that does nothing. (The 7030 actually
contains several ways of doing nothing-at very high speed, of course.)
As in some earlier computers. the operation code of KO OPERATIOS differs
from BRANCH by the state of a single bit. This makes possible a con-
venient remotely controlled program switch: the bit may be set to 0 or 1
on the basis of a test at one point of a program, thus preselecting one of
two alternative paths to be taken at a later point when the test condition
may no longer be available.

10.4. Conditional Branching

Conditional branching in the 7030 is distinguished by the functional
richness of a small number of unified instructions. This is made possible
by the technique of gathering most machine-set test conditions into a
single 64-bit indicator rcgister. (A 48-bit subset of these indicators is
continually monitored for program interruption.) A list of indicators
with a short description of each is given in the Appendix. The indicator
word has an address and thus may be used as a regular instruction
operand.

A single half-length BRANCH ox IWICATOR instruction is used to test
any one of the 64 indicators. The indicator desired is specified by a
&bit field. A further bit specifies branching either when the indicator is
on (1) or when i t is o f (0). Yet another bit specifies whether the indica-
tor is to be reset to zero after testing.

The full-length instruction BRANCH ON BIT extends this testing facility
to all bits in memory. Any bits, including those in the addressable
registers and thus the indirators, can be tested for either the on or the 08
condition. There arc 2 bits to specify whether the test bit is to be (1)
left alone, (2) reset to 0, (3) set to 1, or (4) inverted. With this instruc-
tion the programmer can set, up, alter, and test individual bits as he
wishes.

Because of their frequent occurrence, certain elementary indexing and
associated indicator-branching operations have been combined into the
two half-length instructions COUNT AND BRANCH, and POUNT, R R ~ T C H ,

AKD REFILL.

10.5. Program-interrupt System

There are two quite distinct purposes for a program-interrtlpt syhtem.
The first of these is to provide a means by which a computer can make
very rapid response to extra-program circumstances that owllr a t

These are discussed further in Chap. 11.

SEC. 10.61 COMPOXENTS O F THE PROGRAM-INTERRUPT SYSTEM 1 3 7

arbitrary times and perform a maximum amount of useful work while
waiting for such circumstances. These circumstances will most often be
signals from an input-output exchange : that some interrogation has been
received or that an input-output operation is complete. For efficiency
in real-time operation, the computer must respond to these forthwith.
This requires a system by which such signals cause a transfer of control
to a suitable special program.

The second purpose is to permit the computer to make rapid and facile
selection of alternative instructions when the execution of' an instruction
causes an exceptional condition. For example, to avoid frequent and
uneconomical programmed testing or extremely costly machine stops, i t is
desirable to have an interrupt system for arithmetical overflow or
attempted division by zero.

These two purposes-response to asynchronously occurring external
signals and monitoring of exceptional conditions generated by the pro-
gram itself-are quite distinct, and i t would be conceivable to have
systems for handling them independently. However, a single system
serves both purposes equally well, and provision of a single uniform sys-
tem permits more powerful operating techniques. Ahreover, the
interrupt system has also been integrated with conditional branching,
as mentioned before.

A satisfactory program-interrupt system must obey several con-
straints. The most important is that programming must be straight-
forward, efficient, and as simple as the inherent conceptual complexities
allow. Second, the special circuits should be cheap because their use is
relatively infrequent. Third, the computer must not be retarded by
the interrupt system, except when interruptions do in fact occur. Pin-
ally, since there is still little experience in the use of interrupt techniqucs,
the interrupt system should be as flexible as possible.

10.6. Components of the Program-interrupt System

The first question to be answered in designing a program-interrupt
system is: When to interrupt'? What is required is (1) a signal when
there is a reason for interruption and (a) a designation whether inter-
ruptions are to be permitted.

E'or each condition that may
require attention, there is an indicator that can be interrogated by the
contrd mechanism. When the condition arises, the indicator is set on,
and it may be turned 08 wheii the condition disappears or when the pro-
gram has cared for it. As mentioned before, there are 64 indicators
altogether, arranged in the form of an addressable machine register whose
contents can be loaded or unloaded in one instruction.

Designation when interruption is permitted can be made in several

Providing the signal is straightforward.

1 38 INSTRUCTION SEQUENCING [CHAP. 10

ways. It is possible to organize a system bo that any condition arising
a t any time can cause interruption. Alternatively, one can provide a bit
in each instruction to designate whether interruptions shall be permitted
at the end of that instruction or not. These methods make no distinction
among the interrupting conditions. It is highly desirable to permit
selective control of interruptions, so that a t any given time one class of
conditions may be permitted to cause interruptions and another class
prevented from causing interruptions.

Therefore, each of the interrupt indicators is provided with a mask
bit. When the mask bit is on, the indicator in question is allowed to
cause interruption. When the mask bit is of, interruption cannot be
caused by the condition indicated. Twenty-eight of the mask bits can
be set on or 08 by the program. Twenty other mask bits are permanently
set on; these correspond to conditions so urgent that they should always
cause interruption when the system is enabled. The remaining sixteen
indicators, which never interrupt and can be tested only by programming,
may be regarded as having mask bits that are permanently set to 08.
Like the indicators, the mask bits are assembled into a single register with
an address, so that they can all be loaded and stored as a unit, as well as
individually.

A second major question that the designer must answer is: What is to
be done when an interruption occurs? In the simplest systems the pro-
gram transfers to some fixed location, where a fix-up routine proceeds to
determine which condition caused the interruption and what is to be done.
This is rather slow. In order to save time, the 7030 provides branching
to a different location for each of the conditions that can cause interrup-
tion. The particular location is selected by a leftmost-one identifier.
This device generates a number giving the position within the indicator
register of the bit that defines the condition causing the interruption.
This bit number is used to generate a full-word instruction address that
contains the operation to be performed next. Since i t was anticipated
that the 7030 would often be operated in a multiprogrammed manner,
the bit address is not used directly as the instruction address, for this
would require the whole table of fix-up instructions to be changed each
time the computer switched to a different program. Instead, the bit
address is added to a base address held in an interrupt address register.
The sum is used as the next instruction address. One can easily select
among several interrupt instruction tables by setting the base address in
the interrupt address register.

A third major question is: How shall control return to the main pro-
gram when the fix-up routine is complete? One might cause the current
instruction-counter contents to be stored automatically in a fixed loca-

SEC. 10.61 COMPONENTS OF THE PROGRAM-INTERHUPT SYSTEM 139

tion and then change the instruction-counter setting to the address of the
appropriate entry in the interrupt table. The solution preferred was to
execute immediately the instruction specified in the interrupt table
without disturbing the contents of the instruction counter. (Only onc
such instruction, whether half- or full-length, may be placed a t each loca-
tion in the interrupt table.)

If the interrupting instruction is one that does not alter the instruction
counter, the program automatically returns to the interrupted program
and proceeds. This permits exceptionally simple treatment of the con-
ditions that can be handled with a single instruction. More complex
vonditions are handled by a combination of a store instruction counter
prefix with a branch to a suitable subroutine; this subroutine is entered
just like any other.

fourth question concerning any program-interrupt system is : How are
the contents of the accumulator, index registers, etc., to be preserved in
rase of interruption? Automatic storage of these is both time-consuming
and inflexible. As with respect to the instruction counter, it appeared
better to use the standard subroutine philosophy: the fix-up routine is
responsible for preserving and restoring any of the central registers, but
full flexibility is left with the subroutine programmer. He needs to stow
and retrieve only what he intends to corrupt.

The fifth question that must be answered is: How are priorities to be
established among interrupting conditions, and what allowance is to be
made for multiple interruptions? Provision of the masking facility
answers this problem, since any subset of the conditions may be per-
mitted to cause interruption. Each fix-up subroutine can use a mask of
its own, thereby defining the conditions that are allowed to cause inter-
ruption during that routine. There is also provided a means of disabling
the whole interrupt mechanism for those short intervals when an inter-
ruption would be awkward. One such interval is that which occurs
between the time when a subroutine restores the interrupt base address
appropriate for the main program and the time when i t effects return to
the main program. The mechanism is disabled or enabled by means of
the instruction BRANCH DISABLED or BRASCH ENABLED, typically during
entry to or exit from the interrupt fix-up routine.

Simultaneous conditions are taken care of by the leftmost-one identifier,
which selects the condition with the lowest bit address in the indicator
register for first treatment. This is satisfactory because the fix-up
routines for the several conditions are largely independent of one another.
The positioning of conditions within the indicator register defines a
built-in priority, but this priority can readily be overridden by suitable
masking whenever the programmer desires. In fact, it might be said

140 INSTRUCTIOX SEQCENCING [CHSP. 10

that the leftmost-one identifier solves the problem of simultaneity, while
the selectivity provided by the mask solves the problem of over-all and
longer-term priorities.

10.7. Examples of Program-interrupt Techniques

Figure 10.1 shows the system organization of a simplified interrupt
system with only eight interrupt conditions and 32 words of memory.
The abbreviated addresses consist of 5 bits for numbering full words and a
sixth bit for selecting the left or right half word. The numbers 001 11 .I
in binary and 7.32 in decimal notation are used to refer to the right half
(starting with bit position 32) of word 7.

The
mask register is set up to allow only conditions 1 and 4 to cause interrup-
tion. Instruction 7.32 has just been executed, and the instruction
counter has been stepped up to 8.0. There is no interruption; so the next
instruction is taken from location 8.0 in the normal manner.

In Fig. 10.2 the execution of instruction 8.0 is accompanied by the
occurrence of condition 1. The leftmost-one identifier generates the
number 1 which is added to the 24 contained in the interrupt address
register. The result, 25, is used as the address of the next instruction
rather than the 8.32 contained in the instruction counter, which is
unchanged.

In Fig. 10.3 is shown the case when the instruction a t location 25.0
does not change the instruction counter. The interrupt mechanism has
turned off condition 1 which caused the interruption. S o other condition
and mask bits coincide. After the instruction at location 25.0 is com-
pleted, the next instruction is taken from the location specified by the
instruction counter, which still contains 8.32. This one-instruction fix-up
routine might be used to reset the interval timer a t the end of an
interval.

Figure 10.4 shows a different sequence that might have followed Fig.
10.2. Suppose indicator 1 represents an end-of-file condition on a tape
and several instructions are needed to take care of the condition. In
this case the instruction a t location 25.0 disables the interrupt mecha-
nism, stores the instruction-counter contents (8.32) as a branch address in
the instruction at location 21.32, and then branches to location 19.0.
The fix-up routine proper consists of the instructions between 19.0
and 21.0 (it might be of any length and might include testing and sched-
uling of further input-output operations). During the routine no more
interruptions can occur. Instruction 21.32 is a BRAXCH ENABLED

instruction, the address part of which was set to 8.32. This returns con-
trol to the interrupted program at location 8.32 and reenables I h e mccha-
nism bo that further iii terruptions are possible. If another intei’rupl

The example starts with condition 6 in the indicator register on.

e

4

141

w
0 z
W
3 a
W
v)

c 0 ._ .-
E
Q
0

* h E

142

143

S ._
.2

E
n
0

N

X h 3 I Q
N

N N N
9 ... m m m 9 9

b m m CF d W
rl N N

9 7 7
T-

7 9 9
7 ... 6 8 7 0 7

7-00
7 0 0
0 7 7

7 0 o r
7 r 0

O

144

SEC. 10.71 EXAMPLES OF PROGRAM-IKTERRUPT TECHXIQUES 1 45

condition is already waiting, another interruption will take place immedi-
ately, even before the instruction at location 8.32 is executed.

The program in Fig. 10.4 assumes that it is desired to prevent further
interruptions during the fix-up routine. If further interruptions were to
be allowed during the routine and the same mask still applied, the pro-
grammer would use only a STORE INST~UCTION COUNTER IF BRANCH

instruction a t location 25.0 and a simple BRASCH instruction a t location
21.32. This procedure is appropriate when and only when the pro-
grammer is certain that condition 1 cannot arise again either during the
fix-up routine or during any other routine that might interrupt it.

Instruction location

Binary

00111 . I
01 000.0
11001 . o

10011 .o

101 00.0
10100.1

101 IO. 0
10110.1

10111 . I
01000.1

Decimal

7 . 3 2
8 . 0

25.0

19.0

20.0
20.32

22 .0
2 2 . 3 2

23.32
8.32

Operation

ADD

MULTIPLY

STORE INSTRUCTION COUNTER IF

BRANCH DISABLED

SWAP

BRANCH ENABLED

LOAD

BRANCH DISABLED

SWAP

BRANCH ENABLED

STORE

First
address

X

Y

23.32
Mask

20.32
register

W

22 32
Mask
register
-
z

Second
address

19.0
Temporary
storage

Temporary
storage

FIG. 10.5. Program-interrupt example. Interrupt subroutinc pwmitting further
interrupts.

In the most sophisticated use of the program-interrupt mechanism,
where i t is desired to employ a long fix-up routine that is to be interrupted
under a different set of conditions, the program in Fig. 10.5 is appropriate.
The mechanism is disabled a t the time of the first instruction after inter-
ruption. The mecha-
nism is then enabled. At the end of the routine the mechanism is dis-
abled, the old mask restored, and the mechanism is reenabled as control
is transferred to the originally interrupted routine at location 8.32.

This procedure is clearly suitable for any number of levels of inter-
ruptions upon interruptions, each of which may have a different set of
causing conditions. Each level of routine is under only the usual sub-
routine constraint of preserving the contents of the registers it uses.

The new mask is loaded and the old preserved.

146

_ _ _ _ _ _ ~ ~

100 0 y;um ~ 1715 0
z

[CHAP. 10

~ ~

Instiuctlori counter steps to 100.32
Interpolated ohject instruction

Full program control simplifies programming and multiprogramming,
as does the refusal to assign special functions to fixed memory locations.
The task of the programmer of fix-up routines is simplified by the pro-
vision of special operations and by the adoption of the same con-
ventions and requirements for interruption routines as for ordinary
subroutines.

An especially important feature of the program-interrupt system just
described is that it makes almost no demands upon the writer of the
lowest-level program. He need only set up the interrupt address register
and the mask register. He need not even understand what he puts there
or why, but may follow the local ground rules of his installation. Priori-
ties, preservation of data, and other programming considerations that
are inherent in program interruption concern only the author of the fix-up
routines. In open-shop installations it is important that any program-
ming burden caused by s i h sophisticated operation fall upon the full-
time utility programmer rather than upon the general user.

10.8. Execute Instructions

In an execute instruction the address part specifies, directly or indi-
rectly, an object instruction to be executed, but does not set the instruction
counter to the location of the object instruction, as a branch instruction
would do. The next instruction to be executed, therefore, is the SUC-

cessor of the execute instruction rather than the successor of the object
instruction. This is illustrated below.

With the instruction counter a t location 100.0, the instruction EXECUTE

1715.0 is fetched. This instruction now causes the word at address
1715.0, the object instruction LOAD x, to be loaded into the instruction
decoding circuits and to be executed just as if it had occurred in the pro-
gram a t address 100.0. The instruction counter meanwhile has advanced
to location 100.32, where the next, instruction to be executed will bc
found. (Note that EXECUTE in the 7030 is a half-length instruction.)

In effect, an execute operation calls in a one-instruction subroutine
and specifies immediate return to the main routine. This is similar to
indirect addressing (see Chap. 1 l), except that the whole instruction, not
just the address part, is selected from the specified location.

SEC. 10.81 EXECUTE IXSTRUCTIONS 147

The uses of the execute operations arise directly from the fact that the
object instruction does not imply its own successor. In the IBM 709,
for example, execute simplifies modification of nonindexable and non-
indirect-addressable operations such as those for input-output. In the
Soviet LEM-1 computer,' there are 1,024 words of erasable storage and
7,167 words of read-only storage; here the execute operations permit pro-
grams in the read-only storage to use isolated modifiable instructions in
the regular storage.

The one-instruction subroutines provided by the execute operations arc
especially useful in linkages between a main program and ordinary sub-
routines. For instance, a subroutine may need several parameters, such
as character size, field length, index specification, etc. The calling
sequence may include these parameters in actual machine instructions
which the subroutine treats as second-order subroutines. This ability to
lend control back and forth, between calling sequence and subroutine,
should permit many new subroutine linkage techniques to be developed.

One useful special case of this form of subroutine technique occurs in
interpretive routines where machine-language instructions can be inter-
mixed with pseudo instructions in the argument program. The inter-
preter can then execute the machine-language instructions directly
without transplanting them into itself.

The one-instruction subroutine techniques provided by execute opera-
tions permit counter-sequenced computers to use the efficient program-
ming tricks of the IBM 650, in which instructions are executed directly
from an accumulator.

For all the foregoing purposes it is preferable for the execute operation
to have any machine instruction as its object. Thus one may desire to
execute an arithmetic instruction, a branch instruction, or even another
execute instruction. Actually the occurrence of a branch instruction as
the object instruction of an execute operation would be rare in any of
these applications. This fact makes it possible to add the restriction of
not permitting execute to perform branch opera t ionsa very useful restric-
tion for other major applications.

One of these applications is program monitoring, where the object
instruction of an execute operation should be prevented from changing
the instruction counter that controls the monitoring routine. Consider,
for example, a supervisory program A , such as a tracing routine, which is
to monitor the execution of an object program B, perhaps with testing
or printing of the instructions of B as they are executed. With an ordi-
nary set of operations, the progranimirig to effect such monitoring is
quite clumsy. Each instruction of B must be moved from its normal
placc in memory to a place in the sequence of A . Then i t must be tested

bfachmudov, op. cit.

148 IXSTRUCTION SEQUEXCING [CHAP. 10

to ensure that it is not a branch instruction or, if i t is, that the branching
condition is not met; for the execution of such an operation would transfer
control of the machine from the supervisory program to some point within
the object program. Finally, after the transplanted B instruction has
been executed, A must update a pseudo instruction counter that keeps
track of the progress of B, and repeat the whole process with the next B
instruction. If the B instruction is a successful branch, A must appro-
priately revise the pseudo instruction counter. This programmed
machinery is common to all monitoring routines and must be executed
in addition to the actual monitoring desired.

10.9. Execute Operations in the 7030
The two execute operations in the 7030 are designed so that they can

be used for one-instruction subroutines and for program monitoring.
They are called EXECUTE and EXECUTE INDIRECT AND COUNT. Each
causes a single instruction to be fetched from an addressed location and
executed, except that execution may not change the instruction counter.
If the object instruction specifies a branch operation (which would cause
such a change), branching is suppressed and the execute exception indi-
cator is actuated, which may interrupt the (monitoring) program.
Moreover, the object instruction is not allowed to change the state
(enabled or disabled) of the interrupt system.

In the EXECUTE operation, the address specifies the object instruction
directly. In the EXECUTE I~WIRECT AND COUNT operation the address
specifies a pseudo instruction counter in memory, whose contents are
the location of the object instruction. After the object instruction is
performed, the pseudo instruction counter is incremented according to
the length of the object instruction. This last feature is particularly
convenient in a computer that has instructions of different lengths, and
it uses equipment that the computer must have anyway. Any execute
operation may have another execute operation as its object. This useful
function makes it possible, however, for a programmer’s error to initiate
an endless loop of execute operations and thus never reach the end of the
instruction. Since the ordinary interrupt system can interrupt only
between instructions, a special signal forces an interruption after several
hundred repeated operations, so that the computer will not be tied up
indefinitely. (The same signal is used to terminate an endless indirect-
addressing loop.)

The 7030 execute operations, then, not only provide the ability to
execute an isolated instruction, with automatic return of control to the
monitoring routine, but also provide for (1) suppression of branching,
and (2) signaling to the monitoring routine when branching is attempted.
These properties considerably simplify monitoring routines. The

SEC. 10.91

100.0
100.32

EXECUTE OPERATIONS IN THE 7030 149

EXECUTE INDIRECT A N D COUNT Pseudo instruction counter
BRANCH 100.0

automatic return obviates the need for transplanting the instructions of
the object program into the monitor. The suppression of branching
ensures that the monitor can retain control without detailed testing of
the object instruction. The notification of attempted branching permits
the monitoring program to update the pseudo instruction counter for the
object program without detailed testing. Since this detailed testing of
the object instruction for branching and skips occupies a large part of
conventional monitoring programs, the execute operations make such
programs much more efficient. The EXECUTE INDIRECT AND COUNT

operation gives further efficiency because i t automatically increments the
pseudo instruction counter.

A simple monitoring loop for performing a control trace in the 7030
computer reduces to :

Location 1 Operation I .4ddress

When a branch occurs in the object program, this loop is interrupted,
and a suitable routine records the tracing data and changes the pseudo
instruction counter.

The execute operations can in theory be put into any stored-program
computer. Their mechanization is somewhat simpler and more justifia-
ble in computers that use an instruction counter for normal sequencing.
Provision of the safeguards that permit the operation to be used for
monitoring is greatly simplified in computers that have program-inter-
ruption systems. In other computers, attempts by the object program
to change the sequence must be signaled by setting conditions that stop
the machine or are tested by branch instructions.

An obvious extension of the execute operations would be to have the
EXECUTE INDIRECT AND COUST operation automatically change the
pseudo instruction counter when the object instruction is a branch.
There would still need to be an alarm to the monitoring program, how-
ever, so this function was not incorporated in the 7030.

Chapter 1 1

INDEXING

11 .I. Introduction

A basic requirement for a computer is that writing a program should
take less effort than performing the desired operations without the
computer. Most computer applications, therefore, use programs that
can be repeated with different sets of data. There are several possible
techniques.

In the earliest machines the technique employed was to change the
contents of a few storage locations between successive executions of the
program. A later method of achieving the same result was to change not
the data a t a given address but the addresses used by the program.
This procedure permitted many more storage locations to be used and
widened the scope of computer applications considerably. Early com-
puters, whose programs mere specified by pluggable wiring, paper tape,
or cards, permitted little or no address alteration. The invention of
stored-program computers provided a major advance because i t allowed
programs to be treated as data, so that any instruction of a program could
be modified by the program itself. The main application of this general
facility was for the modification of addresses.

Subsequently, it became apparent that programmed address computa-
tion, though sufficient in theory, \vas cumbersome in practice. Too much
computing time and program space were required to perform these
auxiliary operations. A remedy was provided by an address register,
also called index register or B-line,l whose contents could automatically

Note: Chapter 11 is a reprint with minor changes of G. A. Blaauw, Indexing and
Control-word Techniques, I B M J. Research and Dewlopment, vol. 3 , no. 3, pp. 288-
301, July, 1959. A condensed version was published previously under the title, Data
Handling by Control Word Techniques, Proc. Eastern Joint Computer Conf., Derem-
ber, 1958, pp. 75-79.

T. Kilburn, The University of Manr!iester High-speed Digital Computing
Machine, Nature, vol. 164, no. 684, 1949.

150

SEC. 11.21 INDEXING FUXCTIONS 151

be added to the specified operand address to obtain the actual address of
the operand. In recent machines several index registers-up to 100-
have been made available. Thus address computation has partly taken
t,he place of data transmission between storage locations and has sub-
sequently been simplified by the introduction of index registers.

Providing specialized machine functions, such as indexing, for opera-
tions that could also be programmed was not new. In theory, all machine
instructions but one are redundant; as rioted in Chap. 9, an instruction
repertoire can be replaced by a single, well-chosen instruction. In prac-
tice, a repertoire of more than one instruction is justified by the operating
time and program space that are saved. Similarly, special-purpose
registers, such as index registers, may be justified when they increase
the effective speed and capacity of the computer enough so that the gain
in performance offsets the expense of the added equipment and improves
the performance-to-cost ratio. This type of performance gain should be
accompanied by greater programming ease. Programming ease greatly
affects the form that an added function should take, but, because pro-
gramming ease is hard to express in a cost figure, it is rarely used as the
sole justification for added equipment.

In the design of the IBhI 7030, an attempt has been made to achieve
great flexibility and generality in machine functions. The indexing fuiic-
tions and the associated instruction set, consequently, were examined
carefully. The general principles that m r e considered in this examina-
tion will be discussed first. The built-in functions that were developed
for the 7030 as a result of the examination will be described subsequently
and illustrated by examples.

1 I .I. Indexing Functions

Indexing functions may be divided into four groups: (1) address
modification, (2) index arithmetic, (8) termination, and (4) initialization.
The first group is used in addressing operands arid providrs the justifica-
tion for the existence of index quantities. The other groups concern the
task of changing the index quantities, the tests for end conditions, and the
set-up procedures.

Address Modi3cation
The common use of an index register is the addition of its contents,

the index value, to the address part of an instruction, which will be called
the operand address, in order to address memory with the sum, the
egective addrrss. This operation is called address rnodi$cation. The
operand address and the index value remain unchanged in storage.

Address modification is used in general to address successively the
elements of an array. An array may be one-dimensional or multidimen-

These operations are often termed housekeeping.

1 5 2 INDEXING [CHAP. 11

sional, and its elements may be single-valucd or multivalued. The
address of a value that is part of an array can be subdivided into three
dietincbt parts. The first part, the base address, identifies the location of
the array within memory. The second part, the element address, identi-
fies the location within the array of the element currently being used in
computation. The element address is specified relative to the base
address and is independent of the location of the array in memory. The
third part, the relative address, specifies the location of the array value
relative to the current) element. The relative address is independent of
the location of the array and of the selection of the current element. The

1218
0

1236
0

1254
0

1272
0

.2 %.%\+l I +4

@ 0 1 0 0

1230 1233
o i o o 0 1 0 o o

1248 ,1251
o i o 0 0 1 0 0 0

0 1 0 0 o i o 0 0

0 1 0 0 o i o 0 0

, 1266 1269

I 1284 1287

FIG. 11.1 . Example of addressing of nearest neighbors in two-dimensional array.
Example sho\vs a 6 x 5 array of three-valued elements, with relative addressing of
the second value of one element and of its four nearest neighbors.

array value may be part of the current element or it may be part, of
another element. A well-known case in tcchnical computation is the
addressing of right, left, upper, and lower neighbors of an clement in a two-
dimensional array. Figure 11.1 illustrates this case and shows how the
address of a particular array value is formed as the sum of base address,
element address, and relative address.

The base address and relative address are constant throughout the
execution of the program. The base address is determined as part of the
task of memory allocation. The relative address is determined as part
of the programming task by the characteristics of the computation to be
performed. The element address, on the other hand, is not constant.
It changes as the computation proceeds from one element to the next.

All three components, base, element, and rclative address, must be
available during address modification. Therefore, each of these addresses

SEC. 11.21 INDEXING FUNCTIONS 1 5 3

must be found either in the operand-address part of the instruction or in
the index values of index registers. In order to make address modification
effective, the variable part of the array address, the element address,
should be part of an index value. The relative address is used to address
different values for a given element address. In order to preserve the
identity of the selected element, the index value, which contains the
element address, must remain unchanged. Therefore, the relative
address should be part of the operand address. The base address may be
part either of the operand address or of an index value. In the first case,
i t is added to the relative address; in the second case, it may be added to
the element address.

Index Arithmetic
As computation proceeds, successive elements of an array are addressed.

The element addresses are generated by the algorithm appropriate for the
use of the array in the computation. Since the element address is part
of an index value, the address computation may be accomplished by
index arithmetic. Very often the algorithm is a simple recurrent process
in which a new index value is obtained by addition of an increment to
the old index value.

There are several algorithms that cannot be described as simple
increnienting processes. In particular, some algorithms make use of
variables that are data or instructions rather than known parameters of
an array. The use of data in index arithmetic occurs in table reference
techniques. The use of instructions in index arithmetic occurs in
indirect addressing. In this mode the effective address is used not as the
address of an operand but as the address of an instruction whose effective
address is the address of the operand (see See. 11.11).

The conventional use of the effective address as the operand address
is called direct addressing, in contrast to the indirect addressing mode.
In a simple incrementing process another addressing mode, immediate
addressing, is often used. In this mode the effective address is used as
an operand rather than as the address of an operand.

Termination
Each time an index is altered by index arithmetic, a test may be

performed to determine when the last element of the array has been
addressed. Some of the forms of the
test are (1) limit comparison, (2) length subtraction, and (3) counting.
In limit comparison, the current index value is compared with a given
constant, the limit. In length subtraction, a given variable, the length,
is reduced by the value of the increment and tested for zero. In counting,
a given variable, the count, is reduced by 1 and tested for zero.

This process is called termination.

154 INDEXING [CHAP. 11

When the base
address is part of the index value, the limit is the sum of the base address
and the length; the limit has the advantages that it stays fixed and that
a comparison is rather simple to implement. The length, in turn, is
the product of increment and count and so is independent of any base
address to be added to the index value. Counting permits the test for
completion to be independent of both base address and increment, so that
even an “increment” of zero is possible.

Instead of a separatc quantity, such as limit, length, or count, the
index value itself can be used to determine the end of the process. In
that case, the index value serves as a length, or, in other words, a limit of
zero is implicd. This approach, which is followed in the IBM 704, 709,
and 7090, requires a minimum of information, but the base address
cannot be part of the index value, and address modification must be sub-
tractive rather than additive. A greater degree of freedom in specifying
index values and tests is very desirable. Therefore, independence of
index value and termination test is preferred. In the 7030, counting
has been chosen as the primary means for determining the end of an index-
modification scquence. The conclusions reached in the course of the dis-
cussion are, however, equally valid when a limit or length is used.

Initialization
After the last element of the array is addressed, the index value and

count must each be changed to the initial setting for the array to be
addressed next, which may be either the same array or another. This
housekeeping operation is called initialization. Of course, initialization
also occurs prior to the entire array-scanning operation. This case is
the least frequent; it is usually part of a more general loading and reset-
ting procedure, and its characteristics influence the indexing procedures
to a lesser degree.

A summary of the indexing functions that have been described is
shown in Table 11.1. The quantities that occur in the indexing pro-
cedure for a simple array are listed in the second column. The opera-
tions that make use of these quantities are listed in the third column.

The three methods of test are closely interrelated.

TABLE 11.1. SUMMARY OF INDEXING FUNCTIONS

Function 1 Quantity

Index use
Index change
Index test
Index reset

Index value
Increment
Count
Next initial:

Index value
Count

Operation

Address modification
Incrementing
Counting and zero testing
Replacement of:

Index value
Count

SEC. 11.31

Index value i

IXSTRUCTION FORMAT FOR INDEXIKG

count Refill

155

Of the quantities listed, the index value is, of course, in the index
register. This leaves four quantities that must reside somevhcre.
Earlier approaches have relied on storing these quantities in general
memory locations. Of the four operations listed, address modification
was usually the only built-in machine operation. In most earlier
machines the other three operations were performed by separate instruc-
tions. For the 7030 it was decided to combine three of the quantities
into one 64-bit index word, consisting of the index value, a count, and the
address of another index word (Fig. 11.2). These three quantities may
be used either independently or together by means of built-in combined
indexing operations. When the three quantities in an index word belong
to the same iiidcxing or data-transmission operation, the word is often
referred to as a control word. The terms ‘linder; word” and “control

word” are largely synonymous, but the latter is intended to imply it

certain mode of operation that will be discusscd in subsequent sections.

1 I .3. Instruction Format for Indexing

A general discussion of instruction formats was given in Chap. 9.
We shall here consider instruction formats more specifically as they are
affected by indexing.

Relative addressing requires a t least one field in the instruction format
for direct-operand designation, called the operand address field, and one
field for indirect-operand designation, called the index address field.
The index-address field specifies the index used in operand-address
modification. It is, of course, desirable to have a uniform system of
operand addressing, where address modification is available for each
operand.

It would serve no purpose to provide more than one direct designation
for each operand. More index-address fields would be used rather infre-
quently. They might find application in multiple indexing, an index-
arithmetic algorithm which forms the sum of two or more independently
computcd index values. It was decided not t o burden every operand
designatio11 with added index-address fields, but to provide instead a
Frparnte instruction, LOAD VALUE WITH SUM, to be used only when needed.
This instruction adds any selected number of index values and places the
bum in another selected .index value.

With an operand-address field and an index-address field required to

156

I Operand address

INDEXING

op. I Operand address Operation I

[CHAP. 11

specify each operand and with several operands necessary for most
operations, the instruction format would become inefficient unless implied
addresses or truncated addresses were used.

When two operands are needed for the usual single-address arithmetical
instruction, one of the operands comes from an implied address, the
accumulator, and the result is returned to an implied address, often
again the accumulator. In the index-arithmetic operations of the 7030
the use of such implied addresses has been extended by specifying more
than one operation in one instruction, as will be described in the following
sections.

The use of a truncated address, containing fewer bits than normal
operand addresses contain, saves instruction space, but it also reduces the

I Operand address I Operation I I I
(a) Single-address format

I Operand address I J I Op. I I 1
(b) Index arithmetic format

FIG. 11 3. Instruction formats.

number of available address locations and consequently makes the
instruction set less general. .4 truncated address for index registers
may be justified, however, (1) because a program usually needs only a
limited number of index registers, and a complete address would therefore
be inefficient; (2) because limiting the number of index registers permits
preferred treatment for these registers to speed up index-arithmetic
operations and address modification ; (3) because truncation of the index
address makes it practical to include a second index address in index-
arithmetic instructions, which greatly improves the efficiency of these
instructions.

Nevertheless, some applications require complete generality for index
addresses. For these cases an instructioii RENAME effectively expands an
index address to full capacity; i t loads an index register from any desired
memory location, retaining the address of the memory location, and the
contents are automatically stored back at the original location before the
index register is loaded by a subsequent RENAME instruction.

SEC. 11.41

A

INCREMESTING 157

C R

It would have been possible to improve the efficiency of operand speci-
fication by truncating the operand address. This method was not used.
however, since the size of relative addresses would have been restricted
and the base address could not then be part of the operand address.

In referring to the basic single-address format of the 7030, such aux-
iliary truncated addresses as the index address I used in address modifica-
tion are not counted. The I address is considered part of the operand
specification. Index-arithmetic instructions use a single-address format
to which a second index-address field J has been added so that the second
operand can be addressed explicitly. Some operations, for which two
complete explicit operand addresses are desired, use a two-address format
consisting of two single-address formats, each with an 1 address. Figure

INSTRUCTION INDEX WORD

11.3 shows the three basic formats.
form, the basic address-modification function of indexing.

11.4. lncrementing

Index incrementing could be performed in the accumulator by a series
of three single-address instructions, which add the increment to the index
value and return the result to the index register. Actually, only the
increment and the index register to be modified need specification, and
the short index-arithmetic format can be used to specify an entire
incrementing operation, called ADD TO VALUE. This operation makes
use of the index adder provided for address modification. The main
arithmetical process for data is thus separated from the housekeeping
process, and data registers are not, altered. In the ADD TO VALUE opera-
tion the operand address specifies the address of the increment to be

Figure 11.4 shows, in schematic

158 INDEXING [CHAP. 11

added to the value part of the indcx register specified by the index address
J. The operand addrcss can itself be indexed by the index value speci-
fied by the index address I , just like any other operand address. This
gives indexable index arithmetic. A schematic diagram of the incre-

\
\

ADD TO VALUE

COUNT

Next initial
If c; =o

REFILL

FIG. 1 1.5. 1ncrc.rncnting. counting. and refilling.
separately or in coinhination.

Operations may be performed

menting operation is shown at the top of Fig. 11.5. Several variation* of
the basic ADD TO VALUE inPtrurtion, permitting sign iiivcrsioil and immedi-
ate addressing, are also available.

The quantity used in incrementing is specified explicitly in the incre-
menting instruction of the 7030. The
increment could be associated with the indcx value such that the address

A different approach is possible.

SEC. 11.51 COUNTING 159

of the increment would be known whenever the index was addressed.
,4s pointed out in Chap. 9, an advantage is obtained from implied
addressing only when the implied operand, here the increment, remains
unchanged during repeated references. Furthermore, the incrementing
operation could then be combined with another operation that uses the
same index address. For instance, it would be possible to specify in
one single-address instruction the use and the subsequent incrementing
of an index. This method, however, loses its value when several different
increments must be used to change an index value or when the increment-
ing and index use must occur in different parts of the program. In order
to achieve greater generality, the separate ADD TO VALUE instruction has
been chosen in preference to a combined instruction.

11.5. Counting

In the termination of array scanning, more than one count may be used,
just as several increments may be used in index arithmetic. A single
count is most frequent, however. I t is, therefore, profitable to associatc
the count used in the termination with the index value to which the
process applies and to use implied addressing. Since counting normally
occurs whcn the index value is changed, it is logically consistent to specify
incrementing and counting in one index-arithmetic instruction, ADD TO

VALUE AND COUNT. This instruction is available in addition to ADD TO

VALUE.

An implied address for the count can be obtained in various ways.
A solution, economical in time and space, is to place both index value and
count as separate fields into the index register. These are two of the
three quantities that make up a control word. The instruction ADD

TO VALUE AND COUNT adds the addressed increment to the index value,
reduces the count by 1, and provides a signal when the count becomes
zero. Counting is shown schematically in the center of Fig. 11.5. (The
reJill operation, indicated a t the bottom of the figure, will be discussed in a
later section.)

The choice of counting as a test for termination and the use of an
implied address for the count do not preclude other termination tests.
In particular, a COMPARE VALUE instruction is made available to allow
limit tests, and instructions to add to or subtract from the count can be
used for the equivalent of length subtraction. Such extra instructions
add flexibility to the instruction set, but they are less efficient than ADD TO

The following example, to be expanded later, illustrates the use of
It is required to multiply

Vector A has its first

It becomes equivalent to count when the increment is zero.

VALUE A N D COUNT.

counting iu a simple technical computation.
vectors A and B. Each vector has n elements.

160 INDEXING [CHAP. 11

element a t ao. Vector B has its first element a t bo. The product is
to be stored a t CO. B is
actually a column vector of a matrix, whose rows have p elements and are
stored in successive memory locations. Therefore, the elements of B
have locations that are p apart. The program is shown in Table 11.2.

A is stored in successive memory locations.

TABLE 11.2. VECTOR MULTIPLICATION USING COUNT

Instructions
-

Initial setup -+f
f + l
f + Z

Vector multiply, inner loop f + 3

f + - 2

Housekeeping, inner loop f + 5
f S 6
f + 7

Vector multiply, outer loop f + 8

Load i from io
Load j from j "
Set accumulator to zero

Load cumulative multiplicand from ao, t

Multiply cumulatively by b o , indexed by j
indexed by i

Increnient j by p
Increment i by 1, count
Branch to f + 3 if count did not reach

zero

Store cumulative product co

Control words Diaqrarii of nector dimenszons
-~ ~~~ -~ -

Contents after executing the inner loop
x times: I A

Address Index value Count. . . . 1

P

j
i n--3:
i0 0 n

. . . i X P
i o 0 . . . I

Multiplicand and multiplier are specified in instructions f + 3 and f + 4.
Their product is added to the accumulator, which contains the sum of
the previous products. This operation is called cumulatiiie multiplication.
The count in control word i terminates the cumulative multiplica-
tion. The example shows
that the use of the control words i and j in two instructions requires
five added instructions in order to change, test, and initialize these control
words. Although
the simplicity of the arithmetical process in this elementary example tends
to overemphasize the housekeeping burden, it is clear that further sim-
plification of the indexing procedure would be desirable.

The count in control word j is not used.

Three of the latter instructions are in the inner loop.

SEC. 11.71

A v c

PROQRESSIVE INDEXING 161

R

11.6. Advancing by O n e

An array in which elements have consecutive addresses, such as vector
A in Table 11.2, requires an increment of 1 to be added to the index
value. The frequent occurrence of a value increment of 1, often coupled
with counting, suggests the definition of an advance and count operation,
which is the same as ADD TO VALUE AND COUNT with an implied increment
of 1. Because the increment is implied, the operand address is free for
other use; so the advance and count operation can be combined with still
another single-address operation. A suitable candidate for such com-
bination is the conditional branch operation that refers to the zero-count
test. The new instruction, which also has several variations, is called
COUNT AND BRANCH. The variations add no new indexing concepts and
will not be discussed in detail.

In the example of Table 11.2, instructions f + 6 and f + 7 can be
replaced by a single COUNT AND BRANCH operation.

1 I .7. Progressive Indexing

part of either the operand address or the index value.
In discussing index use it was pointed out that a base address can be

When the base

FIG. 11.6. Progressive indexing.

address is part of the index value and the relative address is zero, the
operand address is not used a t all. The main operation can then be
combined with an ADD TO VALUE AND COUNT operation. The index
value is first used as an effective address to address memory; subsequently
it is incremented by the operand address, which acts as an immediate
increment. This is the same order of events that occurs when two
separate instructions are used. The operation part of the instruction

162 INDEXING [CHAP. 11

lm.ide$ specifying the arithmetical operation, also specifies : Use ihc indce
I nlirc as the eflectiiw address, and subsequentlg increment and count. This
type of indexing will be called progressive indexing and is shown in Fig.
11 .G . Simple arrays that permit progressive indexing are frequently
encountered both in data processing and in technical computations.

In the vector-multiplication problem of Table 11.2, the base addresses
a0 and bo could have been placed in the value field of io and jo, respectively.
If progressive indexing mere used, instruction f + 5 could be combined
with f + 4 and, instead of using the COUXT ASD BRASCH operation sug-
gested in the previous section, instruction f + 6 could be combined with
f + 3. As a result, the program would be shortened both in instructions
and in execution.

e

e + l
e f 2
e + 3
e + 4

e + 5

e + 6
e + 7

Load element R, length r bits, from location specified by 2 , and increment i
by r .
Compute n ith element R.
Load element S , length s hits, from loration specified hy i.
Compute with element S.
Store new elemcnt S, lcngth s bits, a t location specified hy 7 , antl increment z
by s.
Add 1 to element Z', length t bits, in location specified by 1 , antl inrrement i
by 1.
Load accumulator with a constant.
Compare arcumulator to element U , length u bits, in location specified by 2,

and increment z by u .

FIG. 11.7. Progressive indexing on elements of varying length.

The use of progressive indexing in a data-processing operation is illus-
trated in Fig. 11.7. A series of elements of different lengths is processed.
During the computation appropriate for each element, addressing of the
element is combined with progressive indexing. As a result, processing
can proceed from one element to the next without extra index arithmetic.
The example also shows the use of indexing words and bits within a word,
as provided in the 7030.

11.8. Data Transmission

When an increment of 1 is implied, as in the COUNT AND BRANCH

operation, the count becomes the equivalent of a lcngth and represents
the number of adjacent words in the addressed memory area. When,

SEC. 11.91 DATA ORDERING 163

furthermore, the index value is used as an effective address, as in pro-
gressive indexing, the initial index value is the base address that refers
to the first word of the memory area. A memory area can, therefore, be
specified in position and length by the value field and count field of a
control word. This makes it convenient to specify the memory areas
involved in data transmission by means of control words and gives the
control word the characteristic of a shorthand notation for a memory
area.

Data may be transmitted between two memory areas or between input-
output units and memory. The block of data transmitted in a single
operation will be assumed to consist of one or more records (see Chap. 4).
A control word may be used for both indexing and data transmission.
This generality makes i t possible to associate a control word with a
record and to use it to identify the record throughout an entire program,
including reading, processing, and writing. The use of control words in
transmitting data directly between input-output units and memory is
further described in Chap. 12.

I I .9. Data Ordering
A common procedure in data-ordering operations, such as sorting,

merging, queuing, inserting, and deleting, is to move records from one
memory area to another. With control words it is possible to replace
the transmission of a record containing many data words by the trans-
mission of a single control word specifying that record.

It is
desired to write the records on tape in a sequence determined by com-
paring one or more identijier fields in successive records. After the
comparison is made, the actual sequencing is accomplished by ordering
the control words associated with the records. To make the comparison,
the identifier of each record is located by specifying its address relative to
the base address in the control word for that record. In the course of this
procedure the control words may be placed in the correct order in suc-
cessive memory locations. The sequence of the control words then
specifies indirectly the sequence of the associated records. When the
records are written on tape, the control words are used in the order of
their addresses. Consequently the records appear on tape in the desired
sequence. No record transmisson is required other than from memory
to tape.

The preceding example illustrates the case of a group of records that
are to be moved as one block. The records cannot be described by a
single control word since they are not necessarily in successive memory
locations if their sequence is to be changed. The block is then described
by a series of control words. The transmission to or from input-output

As an example, consider n records stored in random order.

164 INDEXING [CHAP. 11

devices can, however, be mechanized as a siiiglc operation by defining a
chain of control words.

A control-word chain is started by the control word specified in the
instruction. The chain may be continued by taking control words
from successive memory locations. The chain is ended when some kind
of end condition is sensed. A convenient end condition is the presence or
absence of a bit in the control words. This bit will be called the chainflag
or index flag. Thus, a single input or output instruction can, by means of
a chain of control words, initiate the transmission of a group of records.
Records that appear in memory in random order are said to be scattered.

Control words were introduced in the IBM 709 in order to permit
grouped-record transmission to or from external devices. In the IBM
7070, control words can be used both for grouped-record transmission and
for indexing. Both machines establish a chain of control words by plac-
ing the words in consecutive memory locations.

TABLE 11.3. SEQUENCE OF CONTROL WORDS
Old .Vew

A
8
c

4-D
B
P : I
X
Y
Z

Y
z

An example of data ordering is the deletion of one record from a group
of records. Assume that the records A . . . Z are in consecutive mem-
ory locations. To delete record D from this series, the records E . . . Z
may be moved to the locations previously occupied by D . . . Y. The
use of control words greatly simplifies this procedure. The grouped

l The chaining concept has been developed independently by Newell, Shaw, and
Simon, who have shown many interesting examples of its function on a simulated
computer. A. Newell and J. C. Shaw, Programming the Logic Theory Machine,
Proe. Western Joint Computer Conf., February, 1957, pp. 230-240; A. Newell, J. c.
Shaw, and H. A. Simon, Empirical Explorations of the Logic Theory Machine, ib id . ,
pp. 218-230; A. Newell and H. A. Simon, The Logic Theory Machine, I R E Trans. on
Injorm. Theory, IT-2, no. 3, pp. 61-79, September, 1956; J. C. Shaw, A. Newell, H. A.
Simon, and T. 0. Ellis, A Command Structure for Complex Information Processing,
Proc. Western Joint Computer Con.., May, 1958, pp. 119-128.

ssc. 11.101 REFILLING 165

records can be in random order in memory with their order established
by control words in consecutive memory locations. The deletion of
record D is accomplished by removing its control word from the table of
control words and moving all subsequent control words one space, so
that they again form a continuous table. Table 11.3 illustrates this
procedure. Each letter nom represents a control word rather than
the actual record. The insertion of a record in a group of records may
be handled by reversing this process.

Some conclusions may be drawn concerning the use of control words in
data transmission and data ordering.

I . Since record transmission is replaced by control-word transmission,
an advantage in storage space and transmission time is achieved. The
advantage of the procedure is dependent upon the size of the record.
When a record is only one word long, it is, of course, more advantageous
to transmit records directly.

2 . The loclation of a record and its control word are independent, which
facilitates data ordering by control-word manipulation.

3. The use of identical control words for both indexing and data trans-
niihsion simplifies data-ordering operations.
4. The records can be scattered in memory. The control words, hom-

ever, have their sequence indicated by the sequence of their memory
addresses. As a result of this restriction, activity on one record may
require relocation of several control words for subsequent records.

I 1 .I 0. Refilling
The advantage of using control words in data handling is increased

when control words as well as records can be scattered. If control words
may be located a t random addresses, a means for specifying their sequence
in a chain must be provided. A straightforward solution has been found:
into the control word is introduced a rt$E field, which specifies the mem-
ory address of its successor. The control (or index) word then contains
three major fields: the value field, the count field, and the refill field, as
shown in Fig. 11.2.

This solution is particularly attractive since it also completes the
indexing requirements stated in Table 11.1. It was shown a t that point
that an indexing operation required specification of the following :
index value, increment, count, next initial index value, and next initial
count. All these quantities except the last two have been specified so far,
either in instructions or in the control word. The last two quantities
can now be specified by the refill address. This address can refer to a
second control word, whose value and count field specify the next initial
setting. In fact, the second control word is the next initial contrul word.

166 INDEXING [CHAP. 11

The refill field then serves the general purpose of linking a control word
with the next control word to be used.

The operations that use the quantities mentioned above were listed in
Table 11.1 as follows: address modification, incrementing, counting and
zero testing, replacement of index value and count. All these operations,
except for the last, have been specified as machine functions. The last
operation can now be restated as: Replace the index word by the word at i ts
refill address location. The operation as stated makes use of an implied
address. Therefore, the operation can be part of an ADD TO VALUE,

COUNT, AND REFILL instruction. This combination of operations is
meaningful only when the refill operation is conditional. An obvious
condition is that the count reach zero. Refilling is shown a t the bottom
of Fig. 11.5. The instruction repertoire includes other related instruc-
tions, such as an unconditional operation REFILL.

The refill operation can also be incorporated in input-output data-
transmission control. The control words comprising a data-transmission
cahain need no longer be in successive memory locations. One control
word can refer to the next through its refill address. The chain flag
indicates the termination of the chain and hence stops transmission (see
also Chap. 12).

The refill function requires that the refill address be part of the index
word. When a computer word is not large enough to contain all three
fields, a partial solution can be found by using two adjacent words in
memory. This procedure has been used in the input-output control of
the IBM 709. In that machine, a set of consecutive control words may
be joined to a set at another location by inserting a word having the char-
acter of the instruction: Continue with thP control word at the specified
location.

The refill
address could be used as a branch address rather than as a control-word
address. With this procedure, whenever the test condition is satisfied,
a branch is made to a subroutine that takes care of all termination and
initialization procedures. As a minimum, the control word can be
reloaded, but more elaborate programs can be performed. This pro-
cedure is more general than the refill operation defined above. The cost
of this generality, however, is loss in efficiency in the minimum reload
procedure: a branch as well as a load operation is performed, and each
control word requires an associated load instruction. I n other words, the
use of an implied address in the main program is obtained a t the expense
of explicit addresses in a subroutine. The ability to permit more elabo-
rate initialization procedures is often incompatible with the use of the
control word in different parts of a program. For these and other
reasons, the refill operation in the 7030 has been preferred to the branch
procedure or to any of the many variations thereof.

An alternative use of the refill address has been considered.

SEC. 11.111 INDIRECT ADDRESSING AND INDIRECT INDEXING 167

11.1 I . Indirect Addressing and Indirect Indexing

Indirect addressing consists in substituting another address for the
address part of an instruction before that instruction is executed, without
changing the instruction as stored in memory. A simple and effective
form of indirect addressing is found in the IBM 709 and several other
machines, where, under the control of an instruction bit, the operand
address A I refers to another word in memory where the actual address
A , of the final operand is located. It is possible to extend indirect addres-
sing to more than one level by having the address A , refer to yet another
word containing address Aa, which in turn refers to A4, etc., until the
process is terminated either by an end mark of some kind or by previous
specification of the number of levels desired.

So that i t will not be necessary in the 7030 to tie up a bit in every
instruction for indirect addressing, a separate instruction, LOAD VALUE

EFFECTIVE, is provided, which serves, in effect, as a prefix to the main
instruction. The operation is illustrated in Fig. 11.8. Basically this
instruction fetches an address from memory and places it temporarily
in an index register. If this address is to be used as an indirect address in
a subsequent instruction, a zero address part is added to the contents of
the same index register by the regular address-modification procedure.

More precisely, the effective address of the LOAD VALUE EFFECTIVE

instruction is used to fetch a second instruction word from memory.
If that instruction again has the operation code of LOAD VALUE EFFECTIVE,

the process is repeated and another instruction word is fetched. The
indirect-addressing process terminates when the operation code is any-
thing other than LOAD VALUE EFFECTIVE. The final, indexed operand
address is stored in an index register, specified by the initial LOAD VALUE

EFFECTIVE instruction. This procedure permits any number of levels of
indirect addressing.

If the address part of the using instruction is not zero, the process may
be termed indirect indexing, which gives another degree of flexibility
over indirect addressing.

I ts operand is
assumed to be an instruction word, and the operation code of the instruc-
tion word is examined to determine whether its address part is 18, 19, or
24 bits long. The address is automatically transformed to a standard
24-bit length before it is placed in the value part of the index register.
All other indexing instructions, such as LOAD VALUE, are assumed to
refer to index words; they do not provide format conversion, and their
operands cannot be indexed.

The particular implementation of indirect addressing in the 7030 sug-
gests the strong relationship between indirect addressing and additive
address modification. Both processes modify addresses “on the fly”

LOAD VALUE EFFECTIVE plays a second role in the 7030.

168 INDEXING [GHhP. 11

and serve to reduce thc iiurnber of p l a w ~ where the program iiiust alter
addresses. In smaller machines, where a separate index adder may not
he economically justified, it is possible to use indirect addressing instead

/- \
\ LOAD VALUE

v1 c1 Ri I EFFECTIVE (LVE1
I
I
I
I
I First level

v 2 CP R2 I (0p.again LVE)
I
I
I
I
I Second level I R3 I (0p.not LVE) v3 c3
I
/

A subsequent
instruction

Add

FIG. 11.8. Indirect addressing and indirect indexing. If -4, = 0: indirect addressing.
If A LOAD VALUE EFFECTIVE can be repeated automatically
any number of times; two levels of indirect addressing are shown; last level is one
where operation code encountered is something other than LYE.

0: indirect indexing.

of additive address modification and to form and increment the indirect
addresses with ordinary arithmetical instructions. Fast substitution is
simpler to implement than fast addition. The function of additive modi-
fication finds such frequent use, however, that extra equipment for fast
indexing is fully justified in the larger machines.

SEC. 11.121 INDEXING APPLICATIONS 169

11.1 2. Indexing Applications

The basic indexing formats arid functions have been defined in the
preceding sections. In the rest of this chapter the use of the indexing
mechanism will be demonstrated; the examples used above to illustrate
it3s evolution will be reexamined, and some more elaborate applications
will be considered. Of the indexing applications, the simple example of
vector multiplication described earlier will be discussed, and also its
expansion to matrix multiplication.

The vector-multiplication program was listed in Table 11 2. The same
program using the refill operation is shown in Table 11.4. Here the

' r A R I A 1 I .4. VECTOR ~fULTIPLICATION USING COUNT, BRANCH, A N D REFII,L

Instructions

Preparation g - 2 Load i from io
Load j from i o

Initial setup - g Set accumulator to zero
g - 1

Vector multiply, inner loop g + 1
g + 2

g + 3

g + 4

Load cumulative multiplicand from a,, in-

Multiply cumulatively by bo indexed by j

Increment j by p , count, r e a l when count
reaches zero

Sdvance i, count, rrfill when count reaches
zero, branch to g + 1 when count does not
reach zero

dexed by i

Housekeeping, inner loop

\7wtor multiply, outer loop g + 5 Store cumulative product a t co

Control words

Contents after executing the inner loop z
times:

i Address Index value Cocrn,t 1Zejill

0 n
I

i ZP n - 5 i"

Diagram of vector dimensions

control words are automatically reset. When the program is executed
repeatedly, it is sufficient to start a t the initial setup instruction 9.
When, however, the execution of the program is stopped prematurely
and must be restarted, the preparatory steps g - 2 and g - 1, which

170 INDEXING (CHBP. 11

load i and j , respectively, are required. Thus loading of z and j should
always be part of the program-loading procedure. The control words i
and j are specified by truncated addresses and are located in the index
registers. The control word io has a complete address and can be located
anywhere in memory. The program illustrates the use of a COUNT,

BRANCH, AND REFILL instruction. Because the base addresses a. and bo
are part of the operand address, the control word io can serve as a refill
word for both i and j .

The program for matrix multiplication is outlined in Table 11.5 (it
is also included in the Appendix as a programming example using actual
instructions). Again the initial setup instruction h would be sufficient
ordinarily, but preparatory instructions h - 2 and h - 1 are needed to
permit restart after premature stoppage.

Index i
progresses across the rows of matrix A , being advanced by 1 at the com-
bination index-and-branch instruction h + 7. Index i repeats the same
row p times, being refilled from io each time at the end of the row. Index
io is then advanced by n to the next row (at h + 11); the process is
repeated m times. Similarly, index j progresses down the columns of
matrix B. j is incremented n times by p (at h + 6), after which j ,
is advanced by 1 to the next column (at h + 10) and used to reload
j (at h + 2). The incrementation of j o is counted p times and used to
determine the end of the product row. j o is then refilled from j o , to
start again a t the beginning of matrix B for the next product row. Index
k is used to progress row by row through the product matrix C and to
determine the end of the entire matrix multiplication.

The program shows that a reasonably romplex indexing procedure can
be described satisfactorily and compactly. The following observations
may be made:

1. Only instructions h + 6 and h + 11 contain constants that describe
the locations and dimensions of the matrixes. Both instructions could
use a direct address instead of an immediate address, however. In that
case, the program would be independent of the data. The use of a direct
address slightly increases execution time.

2. The constants describing matrix locations and dimensions appear as
single quantities in instruction and control-word fields. Note that only
control words ioo, joo, and k o are supplied by the programmer. A\ll other
control words are developed during program (lxeciition or preliminary
setup.

3. The automatic refill is used in the inner loops The refill operatioil
is supplemented by load operations in the outer loops. The refill operation
is no suhstitute for preparatory operations reqiiiid for restart procedures.

All three matrixes are assumed to be stored row by row.

SEC. 11.121 INDEXING APPLICATIONS 171

TABLE 11.6. PROQRAM FOR MATRIX AM^^^^^^^^^^^^^

Instructions
c_----- --___
Preparation h - 2

h - 1
Initial setup +h
New product row procedure h + 1
New vector product h + 2

procedure h + 3
Vector multiply, inner loop h + 4

h + 5

Housekeeping, inner loop h + 6
h + 7

End of vector multiplication h + 8
h + 9
h + 10

procedure

End of product row
procedure

h + I 1
h + 12

Control words

Load k from ko
Load j o from j,,
Load io from ioo

Set accumulator to zero
Load cumulative multiplicand t

from location specified by i
Multiply cumulatively by operand loca-

reaches zero, branch to h + 4 when

tion specified by j
Increment j by p
Advance i, count, refill when count

count does not reach zero
Store cumulative product a t location

specified by k
Increment k by 1
Advance j o , count, refill when count reaches

zero, and branch to h + 2 when count
does not reach zero

Increment io hy R
Reduce count of k , refill when count reaches

zero, and branch to h + 1 when count
does not reach zero

Contents after executing the inner loop z ~

times for the product matrix element c , ~ : ~

.Iddress Index value Count t l e j i l l

a,, + r n + L n - z il,
a" + T n n 111

j a0 n i o 1

I bo P j o o I

Diagram of matrix dimensions

172 INDEXING [CHAP. 11

11 . I 3 . Record-handling Applications

Record-handling techniques have application both in technical com-
putation and in data processing. The examples to be discussed are a
read-process-write cycle, ordering, and a file-maintenance procedure.

The use of control words for a simultaneous read-process-write cycle is
illustrated in Fig. 11.9. Here X--x describes a control word, which,
by its value and count fields, defines memory area X and which has the
address x in its refill field. Location -2 contains the next control word
in the chain, Y-y, defining record Y . Control word 2-2 is placed a t
location !J. Because control word X--r is stored a t location z , a ring

E l Memory
areas

Location Control word Control words used

X y-Y Read X-x, Y-y, Z-z, x-%,

z X-x Write X - x , Y-y,
Y 2-2 Process X-X, Y--y, Z-Z,

FIG. 11.9. Read-process-write chain.

of three memory areas, X, Y , and Z , is set up in which X is followed by
I', Y by 2, and Z again by X . Both record areas and control words may
be scattered throughout memory. Note that, in this notation, an uppcr
case letter is used to denote the location of a record area and the cor-
responding lower-case letter is used to denote the location of the control
word of the next nrea in sequence.

The example of Fig. 11.9 shows the sequence of operations in a read-
process-write cycle. While a record is being read into area 2, as controlled
by control word Z-z, processing proceeds with control word Y-!J
using data in area Y, and data from area X are written under control of
control word X--2. At the conclusion of each of these operations, the
appropriate control word is refilled, and the areas are thereby cyclically
permuted in function.

Instead of a single control word, a chain uf n control words could be
used in reading, while a second chain of n control words is used in pro-
cessing, arid a third chain of n coritrol words is usrd in writing. To
further elaborate the example, assunie that processing consists of placing
the n records in a preferred sequence. This sequencing operation was

RECORD-HANDLING APPLICATIONS

Before

Control
Locution word

173

After

Control Control
Location word Localioti word

described above. Because of the refill field, however, the control words
do not have to be in sequential locations. The advantage of this added
degree of freedom will be shown in the following examples.

Assume that the records A . . . Z are scattered throughout memory.
The associated control words A-a . . . 2-z establish their order.
The correct order is here indicated by the alphabetic sequence. It is
desired to delete record H , which is out of sequence, and to set its memory
area aside. The control word H-h of this record is part of the chain
C-c . . . K--k shown in the left half of Table 11.6. Interchanging
the contents of locations d and h establishes a new order, as shown in the
right part of Table 11.6, and H is no longer part of the sequence. ,I
second interchange between d and h would reinsert H . Thus the com-
plementary nature of insertion and deletion is reflected in the program-
ming procedure.

TABLE 11.6. RECORD DELETION

9
i
j

. . .

C-C
D-d
H-h
E-e
F-f
G--g
I-i
J--j
K-k

. . .

. .
b

(1
c

I P
f

I Y
L

.I

. . .
c-c
D-d
E-e

F-f
G--g
I--i
J--j
K-k

/ k H-h

If i t is desired to insert H in the sequence . . . G, I , J , . . . between
G and I , the second interchange would be betn-em g and h. Table 11.7
illustrates this case.

Because the sequence . . . G, I , J , . . . is part of the sequence
A . . . 2, the example is equivalent to a sorting operation. The
sequence . . . G, I , J , . . . may equally well be part of an independent
sequence, as it is in file maintenance.

The interchange of two csoiitrol words is performed conveniently by a
SWAP instruction. This instruction interchanges the contents of two
memory words The insertion or deletion of a record involves only th(.
SWAP of its control word with that of its succ'esso~'. The insertioii and
tlcletion of a group of records is eclually simple. Consider again the

174 INDEXING

Control Control
Locutiorr word l , o c u h o ~ ~ word

[CHAP. 11

Control
Location word

file A . . . 2. It is required to delete the group P . . . R from the file
shown on the left in Table 11.8. A SWAP instruction is given for loca-
tions c and T , and so the new order becomes as shown on the right in
Table 11.8.

TABLE 11.7 RECORD INSERTION

Before After

C---C
D--d
E--e
F-f
G s
I-i

h H-h
d-j
K-k

. . .
b

d
c

e
f
Y
h
i
j

('C

D - 4
E-e
F-f
G-y
H-h

J 7 i
I-i

K-k
. . . I . . .

.

TABLE 11.8. GROUP DELETION
I

Before After

Control
Location word

. .
t)
c

P
4
r
d
e
f
(I

. . .

(I--(.

P-P
Q-2
12-r
D-d
E-e
F-f
c - s
€1-h

. . .

Control Control
Location word Location word

. . .
6
c

d
e

f
9

c-c
D-d

&-e
F--f c--s
H-h

. .

P
4
r

One SWAP iiistructioii deletes the group of records just as one SWAP

instruction in the previous example deleted a single record. The only
differences are the addresses of the instruction. The records I' . . . R
form a ring in sequence. (In the preT-ious exainple, the deleted record €1
could be considered to form a ring in sequence, since its control word was
stored a t i t s own refill location.) The reinsertion of the records P . . . R

SEC. 11.141 FILE MAINTENANCE 175

can be performed by swapping again the contents of locations c and T .

In these examples the sequence of control words is changed by trans-
mitting entire words. A different approach is to transmit refill fields
only, leaving the rest of the control word unchanged in memory. This
method can also be used in many applications.

I I .I 4. File Maintenance

A simple case of the updating of a master file from a detail file will be
discussed. Four tapes are used: the old master tape, the new master
tape, the detail input tape, and the detail output tape. The detail
records are processed in a simple input-process-output operation such as
that described above. The master records are read from the old master
tape, processed, and written on the new master tape. Reading, writing,
and processing take place simultaneously. The processing of a master
record may involve:

1. No activity
2. Updating
3. Deletion of obsolete records
4. Insertion of new records

Master records are read and written in blocks, each block containing a
group of m records. Memory space is set aside for a total of 4m master
records and their control words. Normally, m records are written on
the new master file while m records are being read from the old master
file. The remaining 2m record spaces are available for processing.
These record spaces are divided into two groups: the current spaces and
the spare spaces. The current record spaces contain records that either
have been processed and are ready to be written on the new master tap(.
or have been read from the old master tape and are available for process-
ing. The spare record spaces contain no useful record information. The
number of current and spare spaces varies throughout the processing,
but their sum remains 2m.

The control words used in reading and writing and the control words of
the current records form a ring. The control words for the spare record
areas also form a ring. Figure 11.10 shows the control words in diagram
form and illustrates the cases discussed below for m = 8.

When a record is inactive or requires updating, the number of current
and spare records remains unchanged. The record is addressed by means
of its control word. After the processing is completed, the current, con-
trol word is replaced by the next one in order by means of a REFILL

instruction. The record is ready to be written on the new master tape .
A count is kept of the records that are ready to be written. When the
count equals m, a WRITE instruction is issued which is followed by a REAU

176 INDEXING

MASTER PROCESSING RING

Updating or no act iv i ty 2 ready for writ ing
------- 1 updated or inactive

9 current
f l b r e a d y for processing

readinq
Deletion

Excess deletion
correction

Insertion

[CHAP. 11

SPARE RING

0
7 spare

.\

l l deleted

L 5 ready for processing

7 spare
1 inserted

9 current

6 ready for writ ing 97qT . ;*q readin9 None available for processing

- 8
,' 10 spare
,' 8 deleted

.3" ,+.
''? / 0'

"$0,. 1 I

c
0 , 'Q

'0s k -________-_-------- * 0 0

0

97

2 ready for writ ing 4 spare
1 inserted 1 deleted

- -________-_-_-- - - - --
Excess insertton
correction

\ ' I * - -

No spare
8 inserted

_ - - - - - - - - - - - - - - - -
, \

7 ready for writ ing
None available for inserting __- 9 ready for processing -

1 6 current

FIG. 11 .lo. Control-word dingran! for file maintenance.

SEC. 11.151 SUBROUTINE CONTPHOL 177

instruction. The record space of the records just written is used for the
records to be read. The records just read are available for processing.

When a record is found to be obsolete and should be deleted, its control
word is removed from the ring of current control words and inserted in the
ring of spare control words. Because the control word is deleted, its
record is not written on the new master tape. The count of records
ready to be written is not changed. The control word of the next record
is obtained, and processing continues.

When there is an excess of deletions, all current records may be pro-
cessed before 711 rwords are ready to be written. In that case the num-
ber of spare record areas is always larger than m, and a corrective step
can be taken. This step consists of deleting m control words from the
spare ring and inserting them in the read-process-write ring. The coli-
trol words are inserted as a block preceding the control words used in
reading and following those used in writing. An extra RE i n instruction
is given, and processing proceeds with the records that h a w just been
read.

When a new record is to be inserted, a control nord is removed from
the ring of spare control words and inserted in the ring of current control
nords. The corresponding record area is then available for the new
record. After the new record is processed, it is ready to be written.

When there is an excess of insertions, the spare control word ring may
have been reduced to zero. A corrective step then should be taken:
m control words are deleted from the read-process-write ring and used
as a new spare ring. The m control words deleted are those last used in a
WRITE operation. Writing is checked for completion. The next time
that m records are ready to be written. the WRITE instruction is given,
but the READ instruction is omitted.

The file-maintenance procedure outlined above illustrates the use of
insertion and deletion of single records and groups of records. All the
manipulations described are performed conveniently with control words
and would require a great deal of housekeeping without the refill feature.

I I .I 5. Subroutine Control

Another application of control words is in subroutine control. In
the preceding discussion the control word specified a memory area that
normally would contain data. The memory area might also contain
instructions, however. A subroutine may be thought of as a record.

As an illustration, consider the use of exception subroutines, which are
stored on tape, drum, or disk and are called in when the associated
exceptions arise. The control word is used in the READ instruction; it
can subsequently be used for address modification in the BRASCH instruc-
tion that refers to the subroutine and in the instruction that stores the

178 INDEXING [CHAP. 11

instruction-counter contents.
conveniently in a main sequence of instructions.

The subroutines, therefore, can be inserted

11 .I 6. Conclusion
The preceding discussion has shown the application of control words in

address modification and in record handling. Both indexing and data-
transmission techniques make i t desirable to have an index value, count,
and refill facility. The three fields in the control word and the associated
machine functions satisfy these requirements. The control words pro-
vide substantial saving in program space and increase in machine speed.
They simplify programming of housekeeping operations.

Control words do not introduce entirely new functions, since their
operation can be simulated on any stored-program computer. Also, the
introduction of count and refill is only a second-order improvement as
compared with the first-order improvement of address modification
through indexing. Control-word operation is, however, so much sim-
pler than its simulation that several otherwise impractical methods of
record control have now become feasible.

The indexing instructions have beeii described as they appear in the
IBM 7030. Though elements of the system discussed here have been
used in other ma(ahiiies, the 7030 control-word system as a whole is new,
for the effectiveness of these techniques depends largely on the combina-
tion of all the features.

Chapter 12

INPUT-OUTPUT CONTROL
by W. Buchholz

12.1. A Generalized Approach to Connecting Input-Output and
External Storage

One of the drawbacks of early computers was the primitive nature of
their input and output equipment. A small amount of data might be
entered on paper tape, computation would then proceed, and results
would finally be printed oil a typewriter. Subsequent development of'
input-output and external storage devices has given us not only faster
equipment but also a greater variety. Magnetic tape, drums, and disks
provide external storage to supplement the internal memory. Card
readers, card punches, and mechanical line printers have become com-
monplace items in most installations. Fast cathode-ray-tube printers,
displays, and plotters provide alternative output means. Phone lines
and inquiry stations allow direct communication with computers.
Analog-digital conversion equipment permits digital computers to be
used to control continuously variable processes.

The list of input-output equipment may be expected to grow, and, as
it grows, a computing installation will come to be characterized more by
the array of external units than by the nature of the central computer.
It is, therefore, desirable to avoid restrictions on the number and kinds of
units that can be connected to a general-purpose computer. To achieve
sufficient generality, the design of the 7030 input-output system followed
these principles:

1. A large number of logically identical and independently operable

2. The input-output instructions should be independent of the nature
They should identify a channel and the con-

3. As a corollary, there should be no equipment in the computer that is

input-output channels should be provided.

of the units they control.
nected input-output unit only by addresses.

179

180 INPUT-OUTPUT COMTROL [CHAP. 12

peculiar to any kind of input-output, unit. All control circuits peculiar
to a given unit are required to be part of the control box for that
unit.

4. The operation of a channel should be independent of the speed of
the input-output unit connected to it up to the maximum speed for which
the channel is designed.

Because of the enormous range of speeds encountered (from 0 to
about 10,000,000 bits per second), it was found desirable to provide more
than one kind of channel, so as to cover the speed range economically.
The differences lie mainly in the number of bits transmitted in parallel
and the number of channels sharing common equipment. The discussion
here will be concerned only with the basic channels, which can transmit
8 information bits in parallel a t a rate of over 500,000 bits a second.
More parallelism is needed, with present technology, t o go to much higher
speeds; scrial-by-bit transmission may be desired to reduce the cost per
channel when a large number of quite slow units are to be connected.
It should be noted that the variations are associated only with speed
ranges, not with functional differences.

The execution of input-output instructions takes place in a portion of
the computer called the exchange. The exchange accepts input-output
instructions from the instruction-preparation section of the computer a i d
executes them independently of the rest of the computer. The exchange
also contains common control equipment which is used in time-fihared
fashion by all channels operating simultaneously. The exchange is
described in Chap. 16. The present chapter is concerned mostly with the
instruction logic for operating any one channel.

12.2. input-Output Instructions

Four basic instructions make up almost the entire repertoire for per-
forming any kind of input-output operation : WRITE, REAI), COSTROL,

WRITE: causes a stream of data from the computer memory to be trans-
mitted to an external unit, there to be written on a storage or recording
medium. Conversely, READ initiates the flow to the computer memory
of data that have been read on a storage or recording medium at an
external unit. The medium may be a physical medium such as tape,
cards, or paper; i t may also be a phone line or the memory of another
computer, which may be connected to this computer as if it were an input-
output unit. (The terms writing and reading are used here in such a way
as to describe the data flow with respect to the input-output unit. To
avoid confusion, the different terms storing and fetching are used to
describe the data flow with respect to internal memory.)

LOC.4TZ.

SEC. 12.31 DEFINING THE MEMORY AREA 181

Each WRITE or READ instruction contains two addresses (Fig. 12.1):
the channel address identifying the channel to which the desired unit
is connected, and the control-word address specifying the memory location
where additional information for executing the instruction is to be found
in the form of a control word.

CONTROL and LOCATE resemble WIZITI.: in that bits are transmitted to the
external unit, but these bits are not data to be recorded. In CONTROL

the bits, which are obtained from the second-address part of the instruc-
tion itself, are a code to direct the unit to perform specified functions
other than writing or reading. In LOCATE the bits constitute a secondary
selection address which is needed by some kinds of external units.

Channel address Second address Operation

Control word address
Control word address
Control code
Selection address
(Not used)
Control word address

READ wi th or without
CONTROL end of operation
LOCATE interrupt i
WRITE

RELEASE
COPY CONTKOL WORD

FIG. 12.1. Principal parts of input-output instructions.

There are two more instructions, COPY COSTROL WORD and RELEASE,

Their use is which perform certain auxiliary functions in the exchange.
iiifrequent, and they will not be considered further.

12.3. Defining the Memory Area

Basically, the control word (see Fig. 12.2, also Chap. 11) defines a
continuous area in memory, which is the source of the data stream during
writing or the sink for the data stream during reading. The location of
the area is defined by the data-word address, which specifies the address of
the first word, and the size of the area is defined by the count, which gives
the total number of words in the area. (For simplicity, input-output
operations can address only full memory words of 64 bits, and memory
areas can be defined only as multiples of full words.) The first word is
always the word a t the lowest address. Writing or reading starts a t that
address and, unless otherwise specified, steps through progressively higher
addresses to the end of the area, as defined by the count.

Each control word can define only one continuous memory area, but
several control words can be chained together so that a single writing or
reading operation can proceed through more than one continuous area.
For this purpose, each control word contains a rejill address, which gives
the location of the next control word to be used, and a chain flag, which

182 INPUT-OUTPUT CONTROL

Flags Data word address
(Value)

[CHAP. 12

Count Refill I

defines the extent of the chain. A chain flag of 1 permits writing or
reading to continue automatically beyond the area of the current control
word to the next area specified indirectly by the refill address; a chain
flag of 0 stops the process a t the end of the current area regardless of
what is in the refill address.

Thus, a chain of control words defines a memory area in the larger
sense in which successive words are not necessarily a t consecutively
numbered addresses. Because the same chain of words can be used as
control words during reading, as index words during computing, and

FIG. 12.2. Control word.

again as control words during writing, powerful procedures are available
for complex record handling, as described in Chap. 11.

12.4. Writing and Reading

When a WRITE or READ instruction is given, the unit attached to the
c.hannel specified is started and data are transferred between that unit
and the memory area defined by the specified control word (or chain of
control words). Normally, a single block of data is transferred each time
an instruction is given; a block of data is defined for each type of unit as
the amount of information recorded in the interval between adjacent
starting and stopping points of the recording medium.

It may be
the contents of one punched card, a line of printing, or the information
between two consecutive gaps on magnetic tape. In some units the
length of each block may be fixed by the design of the unit (card reader or
line printer), but in other units the block length may be left variable
(magnetic tape). Again, the length of a block may correspond to the
natural size of one unit record; i t may be set to correspond to a group of
such records (e.g., for greater efficiency on magnetic tape); or i t may
occasionally be neither.

Thus, the size of the memory area is defined by the control word, and
the length of the block is often, but not always, defined by the unit.
One can distinguish three cases:

1. The block length is not defined, and the operation terminates when
the-end of the memory area is reached (including any chaining). For
example, in writing on magnetic tape, the tape unit stops and creates an
interblock gap whenever the last memory address of the last control word
in the chain is reached. (Writing tape is different from reading tape,
where the block size is defined by the previously written interblock g:ip.i

The length of the block depends on the type of unit used.

8EC. 12.51 CONTROLLING AKD IJOCATING 183

2. The block is shorter than or equal in length to the defined memory
area, and the operation stops a t the end of the block. The rest of the
memory area, if any, is ignored.

3. The block is longer than the defined memory area, and the data
transfer ceases when the end of the memory area is reached. Since
the unit cannot stop in the middle of a block, i t continues without trans-
ferring any data until the end of the block.

What has been described so far is single-block operation. For addi-
tional flexibility, multiple-block operation is also provided in the 7030
system. It is specified by setting a multiple Jag in the control word to 1.
In the multiple mode, when the end of a block is reached, the WRITE or
HEAD operation is allowed to continue by starting a new block; the
operation is finally terminated when the end of the defined memory
area is reached. The multiple mode is generally equivalent to a sequence
of WRITE or READ instructions in the single mode, except that the computer
program is not interrupted until the sequence is finished. (This advan-
tage is gained a t the expense of more complex exception handling.)

It may be noted that the memory area defined by a chain of control
words cannot be exceeded regardless of the mode. A properly defined set
of control words thus provides protection against accidental erasures
outside the memory area assigned to a specific input-output operation,
such as might otherwise bc caused by reading blocks longer than expected.

12.5. Controlling and Locating

Most input-output units require certain programmable control func-
tions in addition to writing and reading, such as rewinding tape, selecting
different operating modes, turning warning lights on and off, or sounding a
gong. Instead of numerous highly specialized instructions for each of
these functions, some of which might have to have different meanings for
different units, a single CONTROL instruction is used here for the sake of
generality. This instruction causes a code to be sent to the external
unit, which interprets the code to perform the desired operation.

The
specialized functions are defined separately for each external unit and
form part of its design specifications. They may range from an elaborate
set of control functions for some high-performance units to none a t all
for rather primitive devices. The input-output channels remain general
in function and need not be altered as new devices are attached or as the
mix of units is changed.

The control code is placed in the second address of the instruction,
in the manner of an immediate address, and there is no reference to a
memory location. The first address of the instruction specifies the chan-
nel, as before (Fig. 12.1).

Thus CONTROL has only a single meaning in the computer.

184 INPUT-OUTPUT CONTROL [CHAP. 12

The LOCATE instruction resembles CoNi’RoL in all respects except that
the bits sent to the unit are interpreted by the unit as a secondary selec-
tion address rat,her than a secondary operation code. Examples of the
use of secondary addresses are: selecting the desired one of several tape
units connected to a single channel; directing the access mechanism of a
disk file to a desired position. The selection addresses are limited to a
maximum of eighteen bits.

12.6. A n Alternative Approach

The similarity between the above COXTROL and LOCATE operations
suggests the possibility of combining them into a single control operation.
The first %bit byte of the control data would become the secondary
operation code ; i t could specify whether additional bytes containing
address information were to follow. The number of bytes needed would
be determined by the external unit.

The restriction on selection addresses, which are limited in length by
the instruction format, can be removed by changing from immediate
addressing to direct or even indirect addressing. With direct addressing,
the second address of the new control instruction would specify a 64-bit
memory word, part or all of which could be sent to the unit as desired.

even more general system is provided by indirect addressing, where the
address specifies a control word which defines the address and the amount
of information, as in WRITE. Although it would require an extra memory
word and access, indirect addressing would have the advantage of sim-
plicity, since this version of control would be executed in a manner iden-
tical with WRITE.

A second generalization would be to provide the inverse of this control
operation, which we shall call sense. This sense operation would be a
request to the external unit to send back various status indications, such
as manual switch settings and reports of termination or error conditions.
Sense would be treated like READ if indirect addressing were used, the
status bits being stored in a memory area defined by a control word.

This alternative set of control and sense operations has the advantage of
symmetry, simplicity, and flexibility. It was not incorporated in the
7030, but the scheme has since been adopted in other input-outputl
systems.

12.7. Program Interruptions

One of the important functions of a program-interrupt system (Chap.
10) is to resynchronize the computer program with the external opera-
tions, which, having been initiated by the program, are completed inde-
pendently. An equally important function is to request program atten-
tion to a process that is initiated externally, by an operator for example.

SEC. 12.71 PROGRAM INTERRUPTIONS 185

After giving an input-output instruction, the program is not allowed
to proceed until the exchange has accepted or rejected the instruction
If the exchange finds that the desired unit is not ready to operate, or the
channel is already in use from a previous instruction, or the instruction is
incorrect, the exchange will reject the instruction by turning on an indi-
cator and interrupting the program. Otherwise the instruction is
accepted for execution by the exchange, and the program is released to
proceed with the next instruction in sequence. The program may at
any time initiate an input-output operation for another channel that is
not busy. Any number of such operations may be accepted and pro-
cessed by the exchange independently and simultaneously, up to the
maximum traffic-handling ability of the exchange.

Thus, the exchange and the computer proceed independently once ail
input-output operation has been started. At the end of an input-output
operation, the program is again interrupted. The channel address of the
particular channel whose operation has been rompleted is supplied to the
program; indicators show whether the operation was completed success-
fully or whether some unusual condition was encountered. Thus a pro-
gram, which may have been waiting for the input-output operation to
finish, can be resumed a t the earliest opportunity without the need for
repeated testing of the indicators. The unit that was stopped may be
restarted by the program with a minimum of delay. The interrupt sys-
tem, therefore, provides an effective method for bringing the program
and the independently operable input-output units back into step a t
intervals.

An alternative mode exists whereby program interruption can be pre-
vented when the operation ended normally, with interruption occurring
only for the exceptions. Another mode suppresses all interruptions, so
that a supervisory program, for example, may iiiitiate a special input-
output sequence before having to pap attention to a unit that has just
cwmpleted its cycle. Additional flexibility is gained by writing the pro-
gram to accept interruptions but storing the indications in a queue for
later use if the interrupting unit is not to be given top priority (see Chap.
13 for a more extended discussion of these subjects).
ii third type of interruption from tln external source ib a request to the

program to issue an input-output instruction when no such operation has
been in progress. This interruption is called channel signal. Frequently,
the source is a human operator. A channel signal may be issued when the
operator has loaded a unit with fresh material (tape, paper, cards) and
pressed the start biitton. operator may be ready to enter information
from a keyboard; if a RLAU inhtruction is not already waiting for the
information, the operator may, in effect, request such an instruction by
pressing a button that causes a channel signal to be issued. The channel

186 INPUT-OUTPUT CONTROL [CHAP. 12

signal does not itself initiate any operation in the computer, and a suita-
ble program must be available in the computer; so the programmer has
full freedom to interpret such signals in any manner, including the option
to ignore them when they are not appropriate.’

Another use of channel signal is as a second-level, end-of-operation
interrupt signal. Some common control units permit two or more input-
output units, attached to the same control unit and channel, to perform
simultaneous operations, so long as only one operation involves data
transmission over the channel. The secondary operations that do not
require the channel (such as rewinding tape or locating a new position for
an access arm on a disk file) are often of long duration compared with the
primary operations that do occupy the channel (such as reading or writ-
ing). Channel signal then indicates the completion of the secondary
operation. Even
operator interventions can be considered to be under indirect program
control, since instructions from the program to the operator are either
implied or explicitly given, if human intervention is to result in meaning-
ful actions by the program. The main difference lies in the less predicta-
ble waiting time and the surely erratic behavior of human beings.

In summary, channel signal is the computer’s internal telephone bell.
It summons the program to attend to the channel whose bell has rung.
(To be quite fair, the computer, in turn, is allowed to sound a gong on the
console to summon an operator.)

The two uses of channel signal are not unrelated.

12.8. Buffering

B u f e r storage external to the main memory is used in many com-
puters to match data transmission rates and to minimize delays. The
7030 system, however, makes no use of external buffers when i t is pos-
sible to transmit directly between the recording medium and the memory
in sequential fashion. The card-reader- and card-punch-control units do
contain buffers, because of a need to transpose bits; the reader and punch
happen to feed cards row by row, whereas i t is more desirable to transmit
the data to and from memory in column-by-column form. Similarly,
the chain printer used in the 7030 system, even though serial in operation,
is designed so that the same bytes must be presented repeatedly and not
in the sequence in which they appear on paper. Although programs could
be written to make the necessary transformations inside the computer, it
heemed that special buffer storage devices could do these highly repetitive

One exception occurs when the computer is to be loaded with its initial program
snd a meaningful program cannot be assumed to exist in memory already. Channel
signal is then used to start a built-in sequence to read one hlock from the unit that
generated the signal. The initial program-loading sequenw hrcomes inoperative
once used.

SEC. 12.81 BUFFERING 187

chores more effectively. The buffers make the devices appear to the
computer as if they were serial in operation.

Devices that are inherently serial, such as magnetic tape units, disk
files, and typewriters, have no separate buffer storage. (We must dis-
tinguish buffer storage, which holds one or more complete blocks of data,
from registers capable of temporarily holding one or more bytes in the
control unit to smooth out the data flow and perform a small-scale
buffering function “on the fly.” As the term is used here, a buffer
receives a complete block of data from one device and then transmits thc
block to another device, usually a t a different speed. A buffer permits
either device to stop between blocks and delay transmission of the next
block indefinitely.) Since the introduction of buffer storage represented
significant progress a t one stage in the development of computers, its
omission in the 7030, with the exceptions mentioned above, calls for a
word of explanation.

The simplest technique, both in terms of equipment and programming,
is unbuffered, single-channel operation, When an unbuffered computer
issues an instruction to read or write, the input-output unit is started and
data are then transmitted while the computer is waiting. The computer
cannot continue until data transmission is ended. When input-out-
put activity is a t all high, long waiting periods greatly reduce over-all
performance.

When trans-
mission between a unit and its buffer is much slower than transmission
betneen the buffer and main memory, i t becomes possible to reduce the
waitzng time of the computer by the difference in transmission times and by
omission of the start-up time of the unit. Thrre is still an irreducible
waiting time for the computer: the time for transmitting data between
buffer and memory.

In applications where computing time is h s than inpul-output time,
the waiting time of the input-output unit becomes important. When only
a single buffer is provided, the unit must wait until data transfer between
buffer and memory has been completed. This nai t includes the
unavoidable delays after completion of the input-output cycle before the
program can initiate the transfer, as well as the transfer time. By
doubling the buffer storage area and alternating between the areas, one
can avoid such delays in the operation of the input-output unit.

The 7030 (like several earlier computers) iwes buffered, multiple-
channel operation without requiring external buffers. Buffering is
accomplished by transmitting data directly between the unit and memory
over one of several input-output channels a t whatever rate is required by
the unit. Each channel operates independently of the computer and of
the other channels. The

Buffered, single-channel operation was the next step.

This may be termed bu$ering in memory.

188 INPUT-OUTPUT COXTROL [CHAP. 12

internal memory acts as one large buffer for all channels. I ts use is time-
shared automatically among the computer and the input-output channels
by allocating memory cycles to each device when needed. If more than
one device demands attention, each is served in turn, with the highest
priority assigned to the channel with the fastest input-output unit.

An obvious
advantage is a considerable reduction in equipment as compared with
having a separate buffer on each channel, a saving which is partially offset
by the prorated cost of the main memory areas serving as buffers. The
size of the buffer area in main memory can be adjusted to the balance
between cost and performance desired for each application, where the
size of external buffers must be fixed in advance. Buffering in memory
takes less real computer time. It is true that external buffers could be
designed so that the number of memory cycles taken to transfer data
between buffer and memory would be the same as would be required to
transfer data directly between unit and memory; but, with buffering
in memory, the memory cycles are sandwiched between memory cycles
taken by the computer, and, since the computer does not normally use
every cycle, a significant fraction of the data-transfer cycles is “free”
and does not delay the computation.

Perhaps the most significant gain is the more direct control that the
program can exercise. When double buffering is used externally for
greater efficiency, the input-output unit runs ahead (on reading) or behind
(on writing) by one block with respect to the program. As a result, if an
error or other exception condition occurs, recovery is more difficult.
With buffering in memory, data in memory always correspond to thc
block currently being read or written, and the pipeline effect is avoided.
Operator intervention can be simplified. Moreover, the programmer hai
the option of any buffering scheme he would care to use, including no
buffering a t all. When speed of program execution is not important, the
simplicity of programming an unbuffered operation without overlap is
very appealing. This need not mean that the computer is used ineffi-
ciently. Since many channels are available, more than one such program
can be run concurrently so that the overlap occurs between operations
belonging to different programs, instead of between different operations
in the same program.

There are a number of advantages to this arrangement.

12.9. interface

Input-output units, regardless of type, must be connected to their
exchange channels in the same manner, electrically and mechanically, if
the channels are to be identical in design. This connection has beeii
called the interface. If a common connectioii technique is used, any
mixture of input-output units can be attaclicd to a computer, the array

SEC. 12.91

r

C M M M M 4 tape units
Memory

INTERFACE 189

of units being deterniined by the needs of the specific installation. This
is shown schematically in Fig. 12.3.

A further requirement of the interface is that i t permit the connecting
together of any two units that can logically operate together (Fig. 12.4).
A tape unit and its control unit may be connected to the computer, via an
exchange channel, or they may be connected to a card reader and its
control for off-line card-to-tape conversion, or to a printer and its control
for off-line tape-operated printing. The same card reader or printer
could, in turn, have been connected to exchange channels for on-line
operation.' Figure 12.4 also indicates two computers connected together
via exchniigc channels and a phone line. There is no inherent master-
slave relationship; either unit can initiate data transfer.

M-Input-output mechanism
C-input-output control uni t
T - L i n e terminal
+-Common interface connection

FIG. 12.3. Input-output connections to computer.

It is not possible to connect two tape units to copy data from one to
the other; the absence of buffer storage in the tape-control unit prevents
their synchronization. Kor does i t make sense to connect a card punch
to a printer. Also not shown is any direct connection between two
exchange channels. Technical difficulties prevented this; it would have
required an otherwise superfluous register in each channel. A junction
box containing a register is needed to tie together the channels of physi-
cally adjacent computers.

A somewhat similar technique was used In the IBM 702 and 705 systems to per-
mit card r,eaders, punches, and printers to be connected either on-line or off-line.
This was clone, however, by providing two different connections on the control unit,
one for the computer and another for a tape unit. Also the approach was very much
tape-oriented. The control units for the reader, punch, and printer each contained a
complcte set of tape control circuits. The present approach is based on a strict
separation of functions.

190 INPUT-OUTPUT CONTROL [CHAP. 12

The interface contains eighteen data lines (eight information-bit
lines and a parity-bit line in each direction), a timing line, and several
more lines corresponding to the instructions and indications referred to
earlier in this chapter. As mentioned in connection with the CONTROL

and LOCATE instructions, extensive use is made of addresses and codes
transmitted over the data lines, instead of providing separate lines with
more restricted meanings. Such generality provides murance that

M C c M

1 Exchange l - [F j Computer-1/0 (on-line operation)

I / O - I / O (off-line operation)

I

Exchange I

FIG. 12.4. Types of connections.

improved or newly designed units can be connected to the same channels
without changing the computer or its exchange.

12.1 0. Operator Control of Input-Output Units

To achieve high performance, it is very desirable to require a mini-
mum of operator intervention in the computer and in input-output units
that are essentially automatic in operation. Operator intervention
implies waits and errors, both of which serve to reduce system perform-
ance. Thus printers, card readers, and tape units have as few manual
controls as possible ; control is exercised entirely by the central stored
program, with no plugboards or set-up switches on most of the external
units. By contrast, typewriter keyboards and consoles, which have
meaning only as they are manually operated, are equipped with a wealth
of buttons and switches, but even those do not control computer
functions, except as interpreted by a program.

Ignoring power on-off switches, all input-output units can be operated
with just two buttons, labeled start and stop or with some equivalent
names. Start places the previously loaded recording medium into oper-
ating position, checks all interlocks, turns on a ready condition, and sends
a channel signal to the program. The unit is then under full computer
control. Stop allows the operator to stop the device and turn off ready;
the computer can then no longer operate the unit until start is pressed

SEC. 12.101 OPERATOR CONTROL OF IXPUT-OUTPUT USITS 191

again. Thus start and stop provide an interlock between the operator
and the computer by which the operator can exercise a minimum of
necessary supervision. A separate signal button may be provided where
an automatic channel signal after readying a unit is not desired.

Additional buttons are encouraged on individual units only when
equivalent functions cannot be provided as well or better by the stored
program. On some completely automatic units, such as disk files, even
the start-stop pair of buttons is not needed.

Operating controls are to be clearly distinguished from the multitude
of controls that may be needed by maintenance personnel. Maintenance
controls are strictly separated from operating controls, and they are
generally located where their use for normal operation can be discouraged.

Chapter f 3
MULTIPROGRAMMING

by E. F. Codd, E. S. Lowry, E. McDonough, and C. A. Scdlzi

13.1. Introduction

In recent years there has been a trend in coniputer design toward
increased use of concurrent operation, with the prime aim of allowing
more of the component units of a computer system to be kept in produc-
tive use more of the time. Two forms of concurrency have clearly
emerged. The first, which we shall call local concurrency, consists in
overlapping the execution of an instruction with that of one or more of
its immediate neighbors in the instruction stream.

This form of concurrency was present in a very early machine, the
IBM Selective SPqiience Electronic Calculator (SSEC), which was capable
of working on three neighboring instructions simultaneously. Such con-
currency was later abandoned in the von Iicumann-type machines, such
as the IBM 701. Sow that we have once again reached a stage in which
the logical elements are much faster than the memories, the need for this
type of concurrency has returned, and, in fact, the 7030 computer is
capable of working on as many as eleven neighboring instructions
simultaneously.

The second form, which we shall call nonlocal concurrency, provides for
simultaneous execution of instructions which need not be neighbors in an
instruction stream but which may belong to entirely separate and unre-
lated programs. It is this form of concurrency upon which we wish to
focus attention in this chapter.

A computer system, in order to exhibit nonlocal concurrency, must
possess a number of connected facilities, each capable of operating simul-
taneously (and, except for memory references, independently) on pro-
grams that need not be related to onp another. A facility may be % * ~

Note: The material in this chapter has previously been published by the same
authors as: Multiprogramming Stretch: Feasibility Considerations, Communs. ACM.,
vol. 2, no. 11, pp, 13-15, November, 1959.

192

Sec. 13.21 h’lULTIPROGRi\MMING REQUIREMENTS 1 93

input-output unit, an external storage unit, an arithmetic unit, a logic
unit, or some assemblage of these units. In an extreme case each facility
is a complete computer itself.

The following facilities are
capable of simultaneous operation on programs that need not be related :

The 7030 is a multiple-facility system.

1. One (or more) central processing units
2. Each input-output channel of the exchange
3. Each disk-storage access mechanism
4. The read-write channel of the high-speed disk synchronizer

(The several memory units in a 7030 system are not considered separate
facilities, even though they may work momentarily on unrelated pro-
grams, because they behave, on the average, as a single larger unit of
higher speed.)

The multiple-facility computing system bears a close resemblance to a
job shop, although the analogy can be taken too far. Just as the jobs to
be processed in a job shop are split up int,o tasks that can be handled con-
currently by the facilities available, so programs can be subdivided into
such tasks. At any instant the tasks being executed simultaneously may
belong all to one program or to different programs. The procedure
of running concurrently tasks that belong to different (perhaps totally
unrelated) programs has a number of objectives: (1) to achieve a more
balanced loading of the facilities than would be possible if all the tasks
belonged to a single program; (2) to achieve a specified real-time response
in a situation in which messages, transactions, etc., are to be processed
on-line; (3) to expedite and simplify debugging and certain types of
problem solving by making it economically feasible for the programmer
t,o use a console for direct communication with and alteration of his
program.

1 3.2. Multiprogramming Requirements

Several problems arise when concurrent execution is attempted of
programs sharing a common memory. For example, it is almost certain
that sooner or later, unless special measures are taken, one program will
make an unwanted modification in another as a result of a programmer’s
blunder. Then again, when an unexpected event occurs, the handling of
it is not merely a matter of deciding whether it was due to machine mal-
function, programming blunder, or operator error. It becomes necessary
to know which of the several programs may have been adversely affected
and which (if any) was responsible.

Such problems make it desirable for a multiprogramming system,
if i t is to be generally accepted and used, to satisfy the following six
conditions:

194 MULTIPHOGRAMMING [CHAP. 13

I . Independence of preparatzon. The multiprogramming scheme
hhould permit programs to be independently written and compiled. This
is particularly important if the programs are not related to one another.
The question of which programs are to be coexecuted should not be pre-
judged even a t the compiling stage.

The programmer should
not be required to provide any additional information about his program
for it to be run successfully in the multiprogrammed mode. On the other
hand, he should be permitted to supply extra information (such as
expected execution time if run alone) to enable the multiprogramming
system to run the program more economically than would be possible
without this information.

It may be necessary in a multi-
programming scheme to place certain of the machine’s features beyond
the programmer’s direct influence (for example, the t ime clock and the
interval timer in the 7030). This reduction in direct control by the prob-
lem programmer must not only be held to an absolute minimum but must
also result in no reduction in the effective logical power available to the
programmer.

4. Noninterference. KO program should be allowed to introduce
error or undue delay into any other program. Causes of undue delay
include a program that gets stuck in a loop and the failure of an operator
to complete a requested manual operation within a reasonable time.

5 . Automatic supervision. The multiprogramming scheme must
assume the burden of the added operating complexity. Thus instruc-
tions for handling cards, tapes, and forms for printing should be given
by the multiprogramming system. Similarly, machine malfunctions,
programming errors, and operator mistakes should be reported by the
multiprogramming system in a standard manner to the person
responsible. Again, all routine scheduling should be handled auto-
matically by the system in such a way that the supervisory staff can make
coarse or fine adjustments a t will. Further responsibilities of the system
include accounting for the machine time consumed by each job and
making any time studies required for purposes of operation or
maintenance.

Allocation of space in core
memory and disk storage, assignment of input-output units, and control
of time-sharing should be based upon the needs of the programs being
executed (and not upon some rigid subdivision of the machine).

2. M i n i m u m information f r o m programmer.

3. M a x i m u m control by programmer.

6. Flexible allocation of space and time.

To implement by built-in equipment all the logic required to satisfy
the above six conditions would be far too cumbersome and expensive.
Further, the methods used to meet certain of these requirements (par-

SEC. 13.31 7030 FEATUKES THAT ASSIST MULTIPROGRAMMING 195

ticularly the automatic-scheduling requirement) must be able t,o be
varied from user to user because of varying objectives.

On the other hand, too extensive a use of programmed logic in a multi-
programming scheme can easily prove self-defeating, because the time
taken by the machine to execute the multiprogramming program may
offset the gain from concurrent execution of the problem programs.
However, the raw speed and logical dexterity of the 7030 are such that it
is practical to employ quite sophisticated programmed logic.

In the 7030, therefore, the conditions for effective multiprogramming
are met by a carefully balanced combination of built-in and programmed
logic.

13.3. 7030 Features That Assist Multiprogramming

First, let us consider four major features, built into the 7030 equip-
ment, that facilitate multiprogramming: (1) the program-interrupt
system, (2) the interpretive console, (3) the address-monitoring scheme,
and (4) the clocks.

Program-interrupt System
Briefly, the

system permits interruption of a sequence of instructions whenever the
following four conditions are all satisfied :

1. The interrupt system is enabled.
2 . KO futher activity is to take place on the current instruction.
3. An indicator bit is on.
4. The corresponding mask bit is on.

The indicators reflect a wide variety of machine and program con-

This system is described in some detail in Chap. 10.

ditions, which may be classified into the following six types:

1. Attention requests from input-output units, the interval timer, or
any other central processing units that may be attached to the system

2. Data exceptions, such as data flags, zero divisors, or negative
operands in square-root operations

3. Result exceptions, such as lost carries, partial fields, or floating-
point exponents beyond certain ranges
4. Instruction exceptions, such as instructions that should not or can-

not be completed or should signal when they are completed
5 . Entries to interpretive routines
6. Machine malfunctions

When several problem programs are being executed concurrently,
certain of these conditions are of private concern to the particular pro-
gram that caused their occurrence. Other conditions, particularly

1 96 MULTIPROGRAMMING [C H I P . 13

types 1 and 6, are of general concern. Each of the indicators for con-
ditions of private concern has a variable mask bit that allows the current
program to choose between suppressing and accepting interruption for
the respective condition. On the other hand, each of the indicators for
conditions of general concern has a fixed mask bit, permanently set in the
o n position. This feature, combined with appropriate measures for
controlling the disabling of the entire interrupt system, makes it virtually
impossible for an interruption of general concern to be suppressed and
lost.

Another aspect of the interrupt system that is of importance in multi-
programming is the interrupt table. When an interruption is taken,
control is passed (without any change in the contents of the instruction
counter) to one of the instructions in an interrupt table. The base
address of this table is variable; so several such tables may exist simul-
taneously in memory (for example, one table for each problem program),
but only one is active a t a time. The relative location within the active
table that supplies the interjected instruction is determined by the indi-
cator (and hence by the particular condition) causing interruption.

Exploitation of this interrupt system depends upon programmed inter-
rupt procedures. This aspect will be taken up when we deal with pro-
grammed logic for multiprogramming.

Interpretiw Console
It has been customary in general-purpose computers to provide a single

console at which an operator can exercise sweeping powers over the whole
machine. For example, by merely depressing the stop button the opera-
tor has been able to bring the entire activity of the machine to a halt.
The normal requirement in multiprogramming, on the other hand, is to
communicate with a particular program and a t the same time allow all
other programs to proceed. Pursuing the same example, we now dwire
to stop a program rather than stop the machine.

For this reason and also because it is required that several consoles
with different functions be concurrently operable, the operator’s console
of the 7030 is not directly connected to the central processing unit.
Instead, it is treated as an input-output device. Its switches represent
so many bits of input and its lights so many bits of output. S o fixed
meaning is attached to either. By means of a console-defining routine
one can attach whatever meaning one pleases to these switches and lights.

Address Monitoring
Each reference by the central processing unit to memory is checked to

see whether the effective address falls either within a certain fixed area or
within a second variable area. If the effective address falls within one of

SEC. 13.41 PROGRAMMED LOGIC: 197

t,hese two areas, which are to be profected, the reference is suppressed
and an interruption occurs. The boundaries of the variable area are
specified by two addresses (the upper and lower boundaries) stored within
the fixed area. These address boundaries can be changed only if the
interrupt system is disabled.

This monitoring scheme allows any number of programs sharing
memory to be protected from one another effectively. At any instant,
the central processing unit is servicing only one program, logically
speaking. Suppose this is a problem program P. The address bound-
aries are set so that P cannot make reference outside its assigned area.
Before any other problem program Q acquires the central processing unit,
the address boundaries are changed to values that will prevent Q from
making reference outside the area assigned to Q. The task of changing
address boundaries is one of the programmed functions of the multi-
programming system.

There are two clocks in the 7030 that can be used by programs. The
first, referred to as the t ime clock, is a 36-bit binary counter which is
automatically incremented by unity about once every millisecond. This
clock can be read by a program under certain conditions but cannot be
changed by a program. It is intended for measuring and identifying
purposes, particularly in accounting for machine use, logging events of
special interest, and identifying output.

The second clock, referred to as the interval timer, is a 19-bit binary
counter which is automatically decremented by unity about once every
millisecond. Under certain conditions the interval timer may not only
be consulted but may also be set to any desired value by a program.
Whenever the interval-timer reading reaches zero, an interruption occurs
(if the interrupt system is enabled). The main purpose of this device
is to provide a means for imposing time limits without requiring pro-
grammed clock-watching, that is, without frequent inspection of the
time clock.

There are several other features in the 7030 that facilitate multipro-
gramming. For example, the autonomous operation of the exchange
(Chap. 16) considerably reduces the frequency of input-output inter-
ruptions to the program.

13.4. Programmed Logic

Now we turn our attention to the programmed logic and discuss how
the built-in logic may be exploited by programming techniques in order to
meet the six requirements for acceptable multiprogramming. Three tools

1 98 MULTIPROGRAMMING [CHAP. 13

are at our disposal. (1) the supervisory program, (2) the compiler, and
(3) the source language.

The supervisory program is assumed to be present in the rnachinc
\\ henevcr multiprogramming is being attempted. To the supervisorj-
program is assigned the job of allocating space and time to problem
programs.

Allocation of space includes determining which areas of memory and
disk storage and which input-output units are to be assigned to each of
the programs. The space requirements (including the required number
of input-output units of each type) are produced by the compiler as a
vector whose components are quantities dependent in a simple way upon
one or more parameters which may change from run to run. Any space
rcquirements depending on parameters are evaluated a t loading time
when the particular values of the run parameters are made available.

The supervisory program uses the precise knowledge i t has of the space
requirements of a problem program together with any information it may
have regarding its expected execution time and activity pattern to deter-
mine the most opportune moment to bring that program into the execu-
tion phase. It is not until the decision to execute is made that specific
assignments of memory space, disk space, and input-output units are put
into effect. By postponing space allocation until the last minute, the
>uperrisory program maintains a morp flexible position and is thus able
to rope more effectively with the many eventualities and emergencies
that beset computing installations, no matter how well managed they are.

Allocation of time includes not only determining when a loaded program
should be put into the execution phase but also handling queues of
requests for facilities from the various programs being concurrently
cxecuted. The fact that both pre-execution queuing and in-execution
queuing are handled by programming rather than by special hardware
results in a high degree of flexibility. Thus, a t any time, the supervisory
program is able to change the queue discipline in use on any shared facility
and so cope more effectively with the various types of space and time
bottlenecks that may arise. On interruptible facilities, such as the cen-
tral processing unit, which allow one program to be displaced by another,
changes in queue discipline may be expected to have very considerable
effect upon the individual and collective progress of the programs being
c*oexecut,ed.

These allocating powers of the supervisory program have several
implications. Most important of these is that the compiler must produce
a fully relocatable program-relocatable in memory and in disk storage,
and with no dependence on a specific assignment of input-output units.
=1 further consequence is that the supervisory program is responsible for
all loading, dumping, restoring, and unloading activities and mill supply

SEC. 13.41 PROGRAMMED LOGIC 199

1 he operator with complete instructions regarding the handling of cards,
tapes, and forms.

In order to meet the requirements (See. 13.2) of independent prepara-
tion of problem programs and noninterference with one another, it is
necessary to assign the following functions to the supervisory program:

1 . Direct control of the enabled-disabled status of the interrupt

2. Complete control of the protection system and clocks
3. Transformation of input-output requests expressed in terms of

symbolic file addresses into absolute input-output instructions (a one-to-
many transformation), followed by issuing of these instructions in accord-
ance with the queue disciplines currently in effect

4. Initial and, in some cases, complete handling of interruptions from
input-output units and other central processing units

By convention, whenever a problem program is being serviced by the
central processing unit, the interrupt system is enabled; when the super-
visory program is being serviced, either the enabled or the disabled status
may be invoked according to need. Adherence to this convention is
assisted by the compiler, which does both of the following:

system

1. Refrains from generating in problem programs the instruction
BHAKCH DISABLED (an instruction which completely disables the interrupt
system)

2. If i t eiicounters this instructon in the source language itself, sub-
stitutes a partial disable (a pseudo instruction) in its place, flagging it as a
possible error

So long as the interrupt system is enabled, the protection system is
effective. Problem programs are therefore readily prevented from mak-
ing reference to the areas occupied by other programs (including the
supervisory program itself). They are further prevented from gaining
direct access to the address boundaries, the interrupt-table base address,
and the clocks, all of which are contained in the permanently protected
area.

For the sake of efficient use of the machine, one further demand is made
of the programmer or compiler. When a point is reached in a problem
program beyond which activity on the central processing unit cannot pro-
ceed until one or more input-output operations belonging to this program
(or some related program) are completed, then control must be passed to
the supervisory program so that lower-priority programs may be serviced.

It is important to observe that the programmer is not required to desig-
nate points in his program at which control may be taken away if some
higher-priority program should need servicing. This would be an intol-

200 MULTIPROGRAMMING [CHAP. 13

erable requirement 11 heii unrelated programs arc to be coiicurrently
executed, especially if all arithmetic and status registers a t such points
have to contain information of no further value.

It is the interrupt system (particularly as it pertains to input-output,)
that makes this requirement unnecessary. The interrupt system allows
control to be snatched away a t virtually any program step, and the super-
visory program is quite capable of preserving all information necessary
to allow the displaced program to be resumed correctly a t some later time.

In removing certain features of the machine from the direct control
of the problem programmer, we may appear to have lost sight of thc
requirement that the programmer retain a maximum degree of control
(Sec. 13.2). However, for every such feature removed, a corresponding
pseudo feature is introduced. Take, for example, the pseudo disable aiid
pseudo enable instructions. When a problem program P issues a pseudo
disable, the supervisory program effectively suspends all interruptions
pertaining to 1) (by actually taking them aiid logging them internally)
until 1’ issues a pseudo enable. Meanwhile, the interruptions pertaining
t o other programs not in the pseudo-disabled state are permi
the state of the queue for the central processing unit.

Another example of a pseudo feature is the p s ~ z t d o interval timer; oiie
of these is provided for each problem program. The supervisory pro-
gram coordinates the resulting multiple uses of the built-in interval timer.

The need to detect the fact that a program has becomc stuck in a loop
or that an operator has not responded to an instruction from the super-
visory program is met by allotting a reasonable time limit for the activity
in question. When this interval expires without receipt by the super-
visory program of a completion signal, an overdue signal is sent t o an
appropriate console. The interval timer is, of course, used for this
purpose. and expiration of the interval is indicated by the time signal
interruption.

13.5. Concluding Remarks

We have attempted to show that the design of a computer may be
influenced quite strongly by the desire to facilitate multiprogramming.
Developing a complete multiprogramming system is a major undertaking
of its own, but both the computer and the programming system benefit
from coordinating the initial planning for both.

Since the purpose here is to describe the structure of the computer
rather than that of its programming systems, we have not discussed such
other considerations as the optimizing and queuing problems that arise’

E. F. Codd, Multiprogram Scheduling, Communs. A C M , vol. 3, no. 6, pp. 347-350,
June, 1960, and no. 7 , pp. 413-418, July, 1960; H. Freeman, On the Information-
handling Efficiency of a Digital Computer Program, Trans. AIEE, paper no. 60-970.

SEC. 13.61 REFERENCES 201

or the detailed specifications of a supervisory program and operating
system. We merely note
here that an experimental multiprogramming system has been developed
for the 7030 along the lines discussed above. A comprehensive set of
t,rial runs of this system has demonstrated successfully the feasibility of
multiprogramming of the 7030.

13.6. References

They would go beyond the scope of this book.

Some earlier publications relating to multiprogramming arc’ listed
below.
S. Gill, Parallel Programming, The Computer Journal, vol. 1, I I O . 1,

pp. 2-10, April, 1958.
C. Strachey, Time Sharing in Large Fast Computers, “Information I’rw-

essing,” UNESCO (Paris), R. Oldenbourg (Rlunich), and Butter-
worths (London), 1960, pp. 336-341.

W. F. Schmitt and A. B. Tonik, Sympathetically Programmed Coni-
puters, ibid., pp. 344-348.

J. Bosset, Sur certains aspects de la conception logique du Gamma 60,
ibid., pp. 348-353.

A. L. Leiner, W. A. Notz, J. L. Smith, and R. B. Marimont, Concurrently
Operating Computer Systems, ibid., pp. 353-361.

J. W. Forgie, The Lincoln TX-2 Input-Output System, Proc. Western
Joint Computer Conf., February, 1957, pp. 156-160.

Chapter 14

THE CENTRAL PROCESSING UNIT
by E. Bloch

14.1. Concurrent System Operation

Early in the design of the 7030 system i t appeared that a factor-of-6
improvement in memory speed and a factor-of-10 improvement in basic
circuit speed over existing technology were the best one could look for-
ward to during the time of the project. Since the performance level
desired was much higher than could be obtained from faster components
alone, the design had to provide for concurrent operation of various parts
of the system wherever posbible.

The need for concurrent operation affects all levels of the system, from
the over-all organization to the details of specific instructions. Major
parts of the system (Fig. 14.1) can operate simultaneously:

1. The core nieniory consists of several units of 16,384 words, operating
011 a 2.1-psec read-write cycle. Each unit is self-contained and has its
own clock, addressing circuits, data registers, and checking circuits. A
typical 7030 system may have six memory units. To achieve a high
degree of overlap, addresses are interleaved. The first four units share a
block of 65,536 addresses, so that four consecutive word addresses lie in
four different memory units. The next two units share a block of
32,768 addresses with two-way interleaving. If the four-unit block is
assigned primarily to data and the two-unit block primarily to instruc-
tions, it is possible to achieve rates of up to o u ~ full data word and one
half-word instruction every f& psec. (Note that segregating data and
instriwtions may help to increase speed, but it is not a necessary step,
since the memory is logically homogeneous.)

2. The simultaneously operating input-output units are linked with
the memories and the computer through the cxchange, which, after receiv-

Vote: The material in Chap. 14 tias been ada1)tt.d flout E Noch, The Engineering
lksign of the Stretch ('omputpr, Proc Bastarn Joint Computer Conf., no. 16, pp. 48-58,
December, 1959.

202

SEC. 14.11 CONCURRENT SYSTEM OPERATION 203

ing an instruction from the computer, coordinates the starting of the
input-output equipment, the checking and error correction of the informa-
tion, the arrangement of the information into memory words, and the
fetching and storing of the information from and to memory. All these
functions are executed independently of the computer. The high-speed
disk units are controlled by the disk-synchronizer unit, which is similar in

Memory units

1 I 3 Memory out bus

t Memory in bus

Exchange

Channels for

I,-,. I synchronizer I
, , m i +

input-output
units

(Magnetic tapes
Magnetic disks
Printers
Readers
Consoles
Displays
Inquiry stations
Data transmission
etc.)

High-speed
disk units

Instruction

Index Index

Look-ahead

Arithmetic
registers
Parallel

arithmetic unit

Serial
arithmetic i unit

Central
processing

unit

FIG. 14.1. 7030 system.

function to the exchaiigc but is capable of much higher data rates.
Memory cycles needed by the exchange and disk synchronizer arc inter-
leaved with those required by the computer.

3. The central processing unit (CPU) processes and executes inst]ruc-
tions with a high degree of overlap of internal functions.

The concurrent operation of various parts of the system was exaxnilled
in Chap. 13 from the point of view of the user and programmer. In the
present chapter we shall see how the need for effective concurrent opera-
tion has pervaded the design of the system and in pnrticiilar of the cen-
tral processing unit.

204 THE CENTRAL PROCESSING UNIT [CHAP. 14

14.2. Concurrency within the Central Processing Unit

in Fig. 14.2.
Most earlier computers have a sequential flow of instructions, as shown

In turn, an instruction is fetched, the operand address is
updated (by indexing or indirect addressing),
the operand is fetched, and the instruction is r----

execution may be overlapped with fetching of
the next instruction.

I Compare this with the high degree of
overlapping in the 7030 (Fig. 14.3). Two

I instruction words, which often represent four
half-word instructions, and the operands for

I four more instructions can be fetched SimUl-
I taneously. At the same time two more in-
/ structions can be updated and another exe-
I cuted. After completing its current stage of

processing, each instruction advances to the
L----A next stage as soon as register space is avail-

able. Because the duration of each stage and
the execution time of an instruction are vari-

FIG. 14.2. Sequential opera-
tion.

able, the process is not a cyclic one, and
the actual number of instructions in process varies continually.

All the units of the computer are loosely coupled together, each one
controlled by its own clock system, which in turn is synchronized by a
master oscillator. As may be expected, this multiplexing of the units of'

1
I executed. In some computers the instructioii

execution

2 instruction words $74 /,4-$4 words data
(up to 4 instructions)

/

Instruction
updating execution

FIG. 14.3. Overlapped operation in 7030.

the computer results in a large number of registers and adders. In all,
the computer has 3,000 register positions and about 450 adder positions.

Despite the multiplexing and simultaneous operations of successive
instructions, the result is always made to appear as if internal operation
were sequential. This requires extensive interlock facilities.

14.3. Data Flow
It is com-

parable to a pipeline which, once filled, has a large output rate no matter
The data Aow through the computer is shown in Fig. 14.4.

SEC. 14.31

Instruction word buffer Operand buffer
'Instruction word buffer Error correctorr Operand buffer

Instruction and Operand buffer
indexing uni t Operand buffer

checker

A

DATA FLOW 205

111
I I

Arithmetic checker out-bus

2 word 2 word

A, B C, D
accumulator - operand register

A
I C

Arithmetic checker in-bus
A

v
Serial Para1 le1 - arithmetic < arithmetic

what its length. Once the flow is started, the
execution rate of the instructions is high in spite- of the large number of
stages through which they progress.

The memory bus unit is the communication link between the memories
on one side and the exchange, disk synchronizer, and CPU on the other.

The same is true here.

Memory units

From
exchange

~ Memorv in bus
I I

I If
---- ~

Result store address

interrupt
system

FIG. 14.4. Computer units and bus system.

The memory bus unit monitors the requests for storing in or fetching
from memory and sets up a priority scheme. Since input-output units
cannot hold up their requests, the exchange and disk synchronizer will
get' highest priority, followed by the CPU. In the CPU the operand-fetch
mechanism, the look-ahead unit, has priority over the instruction-fetch

206 THE CENTRAL PROCESSING UNIT [CHAP. 14

mechanism. Altogether the memory bus unit receives requests from and
assigns priority to eight different channels.

Since access to a memory unit can be independently initiated from
several sources, a busy condition can exist. Here again, the memory bus
tests for the busy condit'ions and delays the requesting unit until the
desired memory unit is ready. The return address identifying the

Memory out-bus
b I

From look-ahead

storage
(17 words)

Index
register register

Index adder# bus A f t -
1 V Index adder bus B v

V Look-ahead load lines f

Checker in v bus

Memory address bus V

+

1 c V

I
FIG. 14.5. Instruction unit.

t
Index

arithmetic
u n i t

requesting iiriit is remembered, and the information is forwarded when it
becomes available.

Requests for stores and fetches can be processed at a rate of one every
0.3 psec. If no busy or priority conditions exist, the time to return the
word to the requesting unit is 1.6 psec, a direct function of the memory
read-out time.

It has its
own instriictions to execute, its own small memory for index-word storage,

('ornpcdc., Conf., no. 18, pp. 299-324, December, 1960.

The znstrlrction unzt (Fig. 14.5) is a computer all by itself.'

' IC T Blosh, The Instruction Unit of the Stretch Computer, Proc. Eastem J O Z ~ L ~

SEC. 14.31 D A T A 1"LOW 207

and its own arithmetic unit. As many as six instructions can be a t
various stages of progress in the instruction unit

The instruction unit fetches the instruction words from memory,
steps the instruction counter, and indexes all instructions. After a pre-
liminary decoding of the instruction class, it recognizes and executes
indexing and branching instructions; for other classes of instructions it
initiates data fetches and passes the partially decoded instructions on
to the look-ahead.

At the time the instruction unit encounters a conditional branch
instruction, the condition may not be in its final state because other
operations currently in progress may still affect it. To keep things
moving, the assumption is made here that the branch condition will not
be met, and the next instruction in sequence is fetched. This assump-
tion and the availability of two full-word buffer registers keep the rate of
flow of instructions to the computer high most of the time. When the
assumption proves wrong, the instruction unit must backtrack to the
branch point and follow the new sequence instead. This takes time, of
course.

As
soon as the instruction unit starts processing an instruction, i t is removed
from the buffer, thus making room for the next instruction.

The index-arithmetic unit and the index registers complete the instruc-
tion unit. It should be noted that the index registers have been made an
integral part of the instruction unit, so as to permit fast access to an index
word without long transmission lines. There are sixteen index words
available to the programmer, of which fifteen can be used for automatic
address modification. The index registers are contained in a small
memory unit made of multiaperture cores, which is operated in a non-
destructive-read fashion where reading is much faster than writing.
This permits fast operation most of the time, when an index word is
referred to without modification. Additional time is needed only when
modification is involved.

After it has been processed through the instruction uiiit, the updated
(indexed) instruction enters one of four levels of the look-ahead unit
(Fig. 14.4). Besides the necessary information from the instruction, the
associated instruction-counter value and certain tag information are
stored in the same level of the look-ahead. The operand, already
requested by the instruction unit, will enter this level directly and will
be checked and error-corrected while awaiting transfer to the arithmetic
unit.

The operating principles of the look-ahead unit, together with the
sequencing of functions and the interlocking required to prevent out-of-
sequence execution of instructions, are covered in Chap. 15.

Two instruction words can be in the registers a t any one time.

The look-ahead unit also performs all storing operations.

208 rl'~m CEsmaL PROC~SSING UNIT [CHAP. IS

The tit-o-part arithmetic unit described below is a slave to the look-
ahead, receiving from it not only operands and instruction codes but also
the signal to start execution. The arithmetic unit signals to the look-
ahead the termination of an operation and, in the case of store operations,
places into the look-ahead the result word for transfer to the proper
memory location.

14.4. Arithmetic Unit

The design of the maiii arithmetic unit mas established along similar
lilies. Every attempt was made to speed up the execution of arithmetical
operations by multiplexing techniques.

The arithmetic unit consists of a parallel uiiit for floating-point opera-
tions arid a serial unit for variable-field-length operations. The two units
use the same arithmetic registers, namely a double-length accumulator
of 128 bits (the left part being called register A and the right part register
B) , and a double-length operand register of 128 bits (C and D). The
same arithmetic registers are used because the program may a t any time
switch from floating-point to variable-field-length operation, or vice
versa. The result that is obtained by a floating-point operation can
serve as the starting operand for a variable-field-length operation, or
vice versa.

Operat ioiis on the floating-point fraction and also variable-field-length
biliary m ultip2y arid divzde operations are performed by the parallel unit.
I'loating-point exponent operations, variable-field-length (binary or
decimal) add operations, arid logical-connective operations are executed
hy the serial uiiit. The syuare-root operation and the binary-decimal
conver4oii algorithm are excruted in unison by both units. Decimal
multiplimtion and division are not built in because they can be done faster
-and quite convt.niently-by a short subroutine using radix conversion
a i d the fast binary arithmetic.

Salient featurrs of the two units will iiow be described.

hkrial Arilhmetic Unit

The serial arithmetic unit (Fig. 14.6) coiitains two symmetrical por-
iioiis, one for the accumulator (A B) registers and one for the operand
(('U) register\, fecding into a common binary adder or logical-connective
iiiiit and braliching out again into two similar circuits for returning the
ic\idt to Pithw pair o f registerh. A two-lcvel switch matrix is used to
o\trart 8 adjacent bits from any of 128 possible register positions, together
\ \ i th a by-pass for 8 bits which are to remain undisturbed. True-coni-
1)ienieiit (inr-ersion) circuits, both before and after the adder, take care of
-libtraction. A decimal-correction circuit is switched into the data path
\\hen decimal addition or subtraction is specified. The result is returned

SEC. 14.41

A I B

ARITHMETIC UNIT

C D

209

Switch
matrix

(1 6 of 128)

1
Switch . matrix

(8 of 16)

via another two-level switch matrix to thc selected register positions.
,411 other register positions remain undisturbed.

A single pair of bytes is extracted, arithmetic or logic performed, and
the result returned to the registers in one clock cycle of 0.6 psec. Longer

Switch
matrix

(16 of 128)

5.
Switch
matrix -

(8 of 16)

By-pass T-C switch T-C switch
(8 bits) (8 bits) (8 bits)

fields are processed by repeatedly stepping the counters that control the
switch matrixes. The operations are checked by parity checks on the
switch matrixes and by use of duplicate arithmetic and logic units.

By-pass
(8 bits)

Parallel Arithmetic Un i t

floating-point operations at very high speed.

no. 1, pp. 67-91, January, 1961.

The parallel arithmetic unit (Fig. 14.7) is designed to execute binary
Since both single-length

* 0. L. I\facSorley, High Speed Arithmetic in Binary Computers, Proc. I R E , vol. 49,

T-C Decimal
switch corrector

#o Switch
matrix

16-16

* 0

-
AB

write-in
matrix

CD
write-in
matrix

21 0 THE CENTRAL PE~OCESSING UNIT [CHAP. 14

(48-bit fraction) and double-length (96-bit fraction) arithmetic are per-
formed, the shifter and adder extend to 96 bits. This makes it possible
to have almost the same speed for single- and double-length arithmetic.
The adder is of a carry-propagation type with look-ahead over 4 bits a t a
time, to reduce the delay that normally results in a ripple-carry adder.
This carry look-ahead results in a delay time of 0.15 psec for 96-bit
additions. Subtractions are carried out in 1s complement form with

registers 52
1

& Shifter

registers Y
True-

complerneot
switch

Parallel
unit

register

I --). Carry propagate
* adder - 100 bits

V
Shifter

Carry propagate
adder

100 bits

MCD-Multiplicand
MPR-Multiplier
CSA -Carry save adder

L

Sl 4 c3

Carry
register register

FIG. 14.7. Parallel arithmetic unit.

automatic end-around carry, but the result is always converted to abso-
lute-value form with separate sign.

The shifter is capable of shifting up to four positions to the right and
up to six positions to the left a t one time. This shifter arrangement does
the most common shifting operations in one step. For longer shifts the
operation is repeated automatically.

To expedite the execution of the multiply instructions, 12 bits of the
multiplier are handled in one cycle. This is accomplished by breaking
the 12 bits into groups of 3 bits. The action is from right to left and con-
sists in decoding each group of 3 bits. By observing the lowest-order
bit of the next higher group, a decision is made as to what multiple of the

SEC. 14.41

Groups

Multiplier bits

additions
Multiplicand (C)

Equivalent to:

Final decoding

ARITHMETIC UNIT

nf4 n+3 nS2 n+l n
xx0 011 110 101 010

4 C - C q 6 C - C q C

4C 6C-8C 6C 2C-8C

4c -2c 6C -6C

21 1

inultiplicand must be added to the partial product. Only even multiples
of the multiplicand are available, and subtraction or addition of the
multiples can result. The example of Fig. 14.8 will elaborate this point.

The four groups of multiplicand multiples and the partial product of
the previous cycle are now fed into carry save adders, which operate
according to the rules:

Sum

Out-carry

S = A V B V C

C' = A B V AC V BC

where A , B, and C
are either input or
in-carry bits

There are four of these adders, two in parallel followed by two more in
series (Fig. 14.7). The output of carry-save adder 4 then results in a

double-rank partial product, the product sum and the product carry.
For each cycle this is fed into carry-save adder 2, and, during the last
cycle, into the carry propagate adder for accumulation of the carries.

Since no propagation of carries is required in the four cycles when multi-
plicand multiples are added, this operation is fast, and it is the main
contributor to the short multiply time of the 7030.

The divide scheme is similar to the multiply scheme in that several
multiples of the divisor, namely 1, 35, and j%& times the divisor, are
generated to reduce the number of add or subtract cycles needed to gen-
erate the quotient. It has a further similarity to another well-known
multiply scheme, in that strings of consecutive I s or Os in the partial
remainder are skipped, requiring only one add cycle for each string.
The net effect is that the number of cycles is reduced, on the average, by a
factor of 3.5 as compared with nonrestoring division.

C. V. Freiman, Statistical Analysis of Certain Binary Division Techniques,
Proc. ZRE, vol. 49, no. 1, pp. 91-103, January, 1961.

212 THE CENTRAL PROCESSIXG ITNIT [CHAP. 14

The power of this method may be illustrated by an example done three
different ways.

Dividend 0 . 1 0 1 0 0 0 0 0
Divisor D R 0.1 1 0 0 0 1 1 0 (true form)

Let us assume the following normalized values:

DR' 1 . O 0 1 1 1 0 1 0 (2s complement form)
3i DR 0.1 0 0 1 0 1 0 0 1 (obtained by shifting and adding DR

The leftmost bit represents the sign (0 for + and 1 for -). For division
only, subtraction in t.he parallel arithmetic unit is more easily accom-

to itself)

.-

Shift-add
cycle

(4)

(5)

0.1 0 1 0 0 0 0 0
1 . 0 0 1 1 1 0 1 0
1.1 1 0 1 1 0 1 0
1 . 1 0 1 1 0 1 0 0
0 . 1 1 0 0 0 1 1 0
0 . 0 1 1 1 1 0 1 0
0 . 1 1 1 1 0 1 0 0
1 . 0 0 1 1 1 0 1 0
0 . 0 0 1 0 1 1 1 0
0 . 0 1 0 1 1 1 0 0
1 . 0 0 1 1 1 0 1 0
1 . 1 0 0 1 0 1 1 0
1.0 0 1 0 1 1 0 0
0 . 1 1 0 0 0 1 1 0
1 . 1 1 1 1 0 0 1 0
1 . 1 1 1 0 0 1 0 0
0 . 1 1 0 0 0 1 1 0
0.1 0 1 0 1 0 1 0
1 . 0 1 0 1 0 1 0 0
1 . 0 0 1 1 1 0 1 0
0.1 0 0 0 1 1 1 0
1 . 0 0 0 1 1 1 0 0
1 . 0 0 1 1 1 0 1 0
0 . 0 1 0 1 0 1 1 0

Quotient

0

. . . . 0 I.....

0 1 I...

0 1 1 0

0 1 1 0 o

0 1 1 0 0 I....

0 1 1 0 0 1 1

0 1 1 0 0 1 1 1

Comments

Dividend
Add DR'
Sign minus (I), hence q = 0
Shift partial remainder left
Add DR
Sign plus (0) , hence q = 1
Shift
Add DR'
y = l
Shift
Add DR'
y = o
Shift
Add D R
q = o
Shift
Add D R
q = l
Shift
Add DR'
y = l
Shift
Add DR'
q = l
etc.

FIG. 14.9. Example of nonrestoring division.
divisor; q : current quotient bit.
add cycle.

D R : divisor; DR': 2s complement of
One quotient bit is generated for every shift-and-

plished by adding the 2s complement of the number, whereas the 1s
complement is used for other operations, as noted before.

Sonrestoring division is demonstrated in Fig. 14.9. One quotient bit
is generated for each shift-and-add cycle, so that 48 cycles would be

SEC. 14.41 :iRITHMETIC UNIT 21 3

needed for the 48-bit quotient of the 7030. At each step, if the partial
remainder has a sign bit 0, DR' is added; if the sign is 1, DR is added.
The resultant partial remainder is shifted once to the left, and the inverse
of its sign bit becomes the new quotient bit.

Figure 14.10 shows that the division can be shortened greatly by skip-
ping over adjacent I s or Os in the partial remainder. Another way of
saying this is that the partial remainder is normalized by shifting out
those extra high-order bits which can be replaced directly by correspond-
ing quotient bits. If the remainder is positive (in true form), these bits

Shift-add
cycle

(3)

(4)

0 . 1 0 1 0 0 0 0 0
1 . 0 0 1 I 1 0 1 0
1.1 1 0 1 1 0 1 0
-1

1 . 0 1 1 0 1 0 0 0
0 . 1 1 0 0 0 1 1 0
0 . 0 0 1 0 1 1 1 0
-1

0 . 1 0 1 1 1 0 0 0
1 . 0 0 1 1 1 0 1 0
1.1 1 1 1 0 0 1 0
-1

1 . 0 0 1 0 0 0 0 0
0 . 1 1 0 0 0 1 1 0
1 . 1 1 1 0 0 1 1 0

Quotient

0

0 1

0 1 1

0 1 1 0

0 1 1 0 o

0 1 1 0 0 1 1 1

Comments

Dividend
Add DR'
q = o

Shift over Is, q = 1
Add DR
q = l

Shift over Os, q = 0
Add DR'
q = o

Shift over Is, Q = 111
Add DR
etc.

FIG. 14.10. Divide example with skipping over Is and Os.
bits are generated for every shift-and-add cycle.

On the average, 2.6 quotient

are Os; if it is negative (in complement form), these bits are IS. It may
be shown that the quotient bit to be inserted for each shift is the same
as the bit shifted out. This technique requires bot,h the dividend and the
divisor to be normalized a t the start, as was already true in the numbers
chosen for the example.

The skipping technique is based on reasoning that a positive partial
remainder with leading zero bits must be smaller than any divisor that
has been normalized. Hence, subtracting the divisor is certain to result
in an overdraw, and the correct quotient bit is 0. Thus the cycle can be
avoided by simply shifting and inserting the correct quotient bit. A
negative, complemented remainder with leading 1 s presents the converse
situation. I ts absolute value is certain to be less than the divisor, so that . .

214 THE CENTRAL PROCESSING UNIT [CHAP. 14

bit of I , and it is not necessary to do the actual addition. Once the
partial remainder is normalized, inspection of the leading bit is not
enough t o tell whether adding or subtracting the divisor is necessary or
not, and a full cycle is taken a t that point.

The divide scheme actually used in the 7030 is an extension of the skip-
ping technique, obtained by inspecting more than 1 bit of the remainder
and divisor. One of three multiples of the divisor is selected for each add
cycle by looking up a table (Fig. 14.11) on the basis of 3 high-order bits

11111 *

11110* f
11101~ *

11100* *
11011 ' *

11010. *

11001. .
._ s 11000. *
>

ru

+
-cr 10111 *

2 10110.~
10101 * *

10100* -
10011~
10010. *

10001 * *

10000* .
011 010. . 1 001 . 000. . . (Complement)

Partial remainder

FIG. 14.1 1. Table for selecting divisor multiple.
if partial remainder is true.
complement.

Select complement-divisor multiple
Select true-divisor multiple if partial remainder is a

of the normalized previous remainder and 5 high-order bits of the normal-
ized divisor. The addition is carried out, the new partial remainder is
normalized, and the correct quotient bits are selected by the rules given
in Fig. 14.12. The example with this technique in Fig. 14.13 shows a
further reduction in the number of cycles.

The rules are considerably more complex than those in the previously
cited techniques, but the reasoning is roughly as follows. After the
partial remainder is normalized, the subsequent number of cycles can be
further reduced by selecting a multiple of the divisor that is as close in
magnitude to the remainder as possible, so that the magnitude of the new
partial remainder-the difference of the two values-is as close to zero as

SEC. 14.41

I

Quotient

Sign bit of
new partial
remainder

Selected divisor
multiple

Comments

$/4 DR

.

0
1

Dividend
Add DR’
q = o

ARITHMETIC ~ J N I T I1 5

9 1

3 1 1 0 0 1 1 1

Quotient bits

Shift over Is, q = 1
Add 3 i D R
q = 100111
etc.

1 0 0 0 0 0
0 1 1 1 1 1

0 1 0 0 0 0
0 0 1 1 1 1

-

1 1 0 0 0 0
1 0 1 1 1 1

1 0 1 0 0 0
1 0 0 1 1 1

0 1 1 0 0 0
0 1 0 1 1 1

FIG. 14.12. Basic table for generating quotient bits. Additional rules: (1) Use only as
many quotient bits, starting at the left, as the number of shifts needed to normalize
the new partial remainder. (2) If only two shifts are needed for 9 i D R or (3 iDR) ’ ,
invert the first quotient bit on the next cycle. (3) If more than six shifts are needed,
take additional shift cycles and continue to generate 0 or 1 quotient bits, depending on
remainder sign.

possible. As a result, there are more leading bits to be shifted out during
normalization than before. Ideally, the divisor mulbiple is picked pre-
cisely so as to leave a remainder which, to single precision, is zero, so that
the division is finished. For practical purposes, the selection was limited
to a much cruder choice of one of three multiples: 1, x, and times the

Shift-add
cycle

0 . 1 0 1 0 0 0 0 0
1 . 0 0 1 1 1 0 1 0
1.1 1 0 1 1 0 1 0
-1

1 . 0 1 1 0 1 0 0 0
0 . 1 0 0 1 0 1 0 0 1
1 . 1 1 1 1 1 1 0 0 1

0

FIG. 14.13. Example for divide method used in 7030.
are used, as well as skipping over Is and Os.
genersted each cycle.

N D R and N D R (not shown)
On the average, 3.5 quotient bits are

216 THE CENTRAL PROCESSING UNIT [CHAP. 14

divisor; 1 is used when the normalized remainder is close to the divisor in
magnitude, K when the remainder is much larger, and % when it is much
smaller.

The scheme always permits a t least two shifts after each add cycle.
As many as six shifts can be carried out in the same cycle as one addition;
if more shifts are needed, extra cycles are used without addition. The
limitation to a six-way shift is a matter of economy, but it only adds 5
per cent to the number of cycles that would be needed without this
limitation.

The 7030 divzde scheme is somewhat similar to a base-4 method
described in the literature.’ The base-4 method has a fixed shift of
2 bits per cycle, whereas thc method described here allows from 2 to 6
bits of shift.

In floating-point multzply and divide operations, the arithmetic on the
fractions is performed by the parallel arithmetic unit, as described above,
while the serial arithmetic unit is executing the exponent arithmetic.
Here, again, is a cahe where overlap and simultaneity of operation arc
used to special advantage.

14.5. Checking

The operation of the computer is thoroughly checked. An error-
correction code is employed for transfers of data from memory. The
code is attached to all words on the way into memory. Every time a
word is fetched from memory, the code is checked. If a single error is
indicated, a correction is made, the error is recorded on a maintenance
output device, and computing continues.

Within the machine all arithmetical operations are checked either by
parity, duplication, or a casting-out-three process. These checks ar(3
overlapped with the execution of the next instruction.

14.6. Component Count

Figure 14.14 gives the number of transistors used in the various sections
of the machine. I t becomes obvious that the floating-point unit and
the instruction unit use the highest percentage of transistors. In the
floating-point unit this is largely due to the extensive circuits for the
speeded-up multiply and divide schemes. In the instruction unit most
of the transistors are in the controls, because of the highly multiplexed
operation.

J. E. Robertson, A New Class of Digital Division Methods, I R E 7’mns. on H a c -
tronic Computers, vol. EC-7, no. 3, pp. 218-222, September, 1958.

Sac. 14.71

21 7

~ -___

17,700
19,500

lid

-______I_-

Serial arithmetic unit:
Data path
Controls

___-
Parallel arithmetic unit:

Data path
Controls

_-
Memory controls

Instruction unit:
__--

Data path
Controls

- --
Look-ahead unit:

Data path
Controls

-_I_

10,000
8,700

32,700
3,000

Number of
transistors

Interrupt system ! 6,000

Total 1 169,100
- - -

Double Cards
Single Cards
Power

-1,025
18,747
21 kw

Per cent of
total

6

22

16

11

21

14

4
~~-

100

~~

Frc:. 14.14. Component counts in the computer sections.

14.7. Performance

Figure 14.15 shows some examples of arithmetic speeds. Decinial
mult iply and divide instructions call for a subroutine; the times are not
shown because they depend on the nature of the subroutine.

These figures give only a rough indicatioll of the perforniance to be
expected on a specific problem. Because of the large degree of overlap,
one cannot correctly quote average times for individual operations that
could be added together to give the total time for a sequence of such
operations. It is possible for indexing and branching instructions, for
vxample, to be completely overlapped with arithmetical operations, so
fliat their effective time becomes zero. On the other hand, i t is clear

218 THE CENTRAL PROCESSING UNIT [CHAP. 14

Floating point
VFL binary

VFL decimal
(for 16-bit numbers)

(for 5-digit numbers)

Time (psec)

1 . 5 2 . 7 9 . 9

3 . 6 10.5 16.2

5 .4 Subroutine Subroutine

ADD MULTIPLY DIVIDE

FIG. 14.15. Examples of arithmetic speeds.

that a sequence consisting exclusively of indexing and branching instruc-
tions would take a significant amount of time.

The only valid way to time a specific program is either by measuring
the time during actual execution or by simulating the intricate timing
conditions of the 7030 dynamically on another computer.

14.8. Circuits
Having reviewed the CPU organization of the 7030, we shall briefly

discuss the components, circuits, and packaging techniques used in the
design.

The basic circuit component is a high-speed drift transistor with a
frequency cutoff of approximately 100 megacycles. To achieve high
speed i t is kept out of saturation a t all times. The transistor exists in
both a P N P and an NPN version. The main reason for using two ver-
sions is to avoid the problem of level translation caused by the &volt
difference in potential between the base and the collector.

The inputs A and B operate
at a reference voltage of 0 volt, which is established by the preceding
circuit (not shown). If inputs A and B are both positive by 0.4 volt
with respect to the reference voltage, their respective transistors cut off.
This causes the emitter of transistor C to go positive with respect to its
base and conduct a 6-ma current, flowing from the current source which is
made up of the +30-volt supply and resistor R. ,4s a result, output F
goes positive by 0.4 volt with respect to its reference of -6 volts; a t the
same time output F' goes negative by 0.4 volt with respect to the reference.

When either of the inputs goes negative, its transistor becomes con-
ducting. The emitter of transistor C goes negative and C is cut off.
The result is that output F' goes positive and output F goes negative with
respect to the reference.

The principle of this circuit is one of switching (or steering) a constant
current either toward output F (C conducting) or toward output F'
(A or B or both conducting). The PNP circuit provides both the logical

Figure 14.16 shows the P N P circuit.

SEC. 14.81 CIRCUITS 219

function and and the function not or. Minimum and maximum signal
swings are also shown in Fig. 14.16.

The
principle is the same, but the logical functions or and not and are obtained,

A dual circuit using the N P N transistor is shown in Fig. 14.17.

Symbol
B F

Truth table
F = A h B

F ’ = i (A A B)
= (1A)V (i B)

Circui t diagram

output

Mi n .-max.
signal voltages

Input
7 0 . 5 ~
+0.4v

Ref o v Ref - - 6 ~
-6.4~
- 6 . 5 ~

Delay= 20 nsec
output

Input
Circuit response

Fro. 1-4.1ci. (:iirrent-switc.hina circuit, P.YP. Symbols: A and, V or, 1 not.

and the reference witages are iiow - 6 volts at the input and 0 volt a t
thc output.

The circiiits t1escrit)rd so far arc versatile enough so that they could be
the only circuits used in the system. Because of the many data buses and
registers. h o u ever, i t was found iisclful to provide also a distributor func-
tion ant1 an oyerriding function. This resulted in a circuit with a third

220 THE CENTRAL PROCESSING UNIT [CHAP. 14

voltage level which permitted great savings in space and transistors.
Figure 14.18 shows the PNP version of the third-level circuit.

Without transistor X , transistors A and B in conjunction with the
reference transistor C would work normally as a current-switching circuit,
in this case an and circuit. When transistor X is added, with the stipula-
tion that the down level of X be more negative than the lowest possible
level of A or B, it becomes apparent that when X is negative the current
will flow through that branch of the circuit in preference to branch

Symbol

Truth table

Circuit diagram

B F

FIG. 14.17. Current-switching circuit, NPN.

F or F', regardless of input A and B. Therefore, the output of F and F'
will be negative, provided input X is negative. Output G is the inverse of
input X . If, however, X is positive, then the status of A and B will deter-
mine the function of F and F' implicitly. This demonstrates the over-
riding function of input X.

Similarly, the N P N version, not shown, results in the or function at F
if input X is negative and in a positive output at F and F', regardless of
the status of A and B, if X is positive.

The speed of the circuits described so far depends on the number of
inputs and the number of circuits driven from each output. The response
of the circuits is anywhere between 12 and 25 nsec (nanoseconds, bil-
lionths of a second) per logical step, with 18 to 20 nsec average. The

SEC. 14.81

Circui t
(A,)

Min.-max.
signal voltages

Circui t response

X As; B G

Symbol

CIRCUITS 221

Truth table

-
+30 v -

Inputs outputs

X input
only

output

Input 4.L-
FIG. 14.18. Third-level circuit, PNP.

222

Circuit

Truth tables

Circuit
diagrams

THE CENTRAL PROCESSING UNIT

B "7i,FF
F = AAB

-t"

Min.-max.
signal voltages

A

F - A A B

- 6 ~

Circuit response

Ref -Grid

Beg inning - 0 . 6 ~

-1 .ov
of chain

[CHAP. 14

A*F B

F = A V B

+r

442 23 63.423
F = AVB - 6 ~

+ 6 v

Ref --- -Grid
- 0 3 5 ~

End of
chain (4)

-1 3~

Delay% 10 nsec

FIG. 14.19. Emitter-follower logic.

iiuniber of inputs allowable per circuit is eight. The maximum number of
circuits driven is three. Additional circuits are needed to drive more
than three bases, and, where current-switching circuits communicate over
long lines, termination networks must be added to avoid reflections.

To improve 1 I I P pc.rformancr of the computer in certain critical places,

SEC. 14.91 PACKAGING 223

emitter-follower logic is used, as shown in Fig. 14.19. These circuits
have a gain less than 1, and they require, after a number of stages, the
use of current-switching circuits as amplifiers and level setters. Both
and and or circuits are available for both a ground-level (shown) and a
- 6-volt-level input (not shown). To change a ground-level circuit into
a -6-volt-level circuit i t is necessary to change the appropriate power
supply levels. Because of variations in inputs and driven loads, the cir-
cuits must be designed to allow such variations over a wide range; this
requires the feedback capacitor shown in the circuit, to maintain stability.

All functions needed in the computer can be implemented by the use
of the aforementioned circuits, including the flip-flop function, which is
obtained by connecting a PNP current-switch block and an N P N
current-switch block together with proper feedback.

14.9. Packaging

as shown in Fig. 14.20.
The circuits described in the last section are packaged in two ways.

The smaller of the two printed circuit boards is

FIG. 14.20. Single and donhle cirriiit cards. Front atnd war views.

224 THE CENTRAL PROCESSING UNIT [CHAP. 14

called a single card and contains and or or circuits. The wiring is one-
sided, and besides the components and transistors, a rail may be seen
which permits the shorting or addition of certain loads depending on the
use of the circuits. This rail has the effect of reducing the different
types of circuit board needed in the machine. Twenty-four different

FIG. 14.21. The back panel.

boards are used, and, of these, two types reflect approximately 70 per cent
of the total single-card population of the machine.

Because of the large number of registers, adders, and shifters used in the
computer, where the same functions are repeated many times, a second
package was designed to be big enough to hold a complete function.
This is the larger board shown in Fig. 14.20, called a double card. It has
four times the capacity of a single card and has wiring on both sides of
the board. Again the rail is used to Components are double-stacked.

SEC. 14.91 PACKAGING 225

effect circuit variations for the different applications. Eighteen douhle-
card types are used in the system. Approximately 4,000 double cards
house 60 per cent of the transistors in the machine. The rest of the
transistors are on approximately 18,000 single cards.

The cards, both single and double, are assembled in two gates, and two
gates are assembled into a frame. Figure 14.21 shows the back-panel

FIG. 14.22. Thr frame (closed).

wiring of one gate, and Figs. 14.22 and 14.23 show the frame in
and open position.

closed
- -

To achieve high performance, special emphasis had to be placed on
keeping the noise to a low level. This required the use of a ground plane
which covers the whole back panel underneath the intercircuit wiring.
In addition, the power-supply distribution system had to be of low
impedance to avoid noise pick-up. For this reason a bus system con-

226 THE CENTRAL PROCESSING UNIT [CHAP. 14

sisting of laminated copper sheets is used to distribute the power to each
row of card sockets. Wiring rules are that single-conductor wire is used
to a maximum of 2 f t , twisted pair to a maximum of 3 f t , unterminated
coaxial cable to a maximum of 5 ft, and terminated coaxial cable to a
maximum of 100 ft. The whole back-panel construction, including the

FIG. 14.23. The framc (extended)

proper application of single wires, twisted pairs, or coaxial cable to
minimize the noise on each circuit node, was laid out by means of a com-
puter program.

With the high packing density made possible by the double cards, a
single frame may consume as much power as 2 kw, the average con-
sumption being around 1 kw. To reduce power distribution and regula-
tion problems, a specially designed 2-kw power supply, using 400-cycle
components for greater compactness, is mounted in each frame. The

SEC. 14.91 P a C K A G I N G 227

FIG. 11.21-. The central procebsing unit.

supplies are fed from a regulated 400-cycle motor-generator set, which
also serves the purpose of eliminating 60-cycle power-line variations.

The two gates of a frame are a sliding pair, with the power supply
mounted on the sliding portion. All connecting wires between frames are
coaxial cable arranged in layers to form a drape, which can follow the
gate as it slides out of the frame.

Figure 14.24 shows eighteen of these frames tied together to form the
entire central processing unit, as well as the CPU maintenance console.

Chapter 15

THE LOOK-AHEAD UNIT
by R. S. Ballance, J. Cocke, and H. G. Kolsky

15.1. General Description

The look-ahead unit is a speed-matching device interposed between the
arithmetic unit and the memory. With multiple 2-psec memory units-
typically four units for data, each independently operable-it is possible to
fetch or store a data word every 0.5 Ksec. This rate would be high enough
to keep up with the fast arithmetic unit, as well as a number of input-
output units, were it not for unavoidable delays. The delay between
the initiation of an operand transfer and the arrival of that operand a t its
destination is made up partly of the access time of the memory itself and
partly of the time taken for the operand to pass through a series of
switches and registers. More delay occurs if the desired memory unit
happens to be busy finishing a previously initiated memory cycle or if it
still needs to service a request with higher priority. The total waiting
time may amount to several memory cycles.

The time spent by the arithmetic unit waiting for an operand may be
greatly reduced by “looking” several instructions ahead of the one
currently being executed. If the me ory reference is initiated early
enough, the operand will usually be ava lable in a buffer register by the
time the arithmetic unit is ready for it. Similarly, the arithmetic unit
should be allowed to place a just-compu 3 ed result into a buffer register for
storing in memory while it proceeds with the next operation. By per-

Note: The discussion of the results of a timing simulator study, which governed the
choice of design parameters of the look-ahead unit, is taken from an earlier paper by
J. Cocke and H. G. Kolsky, The Virtual Memory in the Stretch Computer, Proc.
Eastern Joint Computer Cons., no. 16, pp. 82-93, December, 1959. That paper
included a description of the simulator logic, which is omitted here. It also contained
a description of the look-ahead concept on which the simulator was based; this chapter
includes instead a simplified description by R. S. Ballance of the actual look-ahead
unit as it exists in the Los Alamos system.

000

SEC. 15.11 GENERAL DESCRIPTION 229

forming these collection, storage, and distribution functions, the look-
ahead unit raises the effective speed of the arithmetic unit.

The look-ahead unit may also be considered as a buffer that helps to
smooth the data flow through memory. With many parts of the system
having independent access to memory, it is natural for peaks and valleys
to occur in the demand for a given memory unit. Input-output units
cannot be kept waiting long, and so they have a higher priority on memory
than the central processing unit. If the CPU were simply stopped during
a period of peak input-output activity, the waiting time would be lost
completely. By having a reservoir for unexecuted instructions in the
look-ahead registers, it is possible to make up some of the lost time by
satisfying deferred CPU demand during a period of lower input-output
activity. Thus the look-ahead helps to regulate the fluctuations in
memory demand.

As has been described in Chap. 14, there are actualiy two such buffering
devices in the central processing unit. One is the znstruction uni t , which
fetches the instructions, indexes and partially executes them, and initiates
memory references for operands. The other is the look-ahead unit, which
consists of several look-ahead levels, each providing one stage of buffering.
A level comprises a series of special registers, which receive a pre-decoded
instruction from the instruction unit and wait for the operand to arrive
from memory. The arithmetic unit (both the parallel and the serial
parts, since they do not operate independently) receives the assembled
operation and operand information as soon as everything is ready and
proceeds with the operation. A store operation causes the result to be
returned to an available level in the look-ahead unit and then to be sent
to storage while the arithmetic unit proceeds to the next instruction.

The look-ahead unit may be described as a virtual memory for the arith-
metic unit. The arithmetic unit communicates only with the look-ahead
unit, not directly with the real memory; it receives instructions and oper-
ands from the look-ahead and returns its results there. The virtual
memory, being small and fast, resembles in some respects the separate fast
memory that was originally proposed for Project Stretch. It differs
greatly, however, in that i t takes care automatically of the housekeeping
involved in the data and instruction transfers and thus avoids most of the
extra time and all of the difficult storage-allocation problems associated
with a hierarchy of memories of different sizes and speeds.

To make the housekeeping fully automatic and keep the task of “look-
ing ahead” from being a burden on the programmer, it was necessary to
solve several fundamental logical problems in the design of the look-ahead
unit. One class of problems results from the ability of the machine to
treat instructions as data. This ability is a basic property of stored-
program computers, where instructions and data reside in the same

230 THE LOOK-AHEAD UNIT [CHAP. 16

alterable memory. 4 s an example, consider the instruction sequence :

Location
a
a + l
0 + 2

Instruction
LOAD, b
STORE ADDRESS, a, + 2
BRANCH, C

where a, b, and c are memory addresses. Unless precautions are taken,
the instruction unit may be preparing the BRANCH instruction before i t
has been modified by STORE ADDRESS. (This ability to modify instruc-
tions was a major advance resulting from the invention of the stored-
program concept. I ts importance has diminished greatly with the advent
of indexing, but it is still undesirable to prohibit instruction alteration or
make it difficult to use.)

A similar problem may arise in the manipulation of data. Thus the
expression T:+l = (Ti + D) 2 might be formed by the sequence:

LOAD, t
ADD, d
STORE, 1
MULTIPLY, t

where t and d are the addresses of T and D. Here STORE changes the
operand needed for the MULTIPLY instruction, whirh would already be
under preparation.

A third example occurs in conditional branching, when the condition
depends on the result of an operation yet to be completed by the arith-
metic unit. To maintain efficient operation, the instruction unit must

If
the guess proves wrong, the already prepared instructions must be dis-
carded, and any modifications of addressable registers must be rescinded
before the instruction unit starts down the correct path.

Program interruption produces a similar situation. The instruction
and look-ahead units may be working on instructions which may never
recur after the interruption and which, therefore, should leave no traces.

These are logical pitfalls that would be very difficult to avoid by pro-
gramming means. Hence the design of the look-ahead unit was required
to make the CPU, despite its complex overlapped and nonsequential
operation, appear to execute programs sequentially, one instruction a t a
time.

guess)’ the outcome of the test and continue to prepare instructions. 1 L

15.2. Timing-simulation Program

The detailed design of the look-ahead unit could not be completed until
several system-design criteria were established. The complexity of the
proposed system made it extremely difficult to analyze. Even the exist,-
ence of the look-ahead unit, could not be justified on the basis of simple

SEC. 15.21 TIMING-SIMULATION PROGRAM 2 3 1

calculations. At the same time, decisions were needed concerning such
basic problems as the number of memory units, the interlacing and alloca-
tion of memory addresses, and the number of look-ahead levels required.
Also of interest were trade-off factors for the speed of the instruction unit,
the arithmetic unit, and the magnetic core memory units.

timing-simulator program was written, for the IBM 704, to attempt a
quantitative answer to such questions. This program simulated the
timing of typical test problems on a computer system embodying the
look-ahead concept. It should be stressed that the program was a
timing simulator and did not execute instructions in an arithmetical
sense. Also, the parameters for the study were chosen arbitrarily to
cover ranges of interest and do not represent actual operation times used
in the design. The simulator traced the progress in time of the instruc-
tions through the computer model, observing the interlocks necessary to
make the look-ahead behave correctly.

Because of the concurrent, asynchronous operation of different parts
of the computer, there are many logical steps being executed a t any
time, with each step proceeding a t its own rate. This flow of many
parallel continuous operations was simulated by breaking the time
variable into finite time steps. The basic time step in the simulator was
0.1 microsecond.

Experience indicated that more information would be gained by making
a large number of fast parameter studies, using different configurations
a id test programs, than could be obtained by a very slow, detailed simu-
lation of a few runs with greater precision per run. Even so, the time
scale was too fine for serious input-output application studies. These
would have required a simpler simulator having a basic time interval a t
least ten times as coarse.

A series of studies were made, in which the main parameters describing
the system mere varied one or two a t a time, in order to get a measure of
the importance of various effects. After this the studies were specialized
toward answering specific questions in the 7030 design.

Five test programs were selected as typical of different classes of
problems.

1. Mesh problem. Part of a hydrodynamics problem containing a
fairly (‘ average ” mixture of instructions for the kind of scientific
problems found a t the Los Alamos Scientific Laboratory: 85 per cent
floating-point, 14 per cent index-modification, and 1 per cent variable-
field-length instructions. The execution time of such problems is usually
limited by the speed of the floating-point arithmetic unit.

Par t of an actual Monte Carlo
neutron-diffiision code. This represents a chain of logical decisions with

2. iMonte Carlo branching problem.

very little arithmetic. It contains 47 per cent floating-point instructions,
15 per cent index-modification instructions, and 36 per cent branches of the
indicator and unconditional types. Its speed is largely instruction-
access-limited.

The inner loop of a neutron-diffusion problem.
This consists of 90 per cent floating-point instructions (39 per cent of
which are multiply instructions) and 10 per cent index-modification
instructions. Its speed is almost entirely limited by the arithmetic unit.

The evaluation of a polynomial using com-
puted indices. It has 71 per cent floating-point, 10 per cent index-
modification, 6 per cent variable-field-length, and 13 per cent indicator
branch instructions. It is usually arithmetic-unit-limited, but not for all
configurations.

5. Simultaneous equations. The inner loop of a matrix-inversion
routine, having 67 per cent floating-point and 33 per cent index-modifica-
tion instructions. Arithmetic and logic are about equally important,.
It is limited both by arithmetic and instruction-access speeds.

3. Reactor problem.

4. Computer test problem.

Some of the results of these studies are summarized below. For
simplicity, only the first two problems, the mesh and Monte Carlo calcula-
tions, are illustrated; the other problems generally gave results inter-
mediate between these two.

Number of Look-ahead Levels

look-ahead.
sets of arithmetic- and instruction-unit speeds are shown.
metic-unit times given are average for all operations.
interesting results are apparent from these curves.

Figure 15.1 shows the effect on speed of varying the number of levels of
Curves for the Monte Carlo and mesh calculations with two

The arith-
A number of

1. The look-ahead organization provides a substantial gain in per-
formance. The point for “0 levels” means that the arithmetic unit is
tied directly to the instruction unit, although simple indexing-execution
overlap is still possible.

2. The speed goes up very rapidly for the first two levels, then rises
more slowly for the rest of the range.

3. A large number of levels does less good in the Monte Carlo problem
than in the mesh problem, because constant branching spoils the flow of
instructions. Notice that the curve for the Monte Carlo problem
actually decreases slightly beyond six levels.
result of memory conflicts caused by extraneous memory references
started by the computer’s running ahead on the mrong-way paths of
branches.

This phenomenon is

SEC. 15.21

’0

a -
Q v1

2 60- .- +
- . .
01
OI

40

20

TIMING-SIMULATION PROGRAM 23 3

-

-

4. The computer performance on a given problem is clearly lower for
lower arithmetic speeds. It is important to note, however, that the
sensitivity of the over-all speed to change in the number of levels is also
less for lower arithmetic speeds. The look-ahead improves performance
in either case, but it is not a substitute for a fast arithmetic unit.

/‘ ‘ -
/ Y

W
E

- -

40

20

t 1

,‘ A

f -- -
Monte Carlo calculat ion

+e-----------
S i

- # -
0 2 4 6 8

Levels of look-ahead

FIG. 15.1. Computer speed vs. number of
levels of look-ahead. Four main mem-
ories, 2.0 psec; two fast memories, 0.6
mec; for two sets of arithmetic speeds:

A B
.4rithmetic-unit time, psec 0.64 1.28
Instruction-unit time, psec 0.6 1.4

--<I Monte Carlo calculation -
0 2 4 6

Main memory units

Fro. 15.2. Computer speed vs. number of
main memory units. Four levels of look-
ahead; arithmetic-unit time 0.64 psec;
instruction-unit time 0.6 psec. A : in-
structions in separate O.6-psec memory;
B: instructions in separate 2.0-psec mem-
ory; C: instructions and data sharing
same 2.0-psec memory.

Number of Memory Units
Figure 15.2 shows how internal computer speed varies with the number

of memory units and with two different memory speeds. The entire cal-
culation is assumed to be contained in memory. The speed gain from
overlapping memories is quite apparent from the curves.

The original computer design assumed the use of two kinds of memory
units, a large “main” memory unit (2.0-psec cycle) and a pair of fast but
smaller memory units (0.6-psec cycle). The intent was to place the
instructions for the inner loops in the fast memory and the necessarily
large volume of data, as well as the outer-loop instructions, in the
main memory. The graph shows the effects of changing some of the
assumptions.

234 THE LOOK-AHEAD UNIT [CHAP. 15

The speed differential between having and not having instructions
separated from data arises from delays in instruction fetches when mem-
ory units are busy with data. This effect varies from problem to prob-
lem, being less pronounced for problems that are arithmetic -limited and
more pronounced for logical problems.

The crosses in Fig. 15.2 are isolated points that show the effect of
replacing the 0.6-psec instruction memories by a pair of the 2.0-psec
memory units used as instruction memories only. The resulting per-
formance change is small for the mesh problem, which is arithmetic-
limited, but larger for the instruction-access-limited Monte Carlo
problem.

drithmetic- and instruction-unit Speeds

Although everyone realized the effect of arithmetic speed on over-all
computer performance, it was not until the simulator results became
available that the true importance of the instruction-unit speeds was
recognized. Figures 15.3 and 15.4 show a two-parameter family of curves
giving the computer speed as a function of average arithmetic-unit and
instruction-unit times.

Figure 15.3, in which the arithmetic time is the abscissa, shows an
interesting saturation effect, where the computer performance is inde-
pendent of arithmetic time below some critical value. Thus i t makes no
sense to strain execution speeds if the instruction unit is not improved
correspondingly. The curves in Fig. 15.4 show a similar saturation
effect as the instruction-unit times decrease. Thus each unit, places a
performance ceiling on the other unit.

i lr i thm~tic-uni t Efficiency

A frequently quoted fallacy is that the goal of improved computer
organization is to increase the efficiency of the arithmetic unit. Actually
this is not the goal itself. Arithmetical eficieiicy depends strongly on the
mixture of arithmetic and logic in a given problem, and a general-purpose
computer cannot be equally efficient on all problems. Moreover, the
simplest way to increase arithmetic-unit efficiency in an asynchronous
computer is to slow down the arithmetic unit.

1 he real goal of improved organizatioii is to obtain niaximum over-
all computer performance for minimuin cost. As long as efficiency
remains reasonably high for a variety of problems, one tries to increase
arithmetic specd, stopping this process when the over-all performance
gain no longer matches the increase in equipment and complexity.
Arithmetic-unit efficiency is a by-product of this design process, not the
prime variable,

r ,

SEC. 15.21 TIMING-SIMULATION PROGRAM 235

Concurrent Input-Output Activity

40

- --- Monte Carlo
calculation

-

I I I I

Average arithmetic time, psec

FIQ. 15.3. Computer speed vs. arithmetic times for various instruction-unit times.
Four levels of look-ahead; four units of 2.0-psec memory; two units of 0.6-psec memory.

design limit of one word every 4 microseconds. Since the mechanical
devices must take priority over the central processing unit in addressing
memory, the computation slows down in memory-busy conflicts.

Figure 15.5 shows an example of how internal computing speed is
affected by input-output rates. At the theoretical choke-of point the
input-output devices take all the memory cycles available and stop the
calculation. It may be seen that this condition can never arise for any
input-output rates presently attainable.

A 7030 system with only one or two memory units has lower per-
formance than a system with more units, for three reasons: (1) the

236 THE LOOK-AHEAD UNIT [CHAP. 15

internal speed of the system is reduced by the loss of memory overlap;
(2) the input-output penalty is higher when a given amount of input-out-
put is run concurrently with the computation; and (3) the amount of
data that can be held in the memory a t one time is smaller: requiring
more input-output activity to do the job. Xote that increasing the
memory size on a conventional computer effects improvement only with
respect to the third of these factors.

100 -

80 -

-0
a J -

p. VI

6 0 - ._
a - a -
IY

40 -

20 -

-

-

0.96

1.28
psec

-

calculation - '.

1

FIG. 15.4. Computer speed vs. instruction-unit times for various arithmetic-unit times
Same assumptions as in Fig. 15.3.

Branching on Arithmetic Results
Since a branch instruction spoils the smooth flow of instructions to the

instruction unit, any branch in a program will cause some delay, but the
most serious delays occur when branching is conditional on results pro-
duced by the arithmetic unit, which cannot he determined by the instruc-
tion unit in advance.

There are two basic ways in which braiichrs conditional on arithmetic
results can be handled by the computer:

1. The computer can stop the flow of instructions until the arithmetic
unit has completed the preceding operation and the result is known,
before fetching the next instruction. This procedure causes a delay a t
every such branch, whether taken or not.

SEC. 15.21 TIMING-SIMULATION PROGRAM 237

2. As has been mentioned, the computer can ((guess” which way the
branch is going to go before it is taken, and proceed with fetching and
preparing the instruction along the most likely path; but, if the guess was
wrong, these instructions must be discarded and the correct path taken
instead.

A detailed series of simulator runs were made to determine which was
the better approach. Some general observations were :

0 , I

Jc _ _ --e-- - -- - - 2 memory units

Microseconds between consecutive words of input-output

5

FIG. 15.5. Effect of input-output rate on internal computing speed.
Carlo calculation.

For Monte

1. For a problem with considerable arithmetic-data branching, the
performance can vary by _+ 15 per cent depending on the way in which
branching is handled.

2. Holding up a t every branch point seems less desirable than any o f
five guessing procedures : condition will be on, condition will be of, condi-
tion remains unchanged, branch will be taken, branch will not be taken.

3. Unless there is an unusual situation in a problem with a very high
probability that the branch will always be taken, the least time will be
lost if one assumes that branching will not occur.

238 THE LOOK-AHEAD UNIT [CHAP. 15

4. The theoretically highest performance would be obtained if each
branch instruction had a guess bit, which would permit the programmer to
specify his own guess of the most probable path. This would place a
considerable extra burden on the programmer Eor the gains promised.
(It would also use up many valuable operation codes.)

Knowing the way in
which the machine LLguesses” the branches, many programmers will write
their codes so as to gain speed. The result is that the statistics of actual
experience will be biased in favor of the system chosen, thus “proving”
that it was the right derision.

5. There is a feedback in such design decisions.

Outcome of Simulator Studies

The results of the simulator studies led to these design choices for the
7030 system:

1. Four levels of look-ahead are provided.
2 . The standard memory complement is two instruction memories and

four data memories, all with 2-psec cycle time; fewer or more memory
units are optional. (The increase in performance possible with the faster
0.6-psec instruction memories was felt not large enough to offset the
reduction in storage capacity-1,024 words for each fast unit as compared
with 16,384 words for each slower unit.)

3. The addresses of the four data memories are interlaced (i.e., four
consecutive addresses refer to different memory units) ; likewise the
addresses of the two instruction memories are interlaced separately.

4. For a branch instruction conditional on the result of arithmetic-
unit operations, the instruction unit proceeds as if the branch will fail.

It should be noted here that thesc simulation studies were carried out
before the detailed design of the computer and so the simulated model did
not reflect accurately all subsequent design decisions. The actual com-
puter performance should not be expected to follow the patterns of Figs.
15.1 to 15.5 exactly.

15.3. Description of the Look-ahead Unit

For expository reasons this description of the look-ahead unit and its
operation is much simplified. Many of the checking procedures and the
special treatment of internal data registers have not been included. At
several places processing is described as if it were sequential, when it
actually is overlapped.

Each of the four levels of the look-ahead unit is composed of a number
of registers, tag bits, and counters (Fig. 15.6). The registers contain the

See. 15.31 DESCRIPTION OF THE LOOK-AHEAD UNIT 239

following information, which will be required a t the time the instruction
in this look-ahead level is to be executed:

Operation code.
Operand. Contains, in general, the data on which the operation is to

be performed.
Indicators. Contains a record of any of fifteen indicators that are to be

set at execution time. Their setting is a result of instruction preparation
in the instruction unit or of errors detected during look-ahead operation.'

Contains the partially decoded operation.

5 ring counters

1

~ 4

1- -1
I 64-bi t ooerand

I instruction counter 1
L E V E L 1

1- 1 Instruction counter 1
L E V E L 2

64-b i t operand I

-1 I instruction counter j
L E V E L 3

64-bi t operand I

I Instruction counter 1
L E V E L 4

& $ 1 64-bi t operand 1
Look-ahead address register -

FIG. 15.6. Look-ahead registers.

Instruction counter. Contains the location of the instruction immedi-
ately following the instruction held in this level.

The following tag bits are used for control purposes:

Level filled bit,.
Level checked bit.

Indicates that the operand field has been filled.
Indicates that the data have been checked and that

their chcrk bits have been converted to the form required by the par-
ticular operation to be performed.

The fifteen indicators are: machine check, instruction reject, operation code invalid,
address invalid, data store, data fetch, instruction fetch, index flag, index count zero, index
value less than zero, index value zero, index value greater than zero, index low, index equal,
index high.

240 THE LOOK-AHEAD UNIT [CHAP. 15

Internal operand bit.

Instruction counter bit.

Look-ahaad operation code bit.

Word-boundary crossover bit.

N o operation bit.

From bit.

Indicates that the operand is to come from an

Indicates that the instruction-counter field of

Indicates that the information in the

Indicates that the VFL operand crosses a

Indicates that the instruction is to be suppressed

Designates the level from which forwarding can take place.

internal register rather than memory.

this level is valid for use during an interrupt.

operation-code field is to be used only by the look-ahead control.

word boundary.

and treated as though i t were a NO OPERATION instruction.

Five ring counters control the operation of the look-ahead unit, as
they advance from one level to the next:

Instruction uni t counter.

Operand check counter.

Transfer bus counter.

Arithmetic bus counter.

Designates the next level of look-ahead to
receive an instruction from the instruction unit.

Designates the next, level a t which an operand
is to be checked.

Designates the next level to be transferred to
the working registers of the arithmetic unit.

Controls the functions necessary for proper
operation of the interrupt system. Also designates the next level to
have its indicator field entered into the indicator register and to receive
any result from the arithmetic unit for later storing.

Designates the next level from which an operand
is to be sent to storage. For non-store-type operations, this counter
gcnerally advances with the arithmetic-bus counter.

Store check counter.

The counters advance from level to level under their own control.
1:or example, after the instruction-unit counter has completed the loading
of an instruetion into level 1, it will advance to level 2 , ready to receive
an instruction for that level. After an operand has arrived, the operand-
check counter can cause the operand in level 1 to be checked; the counter
then advances to level 2 to check the operand there. Except for inter-
locks to keep the counters in proper sequence, the counters are free to
advance as soon as their work is completed.

15.4. Forwarding

Earh time a store operation is loaded into a look-ahead level, the oper-
and address is placed in the common look-ahead address register (Fig.
15.6)) and this level is tagged by turning on the from bit. The address
of each subsequent data fetch is compared with the contents of the look-
ahead address register, and, if they are equal, the data fetch is canceled

SEC. 15.51 COUNTEH SEQUENCES 241

and the operand field is forwarded from the tagged level. This forward-
ing process saves memory references and prevents the use of obsolete
data.

When the look-ahead address register is not busy with a store instruc-
tion, it contains the address of the most recently loaded operand. Thus,
if several successive references are made to the same address, only one
memory fetch is required, the other levels receiving their operands by
forwarding. Consider these instructions for forming A :

LOAD, U
MULTIPLY, U

MULTIPLY, U

The operand A is fetched from address a once for LOAD and then supplied
to the two MULTIPLY instructions by forwarding.

Since only one look-ahead address register is provided, the look-ahead
unit can handle only one store-type operation at a time.

15.5. Counter Sequences

Instruction-unit Counter

ated by the instruction-unit counter a t a given look-ahead level.
types of instructions must be distinguished :

Figure 15.7 shows, in simplified form, the sequence of operations initi-
Three

1. Instructions for which no data are to be fetched, such as branch
instructions, which require no operand a t all, or instructions with immedi-
ate addressing, where the operand is obtained from the instruction unit
as part of the instruction

2. Instructions requiring an operand fetch from memory and
3. Btore-type instructions

As soon as the instruction is loaded, a test for the ttype of instruction is
made. If no more data are needed, the level is immediately tagged as
having been filled and checked, and the sequence is ended. If the instruc-
tion is of the fetch type, a comparison is made with the look-ahead address
register to see whether the data should be forwarded from another level,
and the operand request (which had already been initiated by the instruc-
tion unit to save time) is canceled; otherwise the look-ahead address
register, if available, is set to permit forwarding of this operand to another
level.

A store-type instruction sequence must wait until the look-ahead
address register is free of any earlier store operation, and the register is
then set up for possible forwarding to anot,hPr level.

242 THE LOOK-AHEAD UNIT

Has instruction uni t counter reached
store check counter setting?

No Yes I

[CHAP. 15

Wait

Cancel
data request

Forward data

Any data error?

I Decode type of instruction

No data required Memory Store
fetch + 3.

Does look-ahead
address register

contain data
address of store
type operation?

Place address
i n look-ahead

address register
and tag level

wi th from bi t

I Compare with look-ahead I
address register

Does look-ahead
address register contain

data address of
store type operation?

into look-ahead
address register.

Set from bi t

Is error correctable?

1-1

Nai t

FIG. 15.7. Instruction-unit counter advance sequence.

The instruction-unit counter is interlocked to prevent it from advancing
This prevents new to a level still occupied by the store-check counter.

information from destroying data yet to be stored.

Operand-check Counter
Operand-check counter action (Fig. 15.8) is not required after for-

warding, since the operand will already have been checked by the instruc-
tion unit and the level-checked bit will be on. If the bit is 08, the

SEC. 15.51

I

COUNTER SEQUENCES

Is enor correctable?

Yes No

Correct

V
Tag level with no-op
to show i t should not
be executed, and set
instruction reject

indicator

I
V

243

1 HZ<v:l ayready been checked? 1
L

r

‘es No I I

Ir
1 Has level been filled? I
I 1

Yes No

Any operand error? Iqe7
Wait

I

Wait

Advance

FIQ. 15.8. Operand-check counter advance sequence.

counter will wait until the operand has arrived before proceeding with
checking and error correction.

This counter is interlocked so that it will not pass the instruction-unit
counter.

Transfer-bus, Arithmetic-bus, and Store-check Counters

Figures 15.9 and 15.10 illustrate some simple sequences for these three
counters as applied to floating-point instructions. Each counter is
appropriately interlocked with its predecessor.

The transfer-bus counter sends the completely assembled and checked
illformation held in the current look-ahead level to the arithmetic unit

s.

d
W
CE

0

VI 3
n
L

L
W
m
E +

c

Y

-c

E
d

VI ![

Decode as floating point
fetch operation

Send operation code and operand ' to arithmetic un i t

I+fl Was it accepted? Wai t

Wai t Has transfer bus counter reached

indicator register

Wai t transfer bus counter? d Advance

Wai t Has store check counter reached
arithmetic bus counter?

Yes No

Advance

FIG. 15.9. Transfer-bus, arithmetic-bus, and store-check counter advance sequences
for floating-point fetch-type operations.

244

I Decode as floating point store operation
I

I Send operation code to arithmetic unit I

Has transfer bus counter reached operand check counter?
No I

Wait

Advance

1s interrupt waiting? 1
TO interrupt]yes No

controls I Gate indicator field to indicator register I

I s store information available? Wait

Gate data from the arithmetic unit to look-ahead

Has arithmetic bus counter reached transfer bus counter? Wait

Advance

I Does look-ahead address register contain a main memory address? I
I I I No Yes I

Send data to index memory

L+ Has data been written
I index memory? & Has data been written

in index memory?
Wait

Gate operand to memory bus e
Advance

FIQ. 15.10. Transfer-bus, arithmetic-bus, and store-check counter advance sequence%
for floating-point store-type operations.

245

246 THE LOOK-AHEAD UNIT [CHAP. 15

and waits until the information is accepted. This counter must test the
no-operation bit, which, if on, would indicate that an error had occurred
and require that the operation be suppressed.

The arithmetic-bus counter first tests whether an interrupt is waiting,
which would cause the present sequence to be abandoned and control to
be turned over to the interrupt system. If there is no interrupt, the
fifteen indicator settings, previously accumulated during the preparatory
steps in the instruction unit, now become valid and are set into the indica-
tor register for test and possible interrupt after execution of the instruc-
tion a t this level. If the instruction is of the store type, the arithmetic-
bus counter is responsible also for transmitting the operand from the
arithmetic unit to the look-ahead level (or directly to the destination when
the address refers to an internal CPU register).

The store-check counter has little to do when no storing is required.
For a store-type instruction this counter handles the transfer of the
operand via appropriate checking equipment either to its destination if
the address is in the index memory or to the memory bus if the address is
in main memory.

There are numerous and more complex variations of these counter
sequeiices, many of which involve more than one level of look-ahead. A
variable-field-length instruction may use one level to hold the various
items of operation-code information. The operand will appear in the
next level, or in the next two levels if a memory-word boundary must be
crossed. When a result is to be returned to memory, one or two addi-
tional levels are needed. Any progressive indexing requires a level to
coiitrol the return of information to index storage. At each extra level
the look-ahead unit inserts a pseudo operation code to control the action
required. An extreme case is a VFL ADD TO MEMORY instruction with
progressive indexing, which may require six successive levels (two levels
being used twice).

15.6. Recovery After Interrupt

Whenever there is a change in instruction sequence, either by an inter-
rupt signal or by a (successful) branch operation, the look-ahead unit
must start recovery action. We shall describe the interrupt procedure
as an illustration.

As soon as the arithmetic-bus counter senses an interrupt, the instruc-
tion unit and arithmetic unit are signaled to stop preparing and executing
more instructions. The interrupt system is disabled temporarily.
The look-ahead housecleaning mode is turned on.

The operand-check
and transfer-bus counters are allowed to advance until they reach the
same level as the instruction-unit counter. The arithmetic-bus counter

The instruction-unit counter stops where it is.

SEC. 15.71 A LOOK-BACK xr THE LOOK-AHEAD 247

identifies each level, for which the instruction unit has previously modi-
fied an index word in thc index memory, by tagging it as a pseudo store
level. The old contents of the index word are placed in the pseudo
store level, and the store-check counter is responsible for storing this word
in the index memory.

Eventually all counters will be a t the same level, and the look-ahead
unit will then be empty. The proper instruction-counter setting is sent
to the instruction unit to return that unit to the point in the program at
which interruption occurred. The housecleaning mode in the look-ahead
is turned off, and the instruction and arithmetic units are allowed to
resume operation.

At this point the instruction unit has to turn of the indicator that
caused the interrupt and fetch the extra instruction from the proper loca-
tion in the interrupt table (see Chap. 10). This extra instruction is pre-
pared and executed, after which the interrupt system is again enabled
(unless the extra instruction specified that the system remain disabled).
The temporary disabling of the interrupt system prevents secondary
interrupts, which might cause the extra instruction to be suppressed and
would leave no trace of the current interruption. The instruction unit
is then ready to continue with normal loading of the look-ahead unit.

15.7. A Look-back at the Look-ahead

The 7030 look-ahead unit is a complex device, in theory as well as in
practice. It contains many high-speed register positions to allow the
system to race down the road and extensive controls for recovery if it has
missed a turn. Even so, cost and other practical engineering considera-
tions cause the look-ahead unit in the 7030 to fall far short of the ideal
envisaged : a virtual memory with unlimited capacity and instantaneous
recovery. Nevertheless, the unit does substantially raise performance by
overlapping waiting periods and housekeeping operations with the execu-
tion of instructions.

As mentioned a t the start, the basic reason for a look-ahead unit in a
high-speed computer is the large discrepancy between the memory-cycle
times and the instruction-execution times. If a much faster memory
unit of equal size could be designed, the look-ahead unit could be greatly
simplified or even eliminated. Improvements in memory technology are
to be expected, but such improvements are again likely to be equaled or
surpassed by corresponding improvements in arithmetical circuits. Thus
the mismatch may be expected to continue in the future, indicating that
many more refinements of the look-ahead principle will be applied in
future high-performance computers, perhaps to a hierarchy of memories.

Chapter 16

THE EXCHANGE
by W. Buchholz

16.1. General Description

The function of the exchange is to direct the information flow between
input-output or external storage units and internal memory. It transfers
data between external units and any part of the main memory inde-
pendently of the computer, and so it permits a number of external units
to function simultaneously with the processing of data in the computer.
l>urthermore, the exchange provides a buffering action: for it transfers
data on demand, as required by the unit, using main memory as buffer
storage.

The exchange contains the common control facilities that are to be
time-shared among the external units, thus keeping these units as simple
as possible yet maintaining fully overlapped operation. The exchange
also does the necessary bookkeeping of addresses and the assembly or dis-
assembly of information without taking time away from the computer or
from the internal memory. The only computer time involved is that
needed to start and restart the operations. The only main memory
cycles required during external operations are those needed to transfer
the data to or from the final locations in main memory; these cycles are
sandwiched between computing operations without interfering with the
computer program except for the slight delays that may occur when the
exchange requires a memory cycle a t the same time as the computer.

When it encounters instructions that apply to external units, the com-
puter executes all address modification. It sends the addresses and the
decoded operation to the exchange, which determines from status bits
available for each channel whether the unit required is ready. The
exchange then releases the computer to continue with the program.
Whenever time periods are available from other work, the exchange pro-
ceeds to obtain the operand (the control word, for instance) from memory
and start the external unit. Thereafter, i t carries out the data-trans-

248

SEC. 16.11 GENERAL DESCRIPTION 249

mission functions whenever the unit gives a request for service. Service
requests are infrequent enough so that the exchange can handle the data
flow for many units in an interleaved fashion.

There are eight input-output channels in the basic exchange, with
provisions for expanding to 32 such channels by adding identical groups of
circuits. The design also provides for the addition of a large number of
low-speed channels by further multiplexing of one of the regular channels.

To main memory

' Data Address-
L

Ad

To external units

FIG. 16.1. Data-flow paths of exchange.

Regardless of speed, all channels arc logically independent. Each
channel can transmit data simultaneously with other channels, up to
a maximum determined by the data-transmission rates. For simul-
taneous operation, only one input-output unit is connected to each chan-
nel. Where sequential operation is adequate, i t may he desirable to
share input-output control circuits among more than one input-output
unit and operate the units 011 a single channel; magnetic tape units, for
example, arc provided with this equipmciit-sharing facility.

Each charinel has an address, which beconies the address of the particu-
lar unit physically and electrically connected to that channel. When
there is switching among multiple units connected to one channel, a

250 THE EXCHANGE [CHAP. 16

second address must be given to select the unit to be connected to the
channel before the operation to be performed by that channel is specified.

In a sense, the exchange is a separate special-purpose, fixed-program
computer. It receives directions from the main program in the form of
predigested instructions and control words. In general, the exchange
performs those functions that remain unchanged from one job to the next,
and i t does such limited jobs more efficiently than the main computer
could do them. Functions that vary from one job to the next, such as
editing the data, are left to the program in the main computer. Editing,
in fact, requires some of the most sophisticated features of the computer.

A simplified diagram of the data-flow paths of the exchange is shown in
Fig. 16.1.

16.2. Starting a WRITE or READ Operation
The heart of the exchange is a small, 1-psec core memory which has

space for a limited amount of data and control information for each chan-
nel. In a single 1-psec cycle, a word can be read from this memory,
modified, and returned to its location.

When the exchange receives a WRITE or READ instruction from the com-
puter, it tests certain status bits before accepting the instruction. Status
bits for each channel are stored in appropriate locations of the exchange
memory. The exchange then obtains the control word specified by the
instruction from main memory and stores i t in the exchange memory.
Each channel has a location for the current control word assigned to it.
These control words are modified during data transfer to keep track of
addresses and counts.

16.3. Data Transfer during Writing
This

serves as a temporary buffer for data during transfer. (Actually, the
faster channels have a pair of these locations for extra speed, but the logic
is the same and will be explained as if only one such location existed.)

To start a WRITE operation, the exchange goes through a control-word
modification cycle. It fetches the control word from the appropriate
location in the exchange memory, increases the data word address by I ,
decreases the count by 1, and returns the modified control word to its
exchange memory location. The modification takes place in the control-
word modification unit shown a t the right in Fig. 16.1. The unmodified
data-word address, extracted from the original control word, is used to
fetch the first data word from main memory and store i t in the exchange
memory a t the data-word location for this channel. The exchange then
sends a signal to the input-output unit to start writing.

Writing takes place one byte a t a time, where a byte consists always of

This diagram is the basis for the brief discussion to follow.

The exchange also has a data-word location for each channel.

SEC. 16.41 DATA TRANSFER DURING READING 251

8 information bits and 1 parity-check bit (odd-count parity). When the
unit is ready to write a byte, it sends a service request to the exchange.
The exchange starts a 1-psec memory cycle to pull the data word out of
the appropriate location and pass it through the shift circuit shown in the
center of Fig. 16.1. The leftmost byte is sent to the unit via a multi-
plexing circuit while the remaining bytes are shifted left by 8 bits. The
shifted data word is returned to the exchange memory, still within the
same memory cycle.

Each time a new byte is needed by the unit, the data-word cycle is
repeated; the leftmost byte is extracted, and the remainder is shifted left.
After the eighth such byte cycle, the data word is exhausted and a control-
word cycle is started. The current data-word address is extracted to
fetch a new data word while the control word is modified, adding 1 to
the address and subtracting 1 from the count. Data transfer then con-
tinues with the new data word.

If the count in the control word goes to 0 and if chaining is indicated
(the chain flag in the control word is set to I), the refill address is used
to fetch the next control word from main memory, and data transfer
proceeds.

Thus, data transfer consists principally of I-psec data-word-shift
cycles with control-word modification and data-word-fetch cycles inter-
spersed every eighth byte, and occasionally a control-word-refill cycle.
Since a single channel requests service only a t intervals of many micro-
seconds, other channels can have similar seryicc during any 1-psec period.
The purpose of the multiplexer is to determine which channel has
requested service, to send the channel number to the exchange memory as
an address for selecting the appropriate data and control-word locations,
and to gatc the lines of this channel to the common data-handling circuits.
If more than one channel requests service a t the same time, the requests
are handled in turn during different cycles, and no conflict arises. The
worst-case condition occurs when all channels that are in operation hap-
pen to request service a t the samc time. The traffic-handling ability
of the exchange is determined by how many channels it can service in the
time between successive bytes or words of the fastest unit operating.

16.4. Data Transfer during Reading
When a unit requests ser-

\rice, the inconiing byte is gated through the multiplexer into the right-
uiost byte position of the current data word while the remaining bytes are
shifted 8 bits to the left. Thus bytes are assembled during eight succes-
sivc cycles into a word, which is then seiit to main memory according to
the current data-word address in the control word. Control-word rnodifi-
cation and refill rycles are exactly thP same as before.

Reading works much the same as writing.

252 THE EXCHANGE [CHAP. 16

The same data-word shifting and control-word modification equip-
ment is used for both reading and writing. Read and write cycles from
different channels may be freely intermixed; the direction of flow during
a given 1-psec cycle is determined by bits in the data-word location for
each channel; these bits are set up by the instruction.

16.5. Terminating a WRITE or READ Operation

The end of a writing or reading operation may be sensed by the unit
and signaled to the exchange; or it may be sensed by the exchange when
the count in the control word goes to 0 and the chain flag in the current
control word is 0, so that there is no control word to follow. In either
case the exchange instructs the unit to stop.

The exchange then attempts to interrupt the computer program, to
report (1) that the operation has ended and (2) whether it ended nor-
mally or any unusual conditions arose, such as a programming error,
data error, machine malfunctioning, or the end of tape or paper. The
address of the interrupting channel is also sent to the computer. Usually
the program interrupt occurs a t the end of the instruction currently being
executed in the computer.

The program may have
disabled the interrupt mechanism, perhaps to complete the processing of a
previous input-output interrupt. The exchange then stores the appropri-
ate status indications in the control-word location of the exchange mem-
ory and tries again later. When the interrupt finally succeeds, it is
handled in the same way as if i t had just happened.

There can be no confusion caused by simultaneous interruptions from
more than one input-output unit. The exchange automatically presents
them to the computer one a t a time.

Interruptions due to a channel signal (see Chap. 12) are handled in the
same way as end-of-operation interrupts, even if the channel signal is not
the direct result of a previous operation.

Occasionally the interrupt must be delayed.

16.6. Mult iple Operations

Multiple-block WRITE and READ operations (see Chap. 12) are indicated
by a multipleJlag bit in the control word. When the unit signals that the
operation ended normally, the exchange immediately restarts the unit
just as if a new instruction had been given, and the program is not inter-
rupted at this time.

16.7. CONTROL and LOCATE Operations

The operations CONTROL and LOCATE are set up in the same manner as
The control WRITE, except that a different instruction line is activated.

SEC. 16.91 FORCED TERMINATION 253

or address information is then transmitted to the unit as if it were data.
Termination is also handled the same way.

16.8. Interrogating the Control Word
As writing or reading proceeds, the exchange continually modifies the

appropriate control words stored in the exchange memory. The program
may interrogate the current control-word contents during the operation
by giving a COPY CONTROL WORD instruction, which transfers the current
coiitrol word to a specified location in main memory. This operation
finds use mostly in specialized supervisory programming; ordinary pro-
grams seldom require it because i t is more convenient to wait for an
automatic interrupt a t the end of the operation.

It should be noted that the original control word, which is located a t
the main memory address specified by the instruction, is not modified in
any way by the exchange. It retains the initial settings for use in sub-
sequent operations.

16.9. Forced Termination

Occasionally it may be desirable to force an input-output operation to
come to a halt; for example, a programming error may give rise to an
endless control-word chain. To initiate the termination sequence
immediately, a RELEASE instruction may be given even while an operation
is in progress; RELEASE may also be used sometimes to reset the channel
status to normal.

The RELEASE instruction functions in the same manner as the usual
end-of-operation sequence, except that any exceptions (error conditions.
etc.) are not reported because they are presumably no longer of interest,

Chapter I7

A NONARITHMETICAL SYSTEM
EXTENSION

by S. G. Campbell, P. S. Herwitz, and J. H. Pomerene

17.1. Nonarithmetical Processing

One of the most interesting current trends in the computer field is
the development of nonarithmetical techniques. Nonarithmetical prob-
lems are being attacked with increasing success, particularly in the area of
the “soft sciences.” Efforts in the fields of artificial learning, character
recognition, information retrieval, gaming, and language translation
account for a rapidly growing percentage of total computational activity.
During the next few years it may be expected that work in such areas will
materially enhance our understanding of the nature of learning, thinking,
theorem proving, arid problem solving.

Even problems considered to belong to the “hard sciences,” which are
usually associated with complex mathematical computations, may involve
an enormous amount of nonarithmetical data processing. Weather fore-
casting is an excellent example. The scientist tends to view the weather
as a tremendous hydrodynamics problem on a rotating sphere, in which
the boundary conditions are very complex and the equations very difficult
to manage. From another standpoint, however, the weather system
represents a problem in information collection, transmission, storage, and
processing-with all the characteristics to be expected of any large-scale
file-maintenance activity. Much of the data, such as cloud type, are
not really numerical, and the processing that such data usually undergo is
not primarily arithmetical. Moreover, the data are highly perishable for
most purposes-yesterday’s weather is of interest only to the statistician.
The weather system is in fact a very large real-time information-handling
system, in which the value of the data begins to decrease the minute it is

Note: Section 17.1 is an introduction by S. G. Campbell, and the rest of the chap-
ter is taken from a paper by P. 8. Herwitz and J. H Pomerene presented at the 1960
Western Joint Coniputer Conference.

254

SEC. 17.11 SOSARITHMETICAL PROCESSING 25 5

taken and has diminished markedly by the time it can be transmitted to a
potential user.

It seems characteristic of the conventional application of computers to
the hard sciences that the resulting computation is relatively regular and
that the operations are likely to consist mostly of specialized, complex
operations. This is why scientific computers have acquired very power-
ful floating-point-arithmetic and indexing facilities. By contrast, con-
ditions are chaotic in the nonarithmetical area: activities are likely to be
irregular and to consist of relatively rudimentary operations, such as basic
logical operations, counting, table look-up, and the simple process of
hunting for some particular piece of information-looking for the pro-
verbial needle of useful information in a haystack of noise.

To characterize the weather of the world in reasonable detail requires a
rather staggering amount of data: perhaps lo9 numbers. The problem of
too much data and too little information is not limited to the weather
system; as much, or more, information is required to characterize the
operation of a large business, a large government organization, or a large
social activity. No one person could look a t all this information in a
lifetime, much less during the useful life of the information itself (for
although such information dies much more slowly than meteorological
information, i t perishes none the less). What the user often requires is
some sort of characterization of some subset of the information in his
system. Csually this characterization is something statistical: What is
the net operating profit or loss from Flight 123 on Tuesdays over the
past year? Since the user cannot look a t all the data, he attempts to
obtain its essential meaning from a weighted statistical average or to
determine cause-and-effect relationships by correlating events that look
as though they might be related.

Another difficulty is that it is frequently impossible to tell at the time
the data are taken whether they are significant or not. This is particu-
larly true of a system that collects data automatically; it may be more
economical to let the system function a t a constant data-gathering rate,
rather than to try to speed it up when the information appears to be more
important (for example, when the weather is bad) and slow it down when
the information seems less pertinent. A data-processing system usually
contains a great deal more data than it really needs. The main purposes
of most data-processing installations are to reduce the amount of data
stored, to make the significant data more accessible, and to provide
effective statistical characterizations. Reduction in the amount of data
stored may result from more efficient formats and encoding of informa-
tion, from storing only primary data from which the system can generate
other data, and from reducing the time lag in processing the data, SO that
the system does not need to store so much of it a t any given time. Mak-

256 A KONARITHMETICAL SYSTEM EXTENSION [CHAP. 17

ing data more accessible is sometimes the most significant function per-
formed by the data-processing system, particularly in the routine opera-
tion of an organization. Provision of statistical summaries is frequently
most important in providing information for management decisions and
indicating general trends, although statistical information may also be
used in the daily operation of a business.

Thus the primary problem in almost any field of knowledge is to map
a large quantity of relatively disorganized information into a much
smaller, more highly structured and organized set of information. Fre-
quently it is not even the information that is important but its pattern.
The most rudimentary attempts to find such patterns in information
involve classification. Perhaps the first step, once the information has
been acquired, is to arrange i t in such a may that we can locate any
particular subset required without having to look a t all the information.
(The information forms a set, the nature of the set being determined by
whatever i t was that made us take and keep the information.) The
simplest way of accessing a subset would be to look at each piece of infor-
mation to see whether it belonged to the subset or not. If there are prop-
erties of particular value, we may order the information in terms of these
properties. For example, if the information consists of words to be put
into a dictionary, we order it in terms of the first letter of each word; this
is of great help in locating any specific known word, although i t does not
help a t all if the object is to find all the words that end in x.

Sorting, that is, ordering data in terms of some property, is character-
istic of this type of activity. If the amount of information is large, the
expense of storage dictates that sorting be with respect to the most impor-
tant characteristic. It would be too wasteful of expensive storage to
store information sorted on very many different characteristics. As
new information is needed, it must be merged with the old.

Porting, merging, matching, etc., are, of course, the basic operations of
file maintenance. In fact, the activity of business data-processing instal-
lations is quite typical of the nonarithmetical information processing we
are discussing here. For that matter, so is much of the activity of
scientific computing installations (if they would only admit it), for we
must include the assembling, compiling, and editing functions that are
peculiar to the programming and operating of the computer system itself.

File maintenance consists essentially in processing sets of operand data
from two data sources to form a set of result data going to one data sin/;.
The data sources may be visualized concretely as two input tapes, con-
sisting of a file and transactions against that file, and the data sink may
he visualized as an output tape, the updated file; but the same concept
holds if the data are in core memory or stored in some other medium.
The common case of multiple outputs may be represented by a single

SEC. 17.11 ~ 0 N A R I T H M E T I C . I L PROCESSISG 25 7

sequence of results which are switched to one of several destinations as
required.

The concept of operating on two large sets of operand data tu form a
set of result data appears to be fundamental to nonarithmetical process-
ing. It leads naturally to the idea that a processor, with built-in facilities
for creating sources and sinks to generate and operate on long data
sequences, would be a much more effective tool for large nonarithmetical
applications than B conventional computer, which operates one field a t a
time. In such a processor the objective is to fetch two sets of data
independently accessed from memory, to combine them in terms of certain
processes, and to produce a third set which is put back independently into
memory. The common processes of most interest are the elementary
arithmetical operations, the logical operations, control operations, and
comparison operations (<, 5 , > , 2 , = , #). Table look-up is required
to define those operations which cannot readily be described in more
elementary terms. (For example, the inputs might represent a pair of
cities, and the output the airline fare between these cities as found in a
table of fares.)

Another concept is suggested by observation of the operation of a
punched-card machine, where the same relatively simple process may be
repeated many times for successive cards as they pass through the
machine. There the process is usually defined by means of a plugboard
which opens or closes paths for the data flowing through the machine.
One is thus led to think of an electronic version of the plugboard, which is
set u p before starting and remains set until a change is indicated. Hence
we speak of operating our processor in the set-up mode. Because control
data are placed in high-speed registers, there is essentially no access time
for instructions. The speed of the process is determined entirely by the
data flow rate into or out of memory, the data being fetched or stored
according to preset, but possibly very complex, indexing patterns.

Among the things we may wish to do, while passing data through the
processor, are: (1) examine any of the three sets of data to look for a
particular piece of information; (2) count the frequency of occurrence of
various events in each set, including the occurrence of relationships
between subsets of the data as well as the occurrence of the distinguished
subsets themselves; (3) react to these occurrences by altering the process;
and (4) perform a sequence of table look-ups, with some mechanism for
determining when the look-up operation is to terminate. Having set up
and started a process, we need, of course, a mechanism for breaking out
of the set-up mode as necessary and for determining the state of affairs
a t that time.

The IBM 7951 Processing Unit, to be described in this chapter, wm
designed around these concepts to achieve maximum performance in a

One of the two sources or the sink may be missing.

258 A NOPiARITHMETICAL SYSTEn4 EXTENSION [CHAP. 17

broad area of nonarithmetical information processing. The 7951, itself
a machine of substantial size, is not a complete data processor; i t is
attached to a regular 7030 computer which performs the more con-
ventional operations a t high speed (Fig. 17.1). The extended system.
which is referred to as the IRM 7950 Data Processing System, includes
also two fast 1,024-word memory units, with a read-write cycle time of
0.7 psec, and a very fast magnetic tape system capable of simultaneously

I
I

Memory I
bus unit I

1
I
I
I

Input- Exchange Central I 7951 7955

I
output processing unit I Processing unit High-speed tape system
units

I
I
I
I

7030 S Y S T E M

7950 S Y S T E M

EXTENSION

FIG. 17.1. Nonarithmetical extension of the 7030.

reading and writing a t a rate of 140,000 words of 64 bits per second. The
memory and tape units are important contributors to t.he over-all per-
formance of the system on nonarithmetical problems, but we shall be
concerned here only with the logic of the 7951.

17.2. The Set-up Mode
Data pass through the 7951 Processing Unit serially, byte by byte.

The byte, a quantity of 8 bits or less in parallel, is the basic information
unit of the system. The set-up mode is primarily a design approach
whose aim is (1) to select bytes from memory according to some pattern
set up in advance and (2) to keep a steady stream of such selected bytes

SEC. 17.31 BYTE-SEQUENCE FORMATION 259

flowing through a designated process or transformation and thence back t o
memory (Fig. 17.2). Emphasis is on maximum data flow rate, so that
the typicaly large volumes of information can be processed in minimum
time. Processing time per byte is held to a minimum by specifying,
in advance, byte selection rules, processing paths, and even methods for

Source
unit
P

Bytes -
3

FIG. 17.2. Simplified data flow diagram.

Words

Source
unit
Q

Bytes

handling exceptional cases; hence, decision delays are suffered only once
for a long sequence of bytes instead of being compounded for each byte.

17.3. Byte-sequence Formation

The selected bytes are taken from words stored in memory according to
either simple or complicated patterns as chosen by the programmer.
For technical reasons memory is organized into 64-bit words, but this
artificial grouping is suppressed in the 7951, so that memory is treated
as if i t consisted of a long string of bits, and any one of these can be
addressed for selection. As in the 7030, up to 21s words of memory can
be directly addressed, and, since the word size is exactly 26 bits, an address
consists of 24 bits: 18 to select the word and 6 to select the bit within the
word.

Data are transferred to and from memory 64 bits in parallel; selection
to the bit level is accomplished by generalized operand registers called
source or sink units (Fig. 17.3). There are two source units P and Q?

which feed operands to the processing area of the 7951, and one sink unit
R, which accepts results from the processing area. Each source or sink
unit contains a switch matrix, which allows a byte to be selected with
minimum delay, starting a t any bit position within the register. To
handle cases where a byte overlaps two memory words and to minimize
waiting time for the next needed word from memory, each source or sink
unit is actually two words (that is, 128 bits) long. The selection of these

260 h NONARITHMETICAL SYSTEM EXTENSION [CHAP. 17

bytes is (#ontrolled by the low-order 7 bits of a sequence of 24-bit addresses,
which are generated by the pattern-selection units. The byte output of a
source unit is fed into the processing area through a bit-for-bit mask,

/- From memory . -\
I 1 64 b i t register I

_ _ - _
64 b i t register 11, I

Switch matrix (128x8) output E a Byte

\ Diagonal selector (128 way) /

B i t address - - - - - - -
I 18 6

r -- ___ Total address-24 bits

FIG. 17.3. Source unit. Sink unit is similar, except for data flow reversal

which enables the programmer to select any subset, of the 8 bits, including
nonconsecutive combinations.

17.4. Pattern Selection
The data input to the system may be highly redundant to any particu-

lar problem, and so a powerful mechanism is provided for imposing selec-
tion patterns on the data in memory. It is assumed that the very effective
input-output control in the basic 7030 system will have grossly organized
the contents of memory. For example, various characteristics may have
been obtained for a population and recorded in uniform subdivisions of a
file. A particular problem may be concerned with only a certain char-
acteristic drawn from each record in the file. Thus data may be stored
in memory in matrix form, and the problem may be to transpose the
matrix.

Pattern selection in the 7951 resembles indexing in other computers,
except that here the programmer determines the algorithm that generates
the pattern, instead of listing the pattern itself. Each source or sink
unit has its independent pattern-generating mechanism, which is actually
an arithmetic unit capable of performing addition, subtraction, and count-
ing operations on the 24-bit addresses. The programmer specifies
patterns in terms of indexing levels, each level consisting of an address-
incrementing value I, which is successively added to the sbarting-address

SEC. 17.51

P
indexing

unit

TRANSFORMATION FacrLrrrins 261

Register P -

value S, until N such iricrenients have been applied, after which the next
indexing level is consulted to apply a different increment. Thc pro-
grammer iiiay then choose either that iiicrementing continue on this level
or that the previous level be resumed for another cycle of incrementing.

Many other indexing modes are provided to permit almost any pattern
of data selection. Particular attention has been given to direct imple-
mentation of triangular matrix selection and to the iterative chains of any
formal inductive process, however complex.

In general the pattern-selection facilities completely divorce the
function of operand designation from that of operand processsing, except
that predesignated special characteristics of the operands may be per-
mitted to change the selection pattern in some fashion.

The pattern-selection units determine the niovemeiit] of data between
the sourcc or sink unit and memory, and, together with the source and
sink units, they determine the byte flow in the processing area. The
processing facilities and the selection facilities have been designed to give
a flow rate of approximately 3.3 million bytes per second.

17.5. Transformation Facilities
Two facilities are provided for the transformation of data (Fig. 17.4).

Extremely general operations on one or two input variables can be

Q
indexing

unit

--
Register Q - $4 Table

Table
stored in

(TEU) memory
Table I ygt) I Indexing unit I extract

I 1
Sink unit R

R
indexing

unit 4

FIG. 17.4. Transformation facilities.

262 A SONARITHMETICAL SYSTEM EXTENSION [CHAP. 17

accomplished with the on-line table-look-up facility. Simpler operations
can be done directly by the logic unit without involving memory look-up.
The logic unit also provides a choice of several 1-bit characterizations of
the input bytes (such as byte f rom P > byte f r o m Q) . These 1-bit signals
can be used to alter the process through an ad,jirstment mechanism.

The table look-up facility consists of two units. The more important
logically is the table address assembler (TAA), which accepts bytes from
one or two sources to form the look-up addresses that are sent to memory
(Fig. 17.5). The other is the tabEe extract unit (TEU), which permits
selection of a particular field within the looked-up word. Both units
have their own indexing mechanisms, and together they permit the pro-

/
/

Bytes from '\ E e s from
source uni t P ! source unit Q

Table address
assembler

+
To memory

(word address)

c
To extract uni t

(b i t address)

FIG. 17.5. Formation of look-up address.

grammer to address a table entry ranging in size from 1 bit to a full word
and starting a t any bit position in memory. This freedom is abridged
only by considerations of the table structure chosen by the programmer.

The table look-up facility also provides access to the memory features
of existence and count. Under instruction from the TAA, the main
memory can use the assembled address to or a 1 into the referenced bit
position; the referenced word, as i t was just before the oring, can be sent
to the TEU. This feature may be used to indicate by a single bit the
existence (1) or nonexistence (0) of an item in a set. In the high-speed
memory a 1 may be either wed (as in main memory) or added into the
referenced bit position, with the same provision for sending the word
before alteration to the TEU. The ability to add I s into high-speed
memory words permits use of these words as individual counters. Several

SEC. 17.71 THE BYTE-BY-BYTE INSTRUCTION 263

counter sizes can be specified.
tJhe main memory.)

17.6. Statistical Aids
The table look-up facility may be used to associate statistical weights

with the occurrence of particular sets of bytes. For example, the occur-
rence of a byte Pi in the P sequence together with a byte Qj in the Q
sequence may be assigned a weight W,, which would be stored in a table
and referenced by an address formed from both P; and Q,. Alternatively,
a memory counter may be associated with each pair Pi,Qi and stepped up
whenever the pair occurs.

(This counting feature is not provided in

Match
unit

I ' > >

v)

E
1 1

m
X al
c
aJ
c rc
0

V

Source unit Q

._

b Reactions

Match
unit uni t

Sink uni t R

FIG. 17.6. Monitoring and statistical features with typical adjustment reactions.

A statistical accumulator (SACC) is provided (Fig. 17.6), either to sum
the weights W over a succession of sets of bytes or to provide a key
statistical measure of the counting results. SACC can also be used for
many other accumulating purposes.

A statistical counter (SCTR) provides a way of counting the occur-
rences of any of a large number of events during the process. In particu-
lar, SCTK can be designated to count the number of weights W that have
been added into SACC.

17.7. The BYTE-BY-BYTE instruction

connected into the process in various ways by the programmer.
The table look-up unit, the logic unit, and the statistical units can be

As in a

264 A ONA ARITHMETICAL SYSTEM ISXTENSION [CHA4P. 17

class of analog computers, these coniiections reflect the structure of a
problem and are the electronic equivalents of a plugboard. The con-
nection chosen by the programmer then causes each byte or pair of bytes
sent through it to be processed in the same way; this very general process-
ing mode is set up by the BYTE-BY-BYTE instruction. The connections,
indexing patterns, and special conditions described below all form part
of a prespecified setup, which can be regarded as a macro-instruction
putting the computer into a specific condition for a specific problem.

17.8. Monitoring for Special Conditions

The concept of a continuous process with preset specifications is most
meaningful when applied to a large batch of data that are all to be treated
the same way. Within the data entering any particular process there
may arise special conditions that call for either momentary or permanent
changes in the process. For example, the transformation being per-
formed may be undefined for certain characters, and so these must be
deleted a t the input; or a special character may be reserved to mark the
end of a related succession of bytes, after which the process or the pattern
of data selection must be altered.

Special charac-
ters cAan be detected by match units (Fig. 17.6), to each of which can be
assigned a special %bit byte which is matched against all bytes passing
by the unit. There are four match units: W , X , Y , and 2, which can hc
connected to monitor the data a t several different points. When a
match occurs, the match unit can perform directly one of several opera-
tions, and it can also emit a l-bit signal indicating the match.

A large number of 1-bit signals are generated by the various facilities
to mark key points in their respective processes. These 1-bit signals,
dlect ively called stimuli, can be monitored to accomplish specific opera-
tions, such as stepping SCTR or marking the end of an indexing pattern.
They can also be used to accomplish a much wider range of operations
through the adjustment mechanism:

Up to 64 stimuli are generated by the various processing, indexing,
and monitoring functions in the 7951. For any particular problem those
stimuli can be chosen which represent the significant properties of the data
passing through. With each stimulus or coincident combination of
stimuli, the programmer may associate one or more of a large number of
reactions on the data, the process, or the indexing. These stimulus-
reaction pairs are called adjustments. The adjustment mechanism gives
the programmer a direct way of picking out those elements of the data
which are different from the general run. These exceptional elements
may provide the key to the pattern being sought, either because they are
particularly relevant or distinctly irrelevant.

Special conditions can be monitored in several ways.

SEC. 17.91 INSTNUCTION SET 265

17.9. Instruction Set

Conventional arithmetical and scientific computational processes and
all input-output operations are performed in the 7030 part of the system.
When 7030 instructions are used, the system is said to operate in the
arithmetic mode; when the instructions unique to the 7951 Processing Unit
are to be used, the system is placed in the set-up mode. The set-up-mode
instructions add a variety of extremely powerful data-processing tools to
the basic 7030 operations. The instruction formats vary in length: 7030
instructions are either 32 or 64 bits long, whereas set-up-mode instructions
h a w an effective length of 192 bits.

Set-up-mode instructions are very much like built-in subroutines or
macro-instructions. Just as i t is necessary to initialize a programmed
subroutine, it is also necessary to initialize, or set up, the processor.
About 150 parameters and control bits may influence the process. The
processor is set up by loading values of some of these parameters and
setting the desired control bits in certain addressable set-up registers prior
to the execution of a set-up-mode instruction. Certain changes in the
parameter values or control-bit settings generate stimuli, which may be
used to terminate the data sequence, to make automatic adjustments to it,
or to switch to the arithmetic mode of operation. The adjustment opera-
tions essentially constitute a second level of stored program and are used
most generally to handle exception cases.

Thus the programmer sets up the processor to execute a set-up-mode
instruction. The process is then started and automatically modified as
dictated by the setup or the data. Much routine bookkeeping is done
automatically by the several independent pattern-generating (indexing)
mechanisms. Changing parameter values are always available for pro-
grammed inspection, if automatic inspection is not sufficient for the
particular operation being performed.

Although most of the programming in the set-up mode of operation is
centered around the BYTE-BY-BYTE instruction, a number of other instruc-
tions derive from the unique organization of the processor. The arrange-
ment of the data paths and processing units facilitates one-instruction
operations for performing many of the routine collating functions, such as
merging, sorting, and file searching and maintenance, that are so common
to data processing. The table look-up unit is used extensively in these
as well as in several other iristrwtions designed primarily for the logical
manipulation of data.

Since such extensive use is made of parameter tables, transformatioil
tables, and other data arrays, all of which require large memory areas, n
special CLEAR MEMORY instruction is provided for clearing large blocks of
memory in minimum time and with minimum programming effort. A

266 A EONARITHMETICAL SYSTEM EXTENSION [CHAP. 17

single execution of this instruction will clear as few as 64 consecutive
words or as many as 2,048, as desired. Clearing 2,048 words, for exam-
ple, takes less than 3% psec, with only one instruction access to memory.
A full memory complement of 218 words could be cleared in less than 1
millisecond. To reset each memory word separately by ordinary pro-
gramming would take very much longer.

17.1 0. Collating Operat ions
In order to perform merging, file searching, and other such collating

operations, it is generally necessary to specify a number of parameters,
such as record length, file length, control-field length and position, etc.
In programming for the 7951, the programmer need only tabulate these
parameters in proper order. They will then be utilized by the indexing
mechanisms to cause data to be fetched from and returned to memory
according to the patterns that naturally occur in such data.

The MERGE instruction contains eight independent control sequences
that may be used to merge files or completely sort blocks of records.
Options to bc chosen by the programmer are concerned with whether
files are to be arranged in ascending or descending order; whether the
record block can be contained in a t most half the available memory;
and whether the control field is conveniently located at the start of the
record.

The SEARCH instruction has twelve control sequences, each of which
facilitates the abstracting from a master file of all records whose control
fields bear one of six possible relationships to the control field of each
record of a detail file. The possible relationships are the six standard
comparison conditions <, 5 , > , 2 , = , # . If it is not desired to remove
the records that meet the search condition, it is possible to tabulate their
addresses automatically.

The instruction SELECT is used to select from a file the record having
the least or the greatest control field.

For the purpose of facilitating file-maintenance operations, there is a
collating instruction complex called TAKE-INSERT-REPLACE. When the
operation is executed under instruction control, then a match between
control fields of master and detail record causes the master record either
to be removcd from the master file or to he replaced by the detail record.
Under data control, the action taken, whenever control fields match, is
indicated by the contents of a special control byte in the detail record.
The masters can be deleted or replaced; or the detail record can be
inserted in the master file; or, wider certain circumstances, the maintc-
tiaric'e procedure can be interrupted when inaster records with special
characteristics are located and then rrsumed with a minimum of pro-
gramming effort.

SEC. 17.121 EXAMPLE 267

Instructions such as the collating operations described above lead to a
considerable reduction in the length of the generalized report generators,
file-maintenance routines, and sorting and merging programs that might
be expected to be associated with such a computer system.

17.1 1. Table Look-up Operations

It is often desired to be able to obtain data from or store data a t ail
address that depends indirectly on the data itself. The INDIRECT LOAD-

STORE instruction permits wide latitude in the formation of such addresses
and in the subsequent manipulation of the original data. In this opera-
tion parameters from one of the source units are used in the formation of
an address in the table look-up unit. This primary address itself, or
one of the two addresses found in the word a t the memory Iocation
specified by the primary address, becomes either the origin of a field of
data to be entered via the other source unit or the location a t which the
data field is to be stored by the sink unit. The data are moved from
source to sink, and the entire cycle is repeated. The counting and oring
features of the table look-up unit are available to the programmer as mod-
ifications of the basic instruction-control sequence.

The second instruction complex built around the table look-up unit is
SEQUENTIAL TABLE LOOK-UP, an extremely powerful but conceptually
simple instruction for a class of data-dependent transformations. This
instruction causes a series of table references to be made; each successive
reference after the first is made to a table whose address is extracted auto-
matically from the previously referenced table entry. Also, as each refer-
ence is completed, a variable amount of data may be cxtractcd from thc
table entry. Moreover, the indexing of the input or output data may bc
adjusted according to the contents of the table entry (this is similar to
the operation of a Turing machine). The applications of S E Q U E K T I ~ L

TABLE LOOK-UP are manifold : editing for printing of numerical data,
transliteration of symbols from one form to another, and scanning of
computer instructions for assembly and compilation, to name a few.

17.1 2. Example

The extensive use of tables in problem solution typifies the non-
arithmetical processing approach, as will be illustrated by the translitera-
tion of Roman numerals to Arabic. Several simplifying assumptions
have been made so that the flow chart may be easier to follow: (1) The
data-a set of numbers expressed in Ronian numerals, each number
separated from the next by a blank (B)-are assumed to be perfect, and
only the characters I , V , X , L, C, D, and M are used; (2) the set of num-
bers is t~rmii:ated by two blanks; (3) the use of four successive identical
characters (like Roman 1111 for Arabic 4) is forbidden. Finally, the

u1

268

269

270 A KOSARITHMETICAL SYSTEM EXTENSION [CHAP. 17

numbers to be transformed are all assumed to lie in the range from 1 to
1,000, inclusive.

The flow chart (Fig. 17.7) shows 18 tables consisting of a total of 82
memory words. Under each table heading a two-part entry is shown,
the parts being separated by a colon. On the left of the colon is the argu-
ment being looked up, followed in parentheses by an indication of the
range in which the final number or digit must lie. On the right of the
colon the parameters of the table word corresponding to the argument are
indicated symbolically; for example, RO-1B (meaning “read out tho
integer 1 followed by tfhe character for a blank”) or KRO (meaning ‘ L I I O

readout”). This is followed by an integer in parentheses indicating what
data byte is the next argument (0 means same byte, 1 means next byte,
etc.). The arrow indicates the table in which the next argument is
looked up.

As an illustration, consider the transliteration of DCLXXVIII :

1. D is looked up in the first table. The number must be in the range
500 to 899 inclusive. The next argument is the
next data byte.

50
readout.

Read
out 6.

The range of the unknown part of
the number is 60 to 89. The next argument is the next
data byte.

5. X is looked up in the LX, table. The range is reduced to 70 to 89.
KO readout.

6. V is looked up in the LX, table. The range is now 75 to 78. Read
out 7.

7. I is looked up in the Y1 table. The range of the next digit is 6 to 8.
KO readout.

8. I is looked up in the Vz table. No readout.
The next argument is the next byte.

9. I is looked up in the Vs table. Read out 8B.
The next argument is the second following byte (the next byte being a B).
This would be the first byte of the nextJ number to be transliterated and is
looked up again in the first table.

No digit is read out.

2 . C is looked up in the Dl tablc.

3. L is looked up in the DCl table.

4. X is looked up in the L1 table.

The range is 600 to 899.

The range is 650 to 689.
The next argument is the next data byte.

The next argument is the next data byte.

No readout.

The next argument is the next data byte.

The next argument is the next byte.

The next argument is the next data byte.
The digit is 7 or 8.

The final digit is 8.

The process just described yielded the number 678 for DCLXXVIII.
Only one instruction, SEQUEXTIAL TABLE LOOK-UP, was needed. In
fact this single instruction serves to transform an entire set of numbers,
continuing until the character R is looked up in the first table.

SEC. 17.121 EXAMPLE 271

Clearly, the decision logic for the problem is incorporated in the struc-
ture of the tables. In constructing these tables the programmer con-
centrates on precisely this logic; most of the bookkeeping and other
peripheral programming considerations are automatically taken care of.
Wherever possible, this philosophy guided the systems planning of the
7951 Processing Unit.

Appendix A
SUMMARY DATA

A.l
The experience gained with earlier IBM computers played a major

role in the development of the 7030. Because these earlier computers
have been referred to in the text, it may be helpful to list them here.
The computers are listed chronologically; the date of a computer is
defined arbitrarily as the year of first public announcement. Only
the larger computers that have been produced in multiples are shown.
These include all 700 and 7000 series computers preceding the 7030, as
well as the 650. The basic 650 is hardly a large computer in com-
parison with the others, but it deserves a place in the list because of its
widespread use and because extended versions of it are used in much the
same applications as many of the larger machines. The list excludes
military computers and a series of smaller stored-program computers.

The listing distinguishes between the earlier computers constructed
almost entirely with vacuum-tube circuits (V) and the 7000 series which is
completely transistorized (T). Another common but not altogether
satisfactory distinction is made between computers intended primarily for
scientific applications (S) and those intended primarily for processing
large files of alphanumeric data (D). In the 700-7000 series the chief
technical characteristic distinguishing “scientific” computers is fast
parallel binary arithmetic on numbers of fixed length, whereas the data-
processing computers have serial decimal arithmetic and alphanumeric
operations, for processing more readily fields of different lengths, as well
as heavier emphasis on input-output. The smallest (650) computer on
the list and the largest (7030) do not quite fit the classification. The
650, initially designed for numerical work, has found extensive applica-
tion in data processing. The 7030, intended mainly for scientific applica-
tions, combines the characteristics of both classes and is thus also a very
powerful data processor.

A general description of each current computer will be found in the
corresponding General Information h‘lanual published by TRhI; detailed

213

List of the Larger IBM Stored-program Computers

274 SUMMARY DATL4 [APP. A

information is given in the Keference Manual for each machine.
additional references to technical papers are given here.

Some

Year

1952

1953
1953

1954

1954

1957

1957

1958

1958
1960

1960

Computer

70 1

650
702

704

705

709

705 I11

7070

7090
7080

7030

Class

v, s

V
v, I1

v, s

v, I1

Comments

Parallel binary arithmetic, 2,048-word (36-bit) elec-

Serial decimal arithmetic, magnetic drum memory2
Serial decimal arithmetic, variable-field-length, alpha-
numeric data handling, 10,000-character (6-bit)
electrostatic memory3

Redesigned 701 with new instruction set, 4,096-word
magnetic core memory, built-in floating-point
arithmetic, indexing, and higher speed

Redesigned 702 with larger instruction set, 20,000
characters (Model I) or 40,000 characters (Model 11)
of core memory, higher speed, and simultaneous
input and output

Improved 704 with up to 32,384 words of core mem-
ory, multiple input-output channels buffered in
memory, and faster multiplication4

Improved 705 with an 80,000-character core memory,
higher speed, more parallel operation, and multiple
input-output channels buffered in memory

Serial decimal computer, partly patterned after the
650 but with major improvements; newer transistor
and core nicmory technology place it in the 705 per-
formance class a t a lower cost6

Transistorized version of 709, about six times as fast
Transistorized version of 705 111, about six times as

Stretch computer described herein

trostatic memory’

fast, with up to 160,000 characters of memory

W. Buchholz, The System Design of the IBM Type 701 Computer, Proc. IRE,
vol. 41, no. 10, pp. 1262-1275, October, 1953.

F. E. Hamilton and E. C. Kubie, The IBM Magnetic Drum Calculator Type 650,
J . ACM, vol. 1, no. 1, pp. 13-20, January, 1954.

C. J. Bashe, W. Buchholz, and N. Rochester, The IBM Type 702, An Electronic
Data Processing Machine for Business, J . ACM, vol. 1, no. 4, pp. 149-169, October,
1954.

J. L. Greenstadt, The IBM 709 Computer, “Proceedings of the Sympoisum: New
Computers, a Report from the Manufacturers,” published by the ACM, March, 1957,

J. Svigals, IBM 7070 Data Processing System, Proc. Western Joint Computer
pp. 92-96.

(‘ofif , March, 1959, pp. 222-231.

A.2 Instruction Formats

000
I

1-
Address VFL arithmetic,

radix conversion I P Length BS Offset

V F L connective
I I

Address 000 I P Length ES Offset Conn ~ 1 1 1

Input-output

I

Transmission

I

Store instruction
counter i f branch

I

Branch on bit

I I I

I I I
Channel address 000 I Address op. 10000

Floating-point
arithmetic

I

Uncond. branch,
miscellaneous

I

Address 00 I
I

Direct index

I FDTI

l
Address I J l e l s l O (I ’

Immediate index

I

I
Address 000

Count and branch

I Branch address ‘ Branch Op., etc.
I

Branch on
indicator

I I

I , Address op. 00000

Index word

I

I I

I
Address J Op. 1 I

I

I
Address

J
bU 63

I

I
J 10000 Op.

Value t F count
I I

Refi t i

A.3 List of Registers and Special Addresses

Address

0 . 0
1 . 0
1.28
2 .0
3 . 0
3 .32
3.57
4 . 0
5 .12
6 . 0
7 .17
7 .44
8 . 0
9 . 0

10.0
11.0
12.20
13 .0
14.0
15.0
16.0

to
31.0

Length
(bits)

64
19
36
18
18
18

1
64
7

19
7
7

64
64
8

64
28
64
64
64
64

64

Vnemonic

Z
IT

TC

IA

UB

LB

BC

MB

CA

CPU

LZC

AOC

L

R

SB

IND

MASK

RM

FT

TR

xo
to
x15

Name

Zero
Interval timer
Time clock
Interrupt address register
Upper boundary register
Lower boundary register
Boundary-control bit
Maintenance bits
Channel address register
Other CPU
Left-zeros count
All-ones count
Left half of accumulator
Right half of accumulator
Accumulator sign byte
Indicator register
Mask register
Remainder register
Factor register
Transit register
Index register 0

to
Index register 15

-
Notes
__

P, a

P
P
P
P

b

P, b

C

d

e
f

Notes: All unused bits in addresses 0.0 to 15.63 are permanently set to 0.
p Permanently protected area of memory
a Read-only, except for STORE VALUE, STORE COUNT, STORE REFILL, and STORE

b Read-only.
c In multiple-CPU systems, used to turn on CPU signal indicator in another CPU.
d In FLP operations only, the explicit operand address 8.0 is interpreted to mean

the 64 bits 8.0 to 8.59 and 10.04 to 10.07, which combine to make up a proper
single-length signed FLP number corresponding to the high-order part of the
accumulator. In all other operations, a 64bi t operand at address 8.0 includes
bite 8.0 to 8.63.

ADDRESS.

Address 1.28 means bit position 28 in word 1.

e Bits 11.0 to 11.19 are read-only.
f The rest of 12.0 are permanently set, read-only mask bits, 12.0 to 12.19 being IS

and 12.48 t o 12.63 being Os.
276

A.4 Summary of Operations and Modifiers

The mnemonic abbreviation is given in pareii theses after the name.

A r i t h m et i ca I Operations

point Modes
a. Operations Available in Both T'ariable-~eld-leizgth and Floating-

LOAD (L)

The accumulator contents are replaced by the memory operand,
except for data flag bits.

Same as LOAD, except that the data flag bits are included.

The memory operand is replaced by the accumulator operand,
including the data flag bits.

The operand is rounded before storing, but the accumulator is not
changed.

The memory operand is added algebraically to the accumulator
operand, the sum replacing the accumulator contents.

The memory operand is added algebraically to the magnitude of the
accumulator operand, except that the accumulator is set to zero if
the result attempts to change sign. The accumulator sign is ignored.

The accumulator operand is added algebraically to the memory
operand, the sum replacing the memory contents.

The magnitude of the accumulator operand is added algebraically
to the memory operand, except that the memory operand is set to
zero if the result attempts to change sign.

The accumulator operand is compared with the memory operand by
algebraic subtraction; comparison indicators are set according to the
result, but neither operand is changed.

LOAD WITH FLAG (LWF)

STORE (ST)

STORE ROUNDED (SRD)

.41)D (+)

ADD TO MAGNITUDE (+MG)

ADD TO MEMORY (M +)

ADD MAGXITUDE TO MEMORY (M+MG)

COMPARE (K)

211

278 SUMMARY DATA IAPP. A

COMPARE FIELD (KF) (VFL mode)
COMPARE MAGNITUDE (KMG) (FLP mode)

Same as COMPARE, except that the accumulator sign is ignored, and
(in VFL) only a portion of the accumulator, equal in length to the
memory, is compared.

COMPARE FOR RANGE (KR)
Csed following COMPARE to determine whether the accumulator
operand falls below (accumulator low) , within (equal), or above (high)
the range defined by the memory operands of the two instructions.

COMPARE FIELD FOR RANGE (KFR) (VFL mode)
COMPARE MAGNITUDE FOR RANGE (KMGR) (FLP mode)

Analogous to COMPARE FOR RANGE.

The product of the memory and accumulator operands replaces the
accumulator operand (see note).

The memory operand is placed in the factor register, usually in
preparation for MULTIPLY AND ADD.

The product of the memory and factor-register operands is added
algebraically to the accumulator operand (see note).

The accumulator operand (dividend) is divided by the memory
operand (divisor), with the quotient replacing the accumulator
operand and (in the VFL mode only) the remainder going to the
remainder register (see note). (To obtain a remainder in floating-
point division, use DIVIDE DOUBLE; see below.)

MULTIPLY (*)

LOAD FACTOR (LFT)

MULTIPLY AND ADD (*+)

DIVIDE (/)

Note: In the decimal VFL mode, the operations MULTIPLY, MULTIPLY AND ADD,

and DIVIDE are not executed directly, but operate like I,OAD TRANSlT AND SET (See
below) for execution by subroutine.

b. Operations Available in Variable-jield-length Mode Only

ADD ONE TO MEMORY (M + l)

+1 or - 1 is added algebraically to the memory operand, ignoring
the accumulator.

COMPARE IF EQUAL (KE)

COMPARE FIELD IF EQUAL (KFE)

Same as COMPARE or COMPARE FIELD, respectively, except that the
operation is performed only if the accumulator equal indicator is
already on.

The memory operand is loaded into the transitregister, and the offset

It is used for multiple-field comparison.
LOAD TRANSIT AND SET (LTRS)

SEC. ,4.4] SUMMARY OF OPERATIOXS IUD >‘foDIFIERS 279

field of the instruction is loaded into the all-ones counter for ready
use as a pseudo operation code in interpretive fashion.

c. Operations Avaalable in Floating-point Mode Only

RECIPROCA4L DIVIDE (R/)

Same as DIVIDE, except that the operands are interchanged, the
memory operand being the dividend and the accumulator operand
the divisor.

The square root of the accumulator operand is stored in memory.
STORE ROOT (SRT)

LOAD DOUBLE (DL)

LOAD DOUBLE WITH FLAG (DLWF)

These are double-length operations similar to the single-length LOAD

and LOAD WITH FLAG, except that an extra 48 bits to the right of the
fraction being loaded are set to zero, whereas the single-length opera-
tions leave these bits unchanged.

ADD DOUBLE (D+)

. ~ D D DOUBLE TO MAGNITUDE (D+MC)

MULTIPLY DOUBLE (D*)

Similar to ADD, ADD TO MAGNITUDE, and MULTIPLY, respectively,
except that the fraction part of the accumulator operand is of double
length (96 bits). (Note that floating-point MULTIPLY AND ADD is
also a double-length operation.)

Similar to DIVIDE, except that a 96-bit dividend is used and a
remainder is produced and placed in the remainder register. Quo-
tient and remainder are both of single length.

The low-order part of the double-length accumulator operand is
stored in memory with the proper exponent.

Same as ADD DOUBLE, except that the exponent of the accumulator
operand is used as the exponent of both operands during addition.

The double-length fraction in the accumulator is shifted left or right
by the amount specified in the address; the accumulator exponent is
unchanged.

The exponent of the memory operand is added algebraically to the
accumulator exponent.

The address part of the instruction, interpreted as an exponent, is
added algebraically to the accumulator exponent.

DIVIDE DOUBLE (D/)

STORE LOW ORDER (SLO)

ADD TO FRACTION (F+)

SHIFT FRACTION (SHF)

ADD TO EXPONENT (E +)

ADD IMMEDIATE TO EXPONENT (E+I)

280 SUMMARY DATA [APP. A

d. VFL-arithmetic ModiJiers and Addressing Modes

Radix modifier (D, decimal; B, binary)
1 : Arithmetic and data format are decimal.
0 : Arithmetic and data format are binary.

1 : The memory operand has no sign byte, and the operand is con-

0: The memory operand has a sign byte.

1 : The sign of the unreplaced operand is inverted.
0: The sign is used unchanged.

The address part after indexing serves as the memory operand.
mode precludes progressive indexing.

The specified index value is used as the address of the memory
operand of the VFL operation; this is followed by one of six immedi-
ate index-arithmetic operations (which see), as specified by a second-
ary operation code:

Unsigned modifier (u)

sidered positive.

Negative sign modifier (N)

Immediate addressing (I)
This

Progressive indexing

V + I v - I
v + I C v - I C

V - ICR V + ICR

e. Floating-point-arithmetic Modifiers

Normalization modifier (N, normalized ; u, iinnormalized)
1 : The result is left unnormalized.
0: The result is normalized automatically.

1 : The sign of the memory operand is ignored, and the operand is

0: The sign of the memory operand is used.
Note: This modifier is analogous to the VFL unsigned modifier.

Same as in VFL arithmetic.

Absolute value modifier (A)

considered positive.

Negative sign modifier (N)

Radix Conversion

a. Operations

LOAD CONVERTED (LCV)
The radix of the memory operand, considered as an integer, is con-
verted and the result placed in the accumulator.

SEC. A.41 SUMMARY OF OPERATIONS AND MODIFIERS 281

LOAD TRANSIT CONVERTED (LTRCV)

Same as LOAD CONVERTED, except that the result is placed in the
transit register.

The accumulator operand, considered as an integer, is converted and
the result returned to the accumulator. The binary operand cor-
responds in length and position to a single-length ffoating-point
fraction.

Same as CONVERT, except, that the binary operand corresponds to a
double-length fraction.

CONVERT (CV)

CONVERT DOUBLE (DCV)

b. Modifiers and Addressing Modps
Same as in VFL arithmetic, except for

Badix modifier (D, decimal; B, binary)

Specifies the radix of the unconverted operand.
I : Conversion is from decimal to binary.
0: Conversion is from binary to decimal.

Connective Operations

a. Operations
CONNECT (C)

The memory operalid is combined logicdly with the accumulator,
according to the specified connective. The result replaces the
accumulator operand. A left-zeros count and an all-ones count
of the result are developed.

CONNECT T O MEMORY (CM)

Same as CONNECT except that the result repla.ces the memory
operand.

CONNECT FOR TEST (CT)

Same as CONNECT except that the result is discarded after testing and
both operands remain unchanged.

b. Connective Code

il 4-bit code xoo xo1 xlo xll defines one of the sixteen connectives by
listing the 4 result bits for each of the four states of a memory bit (m)

282

0
0
1
1

SUMMARY DATA

0 5 0 0

1 xo1
0 2 1 0

1 Z l l

and the corresponding accumulator bit (a) :

Operand bits
Result bit

m l a

[APP. A

c. Addressing Modes
Immediate addressing
Progressive indexing

Same as in VFL arithmetic.

Index-arithmetic Operations

Note: Immediate index arithmetic, where the address serves as the
(unsigned) operand, is distinguished from direct index arithmetic, where
the (signed) operand is a t the addressed location, by the operation code
rather than by a modifier. Separate positive and negative immediate
operations on the signed value field are provided because the operand is
unsigned.

LOAD I N D E X (LX)

The specified full word replaces the entire contents of the specified
index register.

LOAD VALUE (LV)

LOAD VALUE IMMEDIATE (LVI)

LOAD VALUE NEGATIVE IMMEDIATE (LVNI)

The specified operand and sign replace the value field of the specified
index register.

LOAD COUNT (IMMEDIATE) (LC or LCI)

LOAD REFILL (IMMEDIATE) (LR or LRI)

Replace the count or refill field, respectively.

The entire contents of the index register are stored a t the specified
location.

STORE I N D E X (SX)

STORE VALUE (SV)
STORE COUNT (SC)

STORE REFILL (SR)

The value, count, or refill field, respectively, of the index register is
stored in corresponding fields of the index word a t the specified
location.

SEC. A.41 SUMMARY OF OPERATIONS AND MODIFIERS 283

ADD (IMMEDIATE) TO VALUE (v+ or v + I)
SUBTRACT IMMEDIATE FROM VALUE (V - I)

The specified operand is added to or subtracted from the value field.
ADD (IMMEDIATE) TO VALUE AND COUNT (v + c or

Same as above, and the count is reduced by 1.
ADD (IMMEDIATE) TO VALUE, COUNT, AND REFILL (v + CR or v + ICR)

SUBTRACT IMMEDIATE FROM VALUE, COUNT, AND REFILL (v - ICR)

Same as above and, if the count reaches zero, the word specified
by the refill address replaces the contents of the index register.

v + IC)
SUBTRACT IMMEDIATE FROM VALUE AND COUNT (V - IC)

ADD IMMEDIATE TO COUNT (C -k I)

SUBTRACT IMMEDIATE FROM COUNT (C - I)

The address part is added to or subtracted from the count field.

The specified operand and sign are compared aIgebraically with the
value field, and the index-comparison indicators are set.

The magnitude of the specified operand is compared with the count
field, and the index-comparison indicators are set.

The value fields of all index registers, corresponding to 1 bits in the
instruction address part, are added algebraically, the sum replacing
the value field of a specified index register.

The effective address is used to fetch, eventually, a 11011-LVE instruc-
tion whose effective address replaces the value field of the specified
index register.

The value field of the index register is stored in the address part of
the instruction a t the Specified location.

The contents of the specified index register are first stored a t the
address contained in the refill field of index register x0; the effective
address of the RNX instruction is then loaded into the x0 refill field,
and the specified index register is refilled from that address.

COMPARE VALUE [(NEGATIVE) IMMEDIATE] (KV or KVI or KVNI)

COMPARE COUNT (IMMEDIATE) (KC or KCI)

LOAD VALUE WITH SUM (LVS)

LOAD VALUE EFFECTIVE (LVE)

STORE VALUE I N ADDRESS (SV.4)

KENAME (RNX)

Branching Operations

a. Unconditional Branching

BRANCH (B)

The effective address of this instruction replaces the instruction-
counter contents.

284 SUMMARY DATA [APP. A

BRAKCH RELATIVE (BR)

The effective address is added to the instruction-counter contents.
BRANCH ENABLED (BE)

Branch after enabling the interrupt mechanism.
BKAR'CH DISABLED (BD)

Branch after disabling the interrupt mechanism.
BRANCH ENABLED AXD WAIT (BEW)

Same as BRANCH ENABLED, but no further instructions are executed
until an interrupt occurs.

Same as BRANCH i o next iristruction in sequence, regardless of the
address part.

NO OPERATION (NOP)

b. Indicator Brunching
BRANCH ON INDICATOR (BIND)

Branch if specified indicator coiidition is satisfied.

1 : Branch if indicator is on (1).
0: Branch if indicator is off (0).

1 : Set indicator to 0 after testing.
0: Leave indicator unchanged.

On-Off modifier

Zero modifier

e. Index Branching
COUNT AND BRANCH (CB)

Reduce the count field of the specified index register by 1, and branch
depending on whether the count has gone to zero or not; also incrc-
ment the value field as specified.

Same as COUNT AND BRANCH, but also retill tlic index register if the
count has gone to zero.

1 : Branch if count has gone to zero.
0: Branch if count has not gone to zero.

00: Leave value field unchanged.
01 : Add $5 to value.
I O : Add 1 to value.
I1 : Subtract 1 from valuci.

d. Storing Instruction Counter

COUKT, BRANCH, AND REFILL (CBR)

0 n-0 ff modifier

Aduance modifiers

STORE INSTRUCTION COUNTER IF (SIC)

If prefixed to any of the preceding brunch instructions, store the
instruction-counter contents a t the specified location if the branch is
successful.

SEC. A.41 SUMNARY O F Ol’EIEATIONS AND hiODIFIERS 285

e. Bit Branching

BRANCH os BIT (BB)

On-0 ff modifier
Branch if the specified test bit meets the specified condition.

1 : Branch if test bit is on (1).
0: Branch if test bit is off (0).

I : Set test bit to 0 after tc,stiiig.
0: Leave test bit unchaiigrd.

1 : Invert test bit, after application of xcro modifier.
0 : Leave test bit uiwhaiged.

Zero modifier

Invert modifier

Data-transmission Operations

TRANSMIT (T)

The contents of a first memory area are sent to and replace the con-
tents of a second nicmory area.

The contents of a first memory area are interchanged with the con-
tents of a second memory area.

1: The number of words to be transmitted are specified in the

0: The number of words to bc transmitted are specified in the count,

SWAP (SWAP)

Immediate count modifier (I)

instruction.

field of an index register.
Backward modifier (B)

1 : Addresses are decreased by I for each word transmitted.
0 : Addresses arc increased hy 1 for each word transmitted.

Input-Output Operations

WRITE (11)

Data are transmitted from nieniory to an input-output unit.
KEAD (RD)

Data are transmitted from an inpiit-oiitput unit to memory.
CONTROL (CTL)

Control information is sent from nirmory to an input-output
unit.

A selectioii address is sent to ~ t i i inpiii -output unit.

’4ny operation in progress for the specified channel is terminated
immediately and status indications are reset.

I,OCATE (LO(’)

RELEASE (REL)

286 SUMMARY DATA [APP. A

Suppress end of operation modifier (SEOP)
Normal end-of-operation interrupt is suppressed after completion
of any of the above five operations.

The current control word for the specified channel is sent to memory.
COPY CONTROL WORD (CCW)

Miscellaneous Operations

REFILL (R)

The index word at the specified memory address is replaced by the
word located at the address contained in its refill field.

A I~EFILL operation is performed only if the count field of the ad-
dressed index word is zero.

At the specified address there is an operand which is executed as an
instruction.

At the specified address there is another address which is treated as
a pseudo instruction counter: its operand is executed as an instruc-
tion, and the pseudo instruction counter is then advanced to the
next instruction location.

Store an all-zero word a t the specified full-word location.

ICEFILL ON COUNT ZERO (RCZ)

EXECUTE (EX)

EXECUTE INDIRECT AND COUNT (EXIC)

STORE ZERO (Z)

A.5 Summary of Indicators

The indicator number is shown to the left of the name and the mne-
The notation in brackets monic abbreviation to the right in parentheses.

gives the class of indicator:
1

m
0
P

T

Interrupt mask bit always 1 ; always interrupts
Interrupt mask bit set by programming
Interrupt mask bit always 0; never interrupts
Permanent indicator; remains on until reset by interrupt or by
programming
Temporary indicator; corresponds to most recent result which
affects it

Equipment Check

0. i7lachine check (MK) [4PI

1. Instruction check (IK) [131

2 . Instruction reject (IJ) WI

3. Exchange control check (EK) [1,PI

A general error has been detected by the CPU checking circuits.

An error has been detected during the performance of the current
instruction.

The current instruction cannot be executed.

,4 general error has been detected by the exchange checking circuits.

Attention Request

4. Time signal (TS) [llPl

5. CPU signal (CPUS) [1,P1
The interval timer has gone to zero.

A signal has been received from another, directly connected CPV.

Input-Output Reject

6. Exchatige check reject (EKJ) UlPI
An error was detected by the exchange while i t was setting up the
current input-output instruction.

287

288 S U M M a R Y DATA [APP. A

7. U n i t not ready reject (UNRJ) P,PI

[11PI

The unit selected by the current input-output instruction was not
ready to operate.

The channel selected by the current input-output instruction has not
completed a previous instruction.

8. Channel busy reject (CBJ)

input-Output Status

(Indicators 9 to 13 are used in conjunction with the channel address
register, which contains thc address of the input-output channel involved.)

The exchange has terminated a previously initiated input-output
operation because of a programming error.

9. Exchange program check (EPGK) D,PI

10. Uni t check (uK) [VI

11. E n d exception (EE) U,Pl

12. E n d of operation (EOP) [VI

13. Channel signal (cs) [I71

An error or malfunction has been detected by checking circuits at
the unit or the channel.

The last operation for the channel encountered an exceptional
condition.

The last operation for the channel was ended as specified by the
instruction and its control words.

An attention-request signal has been received from the channel.
14. Reserved for future expansion.

Instruction Exception

15. Operation code invalid (OP) [I71

16. Address invalid (AD) [l,Pl

17. Unended sequence of addresses (USA) P,PI

18. h'xecute exception (EXE) [W

19. Data store (DS) [IlPI

An instruction was suppressed because the operatio11 code or the
modifiers were not valid.

An instruction was suppressed because the effective address was not
valid.

A one-instruction addressing or execute loop has been forcibly ter-
minated after 1 millisecond (several hundred cycles).

An execute operation was suppressed because it attempted to (bhang?
the instruction counter.

,4n attempt to change the contents of a protected storage location,
whilc the interrupt system was enabled, was suppressed.

SEC. A.51 SUMMA4RY O F INDICATORS 289 ,

20. Data fetch (DF) Cm,Pl
An attempt to fetch data from a protected storage location, whilr
the interrupt system was enabled, is indicated, and, if the corre-
sponding mask bit was 1, the data fetch was suppressed.

An attempt to branch to an instruction a t a protected location,
while the interrupt system was enabled, is indicated, and, if the
corresponding mask bit was I , the operation was suppressed.

21. Instruction fetch (IF) [m,PI

Result Exception

22. Lost carry (LC) imP1

23. Partial field (PF) b,P!

24. Zero divisor (ZD) b,PI

A carry has been lost a t the high end of the result.

An operation failed to use all of the significant operand bits.

A divide operation with a zero divisor was suppressed.

Result Exception, Floating Point Only

25. Imaginary root (IR) b,PI

26. Lost signijicance (LS) b,PI

27. Preparatory shift greater than 48 (PSH) b ,P l

28. Exponent flag positive (XPFP) [m,PI

The operand of a STORF, ROOT operation was negative.

An adding or shifting operation produced a result with a zero fract,ioii
and no overflow.

One operand in a FLP addition was shifted right, relative to the other
operand, by more than 48 bits.

The result of a FLP operation had a positive exponent with an
exponent flag of I propagated from an operand with an exponent
flag of I .

The positive result exponent has gone into the range B 2 +2'",
generating an exponent flag of 1.

The result exponent was in the range +21° > E >= +zg.

The result exponent was in the range +z9 > E 2 + 2 6 .

The negative result exponent has gone into the range E 2 -2'O,
generating an exponent ff ag of 1.

The result of a normalized FLP multiply operation was an order-of-

29. Exponent overflow (XPO) b ,P l

30. Exponent range high (XPH) blpl

31. Exponent range low (XPL) [mPI

32. Exponent underflow (XPU) [m,PI

33. Zero multiply (ZM) blT1

290 sUMM,4€LY D.4TA4 [RPP. A

magnitude zero, with a zero fraction and no generated or prop-
agated exponent underflow.

The remainder after DIVIDE DOUBLE had a negative exponent
E I -21° and a generated exponent flag of 1.

34. Remainder underjlow (RU) Im,PI

Flagging

35. Datajlag T (TF)
36. Datajlag U (UF)
37. Datajlag V (VF)

38. IndexJlag (XF)
Data flag T , U , or V of the current operand was on.

The index flag of the index word just modified was on.

Transit Operation

39. Binary transit (BTR) b,PI

40. Decimal transit (DTR) blP1
A binary VFL LOAD TRANSIT AND SET instruction was executed.

A decimal VFL LOAD TRANSIT AND SET, MULTIPLT, MULTIPLY A N D

ADD, or DIVIDE instruction was executed.

Program

41 to 47. Program indicator zero to six (PGO to P G ~)

These indicators are set by programming only.

Index Result

48. Index count zero (xcz)

49. Index value less than zero (XVLZ)
50. Index value zero (xvz)
51. Index value greater than zero (XVGZ)

52. Index low (XL) P,Tl
53. Index equal (XE) [O,TI
54. Index high (XH) P,TI

[O,TI

P,TI
[OlTI
[OlTI

The count field resulting from an index-word modification was zero.

The value field resulting from an index-word modification was less
than zero, zero, or greater than zero, respectively.

An index compare operation showed the compared field in the speci-
fied index register to be lower than, equal to, or higher than the
corresponding field at the effective address.

Arithmetic Resu I t
55. To-memory operation (MOP)

The operation just executed was of the store type.

SEC. R.51 SUMMARY OF INDICATORS 291

56. Result less than zero (RLZ) [O,TI
The result of a data-arithmetic or radix-conversion operation was
nonzero and negative.

57. Result zero (RZ) [O,TI
The result of a data-arithmetic, radix-conversion, or connective
operation was zero.

58. Result greater than zero (RGZ) [O,TI
The result of a data-arithmetic, radix-conversion, or connective
operation was nonzero and positive.

59. Result negative (RN) [O , T
The result of a data-arithmetic or radix-conversion operation mas
negative, whether zero or not.

60. Accumulator low (AL) [O,TI
6 1. Accumulator equal (AE) [O,TI
62. Accumulator high (AH) [O,TI

-4 data-arithmetic compare operation showed the accumulator
operand to be respectively lower than, equal to, or higher than the
operand a t the effective address.

Mode

63. Noisy mode (NM) W,PI
When this indicator is on, all normalized FLP operations are per-
formed in the noisy mode. (This indicator can be set only by
programming.)

Appendix B
PROGRAMMING EXAMPLES

This appendix contains some short examples of programs essentially
in machine language. The purpose here is not to teach programming, for
a machine of this magnitude will always be programmed in symbolic
form, iior is it claimed that these programs represent the best or the
fastest method of solving each problem on the 7030. The purpose is
merely to illuminate several features of the 7030 that are disciiswd in
various chapters.

Notation
The notation is

incomplete and does not cover some operations not used in the examples.
The following notation wili be used in the examples.

Integers

radix in parentheses:
All integers are written in decimal form unless prefixed by a diflerent

129 = (16)81 = (8j201 = (2) 1000 0001

Floating-point Numbers

An FLP number is written as a (signed) decimal fraction, followed by
the letter E and a (signed) decimal integer representing the power of 2; + signs may be omitted:

0.5 E 0 (fa
0.8 E -4 (0.05)

-0.75 E 12 (-3,072)

The term XFNZERO denotes an injnitesimal (zero fraction, zero expo-
nent, exponent sign negative, and exponent flag I j , which behaves
arithmetically like a true zero. An alternative notation is 0.0 E - 102-1.

Addresses

Addresses are written as two decimal integers separated by a period.
(These Thus 1257.48 is the address of bit 48 in word 1257 of memory.

292

.IPP. B] PROGRAMMING EXAMPLES 293

are not mixed decimal fractions.) Internal registers are referred to by
the addresses listed in Appendix A.3. Index registers are referred to as
x0 to x15 in the index addresses and as 16.0 to 31.0 in the operand address.

Short arithmetical expressions are to be evaluated with carries past
the period being m o d d o 64:

0.64 = 1.0
1257.48 + 0.24 = 1257.72 = 1258.08

3 * 7.48 = 21.144 = 23.16

Half-length Instruction Format

o Operation
M

J

A Address
I

Mode symbols (M is replaced by one or more of the symbols listed

J-index address (omitt,ed in instructions that have none)

I-index address (omitted if no address modification)

below or omitted if thcre are none)

List of M o d e Symbols:

FN FLP normalized
FU FLP unnormalized
F
z

branch if indicator o$ (omitted for “branch if indicator on”)
set indicator to 0 after test

H add 0.32 (half) to value for index branching only
+ add 1.0 to value

- subtract 1.0 from value

VFL Instruction Formats

o Operation
M Mode symbols (M is replaced by symbols listed below)
L Field length (1 to 64)

BS Byte size (1 to 8)
A Sddress
F Offset (0 to 127, may be omitted if 0)
I I-index addresses (there may be one for modifying the address and

another for modifying the offset; either is omitted if not needed)

294 PROGRAMMING EXAMPLES [APP. B

List of Mode Symbols:

v B binary signed
V D decimal signed

VBU

v n r decimal unsigned
binary unsigned (the only one which applies to connectives)

Operation Codes and Suffixes

For greater clarity the operation codes are spelled out i n the examples,

Operation modifiers are partly included in the mode symbols (above)
The suffixes may be one

although mnemonic symbols would ordinarily be used.

and partly shown as suffixes to the operations.
or more of the following:

NEGATIVE

ABSOLUTE

IMMEDIATE

COUNT

REFILL

Progressive indexing is shown by the addition of an imm.ediate indez-
ing code in parentheses after the operation:

(v + 1)
(v - I)

(v + IC), (v - IC)

(v + ICR), (v - ICR)

add immediate to value
subtract immediate from value
(same) and count
(same), count, and refill

The connective-operation codes are followed by a 4-bit code to specify
the connective (see Chap. 7) ; for example, CONNECT with the and con-
nective is written

CONNECT 0001

Indicator branching operations will be written BRANCH IND where IND

is replaced by the appropriate indicator abbreviation as listed in Appendix
A.5. Thus BRANCH xcz means branch on index count zero.

Data Formats

To distinguish program constants, etc., from instructions, one of
these prefixes is used :
INDEX index word consisting of value, count, reJill separated by commas
VALUE signed index value

DATA any other data, such as a FLP number

B.l Polynomial Evaluation (Table B.1)

The polynomial
m

p (s) = 1 UkXk
k = O

is best evaluated by the expression

using repeated floating-point niultiplicatioii and addition.

fioatiiig-point arithmetic with simple indexing.

p = (. . . ((urns + U d) 2 + urn-& + . . .>. + a0
This example illustrates the unirersal-accumulator concept applied to

TABLE B.l. POLYNOMIAL EVALC'ATIOS

100. 0
100.32
101 .0
101 .32
102.0
102.32
103.0

200.0
201 .o
202.0

300.0
301 . O
302.0
. . . , . . .

Statement

LOAD INDEX, Xl, 200.0
LOAD (FN), 301.0 (xl)
MULTIPLY (FN), 201.0
ADD (FX), 300.0 (x l)
COUNT AND BRANCH (-), XI, 101 .o
STORE (FU), 202.0
BRANCH ENABLED A N D WAIT, 10i3.0

INDEX, M.0 - 1.0, M, 200.0
DATA, X

DATA, 1'

DATA, A0
DATA, A 1

DATA, A2

Notes: (1) Set up index register 1.
(2) Load accumulator with initial a, = U I + ~ - I .

(3) Multiply arcuinulator contents (a k) by 2.

(5) Traverse loop 7ti times, each time reducing index value by 1.0.
(6) Store result.

295

(4) Add ak-1.

B.2 Cube-root Extraction (Table B.2)

The cube root
= +q

may be found by means of the recursion formula

Let N be a normalized FLP number with exponent P and fraction 11’.
A suitable choice of a starting value zo will give a high accuracy in very
few iterations.

P
3

For example, a value of zO with exponent

p = - rounded to nearest integer in the positive direction

and fraction
f o = 0.7109375 = 0.1011011 (binary)

will give full 48-bit accuracy for any N in three iterations (k = 3),
except for a possible rounding error in the last iteration. This value of
p is the final exponent of the (normalized) result, and the So value is
selected to give about equal iteration errors at the extreme values of
the final fraction.

A starting value with a fixed fraction was chosen for simplicity in the
programming example. By a more elaborate formula’ i t is possible to
choose a closer value of zo that will yield the desired accuracy by only one
or two applications of the recursion formula. Such a program would be
longer and somewhat faster.

This program shows an effective combination of VFL and FLP
arithmetic.

E. G. Kogbetliantz, “Computation of Sin A , Cos LV and Using an Automatic
(’omputer,” ZBM J. Research and Development, vol. 3, no. 2, pp. 147-152, April, 1959.

296

TABLE B.2. CUBE-ROOT EXTRACTION

Location

100.0
100.32
101 .o
101.32
102.0

102.32
103.32
104.32
105.32
106.32
107.0

107.32
108.0
108.32
109.0
109.32
110.0
110.32
111.0
111.32
112.0

200.0
201 .o
202.0
803.0
204.0
205.0

Statement

LOAD INDEX, X I , 200.0
LOAD (FU), 204.0

ADD (FN), 204.0
STORE (FU), 203.0

ADD IMMEDIATE T O E X P O N E N T (FU), - 1

LOAD (VB, 12, I), 204.0, 117
ADD IMMEDIATE (VBU, 1, 8), 1, 117
DIVIDE IMMEDIATE (VBU, 2,8), (2) 11, 116
STORE ROUNDED (VB, 12, l), 8.0, 117

STORE (FU), 205.0

MULTIPLY (FN), 205.0
MULTIPLY (FN), 205.0

ADD (FN), 204.0
RECIPROCAL DIVIDE (FN), 203.0
ADD (FN), 201.0
MULTIPLY (FN), 205.0
STORE (FU), 205.0
COUNT AND BRANCH, xl, 107.32

.4DD TO FRACTION (FU), 202.0

ADD IMMEDIATE TO E X P O N E N T (FU), 1

BRANCH ENABLED AND WAIT, 112.0

INDEX, 0.0, 3, 200.0
DATA, 0.5 E 0
DATA, 0.7109375 E 0
DATA
DATA, X

DATA, S

Notes

des. (I) Form N/2 by subtracting 1 from exponent.
(2) Place 3N/2 in temporary storage.
(:<) Treating exponent of N as a signed VFL number P , load magnitude into

accumulator exponent position and exponent sign into sign register.
(4) Form P + 1 (to bias subsequent rounding operation in positive direc-

tion).
(5) Divide by 3 (binary 11). Offset is chosen to give signed quotient with

one binary place to right of point for rounding. (Rest of accumulator,
corresponding to FLP fraction magnitude, is cleared.)

(6) Form FLP number 0.0 E p , where p = (P + 1)/3 rounded to integer
(= P / 3 rounded with positive bias). Rounded, signed result is returned
to accumulator exponent position (exponent sign replaces extra quotient
bit). Fraction sign is immaterial.

(7) Form zo = fo E p.
(8) Store zo as first trial root.
(9) Form 2xk3.

(10) Form (3iv/2)/(2xk3 + N).
(11) Add >$.
(12) Store ZE+~.
(13) Traverse loop three times.

291

B.3 Matrix Multiplication (Table B.3)
An m-by-n matrix A and an n-by-p matrix B are niultiplied to produce

an m-by-p matrix C. Each element of A is a single FLP number, the
elements being stored row by row a t consecutive word locations starting
with A.O. Similarly, matrixes B and C are stored row by row starting a t
B.O and c.0, respectively. This program, which is essentially the matrix
multiplication example of Table 11.5, illustrates indexing procedures.

TABLE B.3. MATRIX MULTIPLICATION

Location

100.0
100.32
101 .o
101.32
102.0
102.32

103.0
103.32
104.0
104.32

105 . 0
105.32
106.0

106.32
107.0
107.32

201 .o
202 .o
203.0
204.0

Statement

LOAD INDEX, Xi, 201.0
LOAD INDEX, X2, 202.0
LOAD INDEX, x3, 203.0
LOAD INDEX, x4, 17.0
LOAD INDEX, x5, 18.0
LOAD DOUBLE (FU), 204.0

LOAD FACTOR (FN), 0.0 (X4)
MULTIPLY AND ADD (FN), 0.0 (X5)
ADD IMMEDIATE TO VALUE, X5, I’

COUNT BRANCH AND REFILL (+), ~ 4 , 1 0 3 . 0

STORE ROUNDED (FN), 0.0 (x3)
ADD IMMEDIATE TO VA4LUE:, X3, 1.0
COUNT BRANCH AND REFILL (+), X2,102.0

ADD IMMEDIATE TO VALUE, XI, N
COUNT BRANCH AND REFILL, x3, 101.32
BRANCH ENABLED AND WAIT, 107.32

INDEX, A.O, N, 17.0
INDEX, S.0, P, 202.0
INDEX, C.0, M, 203.0
DATA, XFNZERO

t o o

j o o
ko

Notes: (1) Load index register xl (i o) from i o o , x2 (j o) from j,,, and x3 (k) from ko.
(2) Load x4 (i) from x l (io) and x5 (j) from x2 (j ~) .
(3) Clear double-length accumulator before starting cumulative multi-

(4) Accumulate product element in accumulator.
(5) Increment j by p to advance to next column element of I (.
(6) Increment i by 1 to advance to next row element of A .

(7) Store product element.
(8) Increment k by 1 to advance to next product element.
(9) Increment j o by 1 to start next column of H.

plication.

Traverse innf-r
loop n times. At the end, reset i to io to restart same row of A .

Traverse niiddle loop TJ

times. At the end, reset j , to joo to return to beginning of B .
(10) Increment io by n to start next row of A .
(11) Traverse outer loop m times.

298

8.4
ized Vector (Table B.4)

Conversion of Decimal Numbers to a Floating-point Normal-

A group of 25 decimal fixed-point numbers is to be converted to a
normalized vector of 25 binary FLP numbers. The decimal numbers are
positive, unsigned, and ten digits long. The decimal digits are expressed
in a 6-bit code whose low-order 4 bits are the corresponding binary inte-
gers; thus the field length is 60 and the byte size 6. The depima1 num-
bers are stored consecutively starting a t address D. The vector is to be
“nornialized” by replacing each number F k by the expression

Fl.

(The nieaning of the tprm normalization here differs from that used i11
describing FIJI’ arithmetic.) The vector is to be stored in consecutive
word locations starting at address F.O.

This example shows the IIRC of radix conversion arid progressive index-
ing combined with E’LP operations.

299

300 PROGRAMMING EXAMPLES [APP. B

TABLE B.4. CONVERSIOS OF I ~ C I M A L SUAIEUCRS TO A FLY NORMALIZED VECTOR

Location

100.0
100.32
101 . o

101.32
102 0
103.0
103.32
104 .0
104.32
105.0

106.32
108.0
106.32
107.0
107.32

201 .0
202.0
203.0
204.0

Statement

LOAD IXDEX, XI, 201.0
LOAD INDEX, X2, 202.0
LOAD (FU), 203.0

STORE (FC), 204.0
LOAD CONVERTED (v + I) (1 n i r , 60, 6), 0.60 (xt), 68
STORE (FV), F . 0 (X2)
hfULTIPI~Y (FN), 8.0
ar,o (FN), 204.0
COT'KT BRANCH A\L) REBILL (+), 12, 101.32
STORE ROOT (F N) , 204.0

LOAD (FN), r.0 (x2)
DIVIDE (FN) , 204.0
STORE (FU), F . 0 (X2)
COUNT AND BRASCH (+), X2, 105.3%
BRANCH ENABLED AND WAIT, 107.32

IXDEX, U, 0, 201.0
INDEX, 0.0, 25, 202.0
DATA, XFNZERO

DATA

-
X o t m

Start
--

(4)

(5)

(6)

stop

IYotes: (1) Current ZFb2 to temporary storage.
(2) Convert decimal integer to binary and place in FLP fraction position

of accuniulator, the exponent being zero. Progressive indexing is uscd
to increment the index value by 0.60 after the present operand field is
fetc,hed.

(The exponent need not
be adjusted to correspond to the actual decimal-point position of the
original field, for the subsequent normalization process cancels out the
exponent discrepancy.)

(3) Store Fk temporarily in unnormalized form.

(4) Square Fk.

(5) Place (z F ~ ~) $ ' in temporary storage.
(6) Replace each Fk by normalized value.

B.5 Editing a Typed Message (Table 6.5)

One of the chief uses for the logical-connective operations is in editing
input and output data. Editing may cover a variety of different opera-
tions, and only a few of these will be illustrated in this skeletonized but
useful example. It includes the various connective operations, the left-
zeros count applied to indexing, zero tests, and a byte-size adjustment.

A message, which has been entered on a typewriter like the one on the
7030 console, is edited to delete control characters which appear in the
coded message whenever a control key (such as carriage return) is struck.
Deletion here means removing the control character and closing the gap
(not just replacing the character with a blank). The number of control
characters is not known in advance, and the length of the edited message
must be determined by looking for an END code. The input message is
stored in memory starting at address 300.0, and the block of edited output
data is to be stored a t address 400.0. For subsequent input-output
operations i t is necessary to fill any unused portion of the last word of the
block with 0 bits. A control word for use with read-write instructions,
containing in the count field the number of words in the output block, is
to be made up and stored a t 201.0.

In the 8-bit code used with the typewriter, all control bytes (other than
blank) are distinguished from data by a 1 bit in the high-order position.
The program shown tests this bit in eight characters a t a time. The
left-zeros count is used to locate the control byte (or the leftmost control
byte if there are several among the eight). The control byte is then
tested for the END code, which is 11 11 11 10. Advantage is taken of the
coincidence that the complement of this code is a single 1 bit, which, by a
suitable offset, serves as the mask to isolate the high-order bit in the
previous test for all control characters. (Such a short cut is not neces-
sarily sound programming, but it offers here an additional opportunity
to demonstrate thc flexibility of the VFL system in general and of the
connective operations in particular.)

301

302 PROGRAMMING EXAMPLES [APP. B

Location

100.0
100.32
101 .0

_ _ _

102.0
103.0
104.0
105.0
105.32
106.0
106.32
107.32
108.0

108.32
109.32
110.0
110.32
111.0
111.32
112.0
112 32

200 . 0
200.82
201 .0

TABLE B.5. EDITING A TYPED ~IESSAGE

Statement

LOAD INDEX, XI, 0.0
LOAD INDEX, X2, 0.0
CONNECT IMMEDIATE 0011 (VBU, ‘3, I), (a) 1 1 1 1 1 1111, 63

CONNECT 001 1 (VRI’ , 64, 8), 300.0 (XI)
CONNECT TO MEMORY 0101 (VBU, 64, 8), 400.0 (Xa)

CONNECT FOR TEST 0001 (mu, 64, 8) , 8.0

ADD TO VALI E, 12, 7.17

CONNECT FOR Tp:brr 1001 (VBU, 8, 81, :<W.O (XI), 71

ADD TO VALIIE, X I , 7.17

BRANCH RZ, 102.0

ADD TO VALUE, X I , 200.0
BRANCH RZ (F), 102.0

CONNECT TO MEMORY 0000 (VBU, 56, 8) , 400.0 (X2)
A D I) TO VALUE, x2, 200.32
LOAD INDEX, X3, 201.0
LOAD COUNT, X3, 18.0
STORE INDEX, X3, 201.0
BRANCH XCZ, 112.32
BRANCH ENABLED AND WAIT, 112.0
BRANCH ENABLED AND WAIT, 112.32

VALUE, 0.08
VALUE, 0.51;
I V D * X , 400.0, (1) 201 .o

- d e s : (1) The operand, specified hy irrrnrrdiate addressing, is the !)-hit field
1 11 11 11 11. Specifying a byte size of 1 causes each 1 to he expanded
to an 8-bit byte 0000 0001. Tlrc full operand, thcwforc, consists
of nine such bytes. The connective 0011 and the ofl’set of 63 then
cause the left half accumulator to be filled with the pattern 1000 0000
1000 0000 (The final 1, which spills into the right half, is not
used.)

(2) 64 bits (eight bytes) of input data are placed into the right half accuniu-
lator.

(3) These 64 bits are tentatively stored in the output area.
(4) The data field is anded with tho test pattern in the left half accumulator.

The left-zeros count registcr contains either 64 or the position of the
first ‘,control byte” with a high-order 1 hit.

(5) The left-zeros count is added to hoth the input arid output indexes.
(6) Branch if the result ze1.o iriclicat,or is on, Le., if there is no control byte.
(7) -4 0000 0001 byte from the test pattern is matched against the control

(8) In any case, skip the control byte in the input data by adding 0.08 to

(9) Branch to the beginning of the loop if the result zero indicator is of after

byte; if the control byte is an END code, all result bits are 0.

the index value.

SEC. B.61 TRANSPOSITIOK OF A LARGE BIT MATRIX 303

the last test (not END), thus starting with the 64 bits following the con-
trol byte, which may include several bytes transferred previously but
which now must be offset by one byte. (Multiple control bytes in a
64-bit field will be taken care of one at a time.)

(10) Enough Os are inserted to fill the last word of the block.
(11) The output index value is rounded up to the next full-word address.
(12) The index value from x2 is transferred to the count field of the control

word being made up in x3, dropping the bit-address portion and leaving
only the number of full words in the block.

(13) Test for a zero index count, which could result from an END code in the
first data byte and be interpreted as a word count of 2 1 8 a t the output.

B.6 Transposition of a Large Bit Matr ix (Table B.6)

TABLE B.6. TRANSPOSITION O F A LARGE BIT MATRIX
~~~ 

Location 

100.0 
100.32 
101 .0  

101.32 
102.32 
103.0 
103.32 
104.32 

105.0 
105.32 
106.0 
106.32 

201 .o 
202.0 
203.0 
204.0 

Statement 

LOAD INDEX, XI, 201.0 
LOAD INDEX, X2, 202.0 
LOAD INDEX, x3, 203.0 

CONNECT 0011 (V + I) (VBU, 1, l), N.O (xl) ,  63 ( ~ 3 )  

BRANCH xcz (F), 101.32 
STORE (v + IC) (VBU, 64, S ) ,  1.0 (x2) 
BRANCH xcz (F), 101.32 

SUBTRACT IMMEDIATE FROM VALUE COUNT AND REFILL, X3, 0.32 

LOAD COUNT IMMEDIATE, X2, h' 
ADD TO VALUE AND COUNT, XI, 204.0 
BRANCH xcz (F), 101.32 
BRANCH ENABLED A N D  WAIT, 106.32 

INDEX, a.0, 6 4 * ~ ,  201.0 

INDEX, 0.0, 64, 203.0 
VALUE, - ~ * ~ * 6 4 . 0  + 0.01 

INDEX, B.O, N, 202.0 

Notes 

%art 

Stop 

Notes: (1) Assemble ti4 successive column bits in the right half accumulator by 
indexing the offset from 63 t.0 0. 

( 2 )  0.32 means a 1 in the low-order bit of the 19-bit address in this instruc- 
tion, which matches the low-order position of the offset field; thus the 
effective offset will tic reduced by 1. 

(3) Branch if the index count is not zero. 
(4) Store 64 row bits of the transposed matrix. 
(5) Traverse the loop n times. 
(6) Reset x2 count to n. 
(7) Advance the column index to  the start  of the next colunm by subtrttctilig 

the length of the rolunin (64n2 words) and adding 0.01. 



3 04 PROGRAMMING EXAMPLES [APP. B 

In a computer with efficient bit-handling facilities, bit matrixes can be 
useful tools. For instance, computing time and storage space for sparse 
matrixes can be saved by storing only the nonzero elements in consecutive 
locations and using bit matrixes to indicate the position of successive zero 
and nonzero elements in the complete matrix. The present example of 
transposing such a bit matrix illustrates the use of bit address and offset 
indexing with VFL operations (see Table B.6). 

A square 64n-by-64n bit matrix beginning a t  address A.O is to be trans- 
posed and stored a t  nonoverlapping addresses starting at  R.O. The 
technique chosen here is to assemble 64 successive bits of a column into 
a 64-bit word in the accumulator and then store that word in a row of the 
transposed matrix. 

A more efficient, but longer, program can be written by making use of 
the bit-interleaving ability of the connective operations. The core of 
such a program is the transposition of a small 8-by-8 matrix within the 
accumulator; this is done in eight steps, 8 bits a t  a time (see Table B.7). 
By dividing the larger matrix into a group of 8-by-8 submatrixes, each 
submatrix may be transposed separately and stored a t  the mirror-image 
position with respect to the main diagonal of the full matrix. The full 
program, not shown here, would be almost four times as fast as that of 
Table B.6. 

TABLE B.7. TRANSPOSITION OF A N  8-BY-8-BIT MATRI\ 

Location 

100.0 
100.32 
101 .o 
101.32 
102.32 
103.0 
103.32 
104.32 

201 .0 
202 .0 

Statement j .votes 

LOAD IVDEX, X I ,  201.0 
LOAD INDEX, X2, 202.0 
STORE ZERO, 9.0 
CONNECT 0111 (V + 1 )  (XBC, 8, I), 0.08 ( X I ) ,  7 ( 1 2 )  
SUBTRACT IMMEVIATE FROM VALUE A\V COUXT, X-2, 0.:<2 
BRANCH XCZ (F), 101.32 
STORE (VBU, 64, 8), A.O 
BRANCH ENABLEI) AND *AAIT, 104.Y" 

I INDEX, A.0,  0, 201.0 
INDEX, 0.0, 8, 202.0 

Notes: (1) Clear right half accumulator. 
(2) Or 8 bits froni A.O into the accumulator, 8 hits apart. 
(3) Store transposed matrix back into A.O. 



INDEX 

Absence of information, distinguishing, 

Absolute error, 103 
Absolute-value form (see Numbers, nega- 

Access to disks, 186 
Accumulator, 20-24, 208-210 

66 

tive) 

addressing, 24, 276 
examples, 300, 302 

bit numbering, 79, 80 
byte size, 80 
carries, 81, 84 
clearing, 81-90 
in FLP, 106-121, 276 
implied operand address, 79, 125, 156 
loading, 81-90 
overflow, 81, 84 
push-down, 126 
selective alteration, 90 
sign, 22, 83, 107 
in subroutine linkage, 134 
universal, 79, 113 

illustrated, 295 
in VFL, 79-90 

Accumulator registers (A, B), 22-24, 

Accumulator sign byte register (S), 22, 
208-210, 276 

83, 107, 276 
holds data flags, 83, 108 
holds zone bits, 80 

Accuracy (see Checking; Precision) 
A d d  absolute, modifier for, 24 
Adders, 49, 50, 204, 224 

parallel and serial, 208-211 
Adding to memory, 22, 84-86, 115 
Addition, FLP, 22, 95-97, 115, 116 

of F L P  singularities, 109 
logical (Or function), 27, 88, 89 
speed, 49, 50, 218 

(See also Subtraction) 
VFL, 83-86 

Address, base (see Base address) 
control word, 181 
data word, 181, 249-251 
direct, 30, 153, 184 
effective (see Effective address) 
field, 76 
immediate (see Immediate address) 
implied, 79, 125, 156-159 
index (see Index address) 
indirect, 30, 267 
notation, 292, 293 
operand (see Operand address) 
refill, 165-175, 181, 182 
relative, in array, 152, 153 
variable-length, 35, 129, 167 

Sddress assignment (see Address num- 

Address coding, 14, 52-58 
Address interlacing, 18, 202, 238 
Address modification, for exchange, 248 

by indexing, 27, 28, 124-127, 151- 

and indirect addressing, 167, 168 
omitted if index address zero, 19, 126 
by programming, 77, 150 
in 7951, 260 
(See also Index arithmetic; Index 

bering) 

157 

registers; Indexing) 
Address monitoring (see Memory protec- 

Address numbering, bits, 76, 77 

Address protection (see Memory protec- 

-4ddress sign, 129 
Addressable registers, 24, 278 
Adjustments, 262-264 
Advancing by one, 161 
ALGOL programming language, 62 
All-ones count, 24, 90, 276 
Allocation, 194, 198, 229 

tion) 

words, 18, 202, 238 

tion) 

305 



306 INDEX 

Alphanumeric (alphabetic-numerical 
code, 78-80 

(See also Character code) 
Alphanumeric comparison, 26, 66, 67, 77 
Alphanumeric data, 26, 52, 78 

(See also Variable field length) 
.ilphanumeric data processing, 6, 44, 

And circuit, 89, 224 
And function, 27, 35, 88, 89 
Applications, 44, 59, 254-256 

of 7030, 5, 6 
(See also Data processing) 

162 

Arabic numerals, 267-270 
Arithmetic bus counter, 240 
Arithmetic mode in 7950 system, 265 
Arithmetic operations, data, 24-27, 277- 

280 
index, 27, 282, 283 
in 7951, 257 
(See also Fixed-point arithmetic; Float- 

ing-point arithmetic; Variable field 
length) 

A4rithmetic result indicators, 84, 112: 290, 
29 1 

(See also Indicators) 
..irithmetic unit, component count,, 216, 

217 
data, 208-218 
efficiency, 234 
index (see Instruction unit) 
parallel, 22-24, 208-218 
serial (see Serial arithmetic) 
speed, 217, 218 

Array, data, 151-162 
Ashenhurst, R. L., 100n. 
Assembling (see Programming language) 
Assembly, byte, 19, 248-252 
Assignment (see Address numbering; 

Asynchronous operation, 231 
Atomic Energy Commission, U.S., 2 
Attention request, 184-186, 195 
Attention request indicators, 287, 288 
Automatic programming (see Program- 

-4uxiliary storage (see External storage) 

Allocation) 

ming language) 

B line (see Index registers) 
Backward transmission, 285 
Ballance, R. S., 228 
Base address, array, 152, 153, 161-163 

table, 53-55, 196 
Bashe, C. J., 274 
Bemer, R. W., 60, 63n. 
Bias in rounding, 100, 101 

Binary addressing, 66, 76, 77 
(See also Radix, address) 

Binary arithmetic, choice, 49-59 
VFL fixed-point, 25, 26, 80 
(See also Floating-point arithmetic) 

Binary-coded decimal (BCD) digits, 43, 

Binary comparing sequence, 26, 66, 67 
Binary computers, 273 
Binary data transmimion, 53 
Binary-decimal conversion (see Radix 

Binary-decimal modifier (see Modifier, 

Binary digit (see Bit) 
Binary logic (see Logical operations) 
Binary numbers (see Radix) 
Binary point (see Radix-point alignment) 
Bit, 39-45 

distinctive type face, 19n. 
Bit address, 29-35, 259 

example of use, 162, 301-304 
resolution needed, 38 
in table look-up, 54-56 
in VFL instruction, 77, 129 

46, 68, 69 

conversion) 

radix) 

Bit branching, 28, 136 
Bit indexing, 30, 77, 162 
Bit interleaving, 91, 303, 304 
Bit manipulation, 89-91 
Bit matrix transposition, 303, 304 
Bit numbering, 66, 76, 77 
n i t  setting, 89, 136 
Bit test, by bit branching, 28, 136 

by connectives, 90 
instruction, 131, 275, 285 

matrix, 303, 304 
Hit transposition, in buffer, 186 

Bite respelled as byte, 40 
Blaauw, G. A., 33, 75, 150 
Blank, 62-68 

on cards, 72 
Bloch, E., 202 
Block of data, 39, 40, 163 

Blocks, multiple, 183, 252 
Blosk, R. T., 206n. 
Bookkeeping (see Housekeeping) 
Boolean algebra (see Logical operations) 
Bosset, J., 201 
Boundary control (see Memory protec- 

tion) 
Branch condition anticipated, 207, 230- 

238 
Branch operations, 28, 135, 136, 283-285 
Branching, 21, 133-136, 146-149 

for input-output, 182-188 

on bit, 28, 131, 285 
execution of, 207 



Branching, with index counting, 136, 
161,275, 284 

on indicator, 10, 28, 284 
instruction format, 128-131, 275 
prevented for execute, 147-149 
relative t o  instruction counter, 135, 

136, 284 
Bright, H. S., 62%. 
Brillouin, L., 45n. 
Brooks, F. P., Jr., 5, 33, 75, 8 6 4  133 
Buchholz, W., 1, 17, 33, 42, 60, 75, 122, 

Buffer registers, in CPU,. 205-207, 228, 
179, 248, 274 

229 
in exchange, 250 

Buffer storage, 186-188 
Buffering in memory, 187, 188, 248 
Bull, Compagnie des Machines 

Burks, A. W., 43n. 
Business data processing (see Data proc- 

Busy condition, in memory, 232-235 

Byte, 39. 40 

Byte assembly, 19, 248-252 
Byte conversion for tape, 71 
Byte mask, 260, 261 
Byte size, 40 

(GAMMA 60), l ln . ,  40, 201 

essing) 

on memory bus. 206 

basic data unit in 7951, 258, 259 

of character code, 63-66, 78, 79 
connective operations, 90, 91 
examples of adjustment, 301-304 
indexing of, 127 
of sign byte, 82, 83 

Byte transmission, input-output, 249-251 

Calling routine, 147 
Campbell, S. G., 92, 254 
Capital letter, 62-69 
Card Programmed Calculator (CPC), 

Card-to-tape conversion, 189 
Cards (see Circuit packaging; Punched 

Carr, J. W., 100n. 
Carry look-ahead, 210 
Carry loss, unnormalized FLP, 112, 115 

Carry-propagate adder, 210, 211 
Carry-save adder, 210, 21 I 
Case shift, 67-69 
Casting-out-three check, 216 
Catena, 40 
Cell, 37, 38 

94 

oards) 

VFL, 84, 85 

(See also Field; Word) 

Central processing unit (CPV), 17, 20-24, 
203-227 

1)uffering action, 205-207, 228, 229 
clock cycle, 204, 20!1 
component count, 216, 217 
multiple CPUs, 15, 195 

signal, from another CPU, 287 
to another CPU, 276 

Chain flag, 164, 181, 182, 251, 252 
Chain printer, 63, 186 
Chaining, in exchange, 251-253 

multiprogramming, 193 

of index and control words, 29, 172- 

Channel address, 181-185, 249-252, 288 
Channel address register, 21, 276 
Channel signal, 185, 186, 252, 288 

button for, 191 
Character, 39, 40 

special, 62-69, 264 
Character code, 40, 52, 60-74 

byte size, 63-66, 78, 79 
in 7030, 26, 60, 61 
standardization, ix 
uniqueness, 69, 70 
(See also Code) 

Character sets, 60-78 
Character subsets, 62-65 
Characteristic, 95%. 

(See also Exponent) 
Checking, automatic, 2, 3, 216 

rasting-out-threes, 216 
component count for, 217 
for double errors, 17 
by duplication, 209 
in look-ahead, 207, 240-246 
for machine malfunction, 194, 252 
in memory, 17 
parity, 66, 209 

(See also Error correction) 
Checkout (see Program debugging) 
Circuit packaging, 7, 223-225 
Circuits, 7, 218-223 
Classification of information, 256 
Clear and add, 84 
Clearing, acciimulator, 81, 84, 90 

Clock cycle, CPU, 204, 209 
Clocks (see Interval timer; Time clock) 
Cocke, J., 228 
Codd, E. F., 192, 200n. 
Code (see Character code; Control code; 

Code translation, 26, 53-56 

Coincidence (see Matching) 

182 

for input-output, 71, 72, 203, 251 

memory, in 7951, 265, 266 

Decimal digits; Xumbers, coding) 

for comparing, 67 



308 

Collating (comparing sequence), 66-6!) 
Command (see Instruction) 
Common control for input-output, 248 
Communication between computers, 180, 

189, 190 
(See also Data transmission) 

Comparing sequence, 66-69 
Comparison, 26, 257, 266 

alphanumeric, 26, 66, 67, 77 

index, 159 
FLP, 110-116 

VFL, 84-86 
Comparison indicators, 84, 1 12, 291 

Compiler, 8, 198, 256 
Complement (see Inversion; Numbers, 

Complexity, equipment, 8, 50 

Component count, 7, 216-225 
Component mounting, 223-225 
Compromise, 15, 16, 68, 80n. 

Computed wiring layout, 226 
Computer, general-purpose, 5, 6 

(See also Indicators) 

negative) 

instruction set, 131 

need for, vii 

solid-state, 1, 273 
(See also Data processing; Scientifir 

computing) 
Concurrent operation, 202-204 

of input-output, 180, 186-188, 248, 240 
local and nonlocal, 11, 192 
look-ahead unit, 230-238 
performance estimate, 32 
read-process-write cycle, 172 
(See also Multiprogramming) 

condition anticipated, 207, 230-238 
restricted indexing, 128, 135 

Conjunction (And function), 27, 35, 88 
Connective code, 88, 89, 281, 282, 294 
Connective operations, 27,89-91,281,282 

Conditional branching, 28, 131, 136 

all-ones count, 24, 90, 276 
examples, 301-304 
execution of, 208 
instruction format, 275 
left-zeros count, 24, 90, 276 
need for, 15 

Console, operator’s, 13, 14, 193 

Construction, 223-227 
Control bits, setup in 7951, 265 
Control code, 52, 60 

in CONTROL instruction, 183 
delete on paper tape, 67, 68 

for input-output devices, 63, 183 
null, 67, 68 

as input-output unit, 14, 190, 196 

END,  72, 301-303 

Control field, 266 

Control unit, disk, 20, 193, 203-205 

Control word, 155, 162-178 

(See also Identifier field) 

tape, 189 

compatible with index word, 29, 182 
copying, 253, 286 
for input-output operatiom, 29, 181- 

use in exchange, 249-253 
(See also Index word) 

Control word address, 181 
Control word modification, 249-253 
Conversion (see Code translation) 
Core, magnetic, 1 
Core memory (see Memory) 
Cost, effect of number coding, 48 

reduction by multiprogramming, 12 
related to performance, 5, 6 

Count, control word, 162-166, 181, 182 
in exchange, 249-252 
index, 28, 153-160 

184 

combined with branching, 136, 161 
Counting. 42, 255 

in memory, 7951 feature, 26%. 267 
by VFL instruction, 25, 85 

CPU (see Central processing unit) 
Cube-root program, 296-297 
Cumulative multiplication, 23-35, 79 

application, 101, 160 
FLP, 115 
VFL, 86 

Current switching circuits, 218-221 

Dagger function (Nor) ,  88 
Data-arithmetic operations, 24-27, 

Data collection, 255 
Data definition, 75 
Data fetch, 17-22, 206, 207, 240, 341 

indicator, 289 
Data field (see Field) 
Data flag, 83, 107, 108, 290 
Data flow, CPU, 204-207 

277-280 

exchange, 185, 235-237, 249-252 
input-output, 48, 49, 180 
in 7951, 257-261 
smoothing of, 229 
(See also Data transmission) 

Data format, 33-41, 51 
conversion, 75, 87 
interpretation, 56 
notation, 292-294 
(See also FLP data format; VFL data 

format) 
Data hierarchy, 39, 40 



Data interchange (sw Swapping) 
Data memory, separate, 233-238 
Jlata modification, problem with look- 

Data ordering, 163-165, 256, 265-267 
Data processing, alphanumeric, 6, 44, 162 

computers for, 59, 273 
need for variable field length, 15, 37 
nonarithmetical, 254-257 

ahead, 230 

I h t a  selection pattern, 260, 261 
Data sequence, left to right, 76, 77 
Data source and sink, 256-259 
Data stream (see Data flow) 
Data transformation (see Editing; Table 

Data transmission, 151 
any bit pattern, 53 
control codes, 63 
with control words, 155, 162-166 
exchange, 248-252 
input-output, 48, 49, 179-190 
operations, 28, 36-41, 285 

instruction format, 275 
serial, 180 

Data word address, 181, 249-251 
Davis, G .  M., 125% 
Debugging (see Program debugging) 
Decimal addressing (see Radix, address) 
Decimal arithmetic, 26, 27, 80, 208 

Decimal-binary conversion (see Radix 

1)ecimal computers, 273 
llecimal digits, binary-coded, 43, 46, 68, 

look-up) 

choice of, 42-51, 59 

conversion) 

69 
byte size, 55, 78, 79 
in character set, 62, 67 
2-out-of-5 code, 53 

Decimal multiplication and division by 
subroutine, 26, 208, 278 

Ilecimal numbers (see Radix) 
Decimal point (see Radix point) 
Delay, circuit, 7, 219-222 

due to memory conflicts, 228 
involved in buffering, 187, 188 

Delay-line memory, 43 
Delete code on paper tape, 67, 68 
Deletion, record, 163-177, 266 

zero, on tape, 37 
Demand fluctuation, 229 
Design objectives, 2 
Detail file, 175, 266 
Difference (see Subtraction) 
Digit, 42 

Digital computer (see Computer; Data 
(See also Bit; Decimal digits) 

processing; Scien tifir computing) 

309 IKDEX 

Direct address, 30, 153, 184 
Direct index arithmetir (SPC Index 

Lhahling interrupts (see Interrupt) 
Disassembly, word, 19, 248-251 
Disjunction (Or function), 27, 88, 89 
Disks, 19, 179-187 

arithmetic) 

access to, 184, 186, 193 
high-speed, 4, 20, 203-205 

contributes to performanre, 10 
as multiprogrammable facility, 1% 

Division, 23-26, 79, 208-216 
decimal, by subroutine, 26, 208 

quotient generation, 77n., 117, 211-215 
remainder, 86, 115 
scaling not needed, 26, 86, 87 
speed, 15, 50, 218 
VFL, 26, 86, 87, 208 
by zero, 26, 85-87, 110 

FLP, 95-97, 109-118 

Double card, 217-225 
Double-length FLP, number, 25. 107, 108 

Double-precision arithmetir, I 19-121 
Dreyfus, P., l l n .  
Drift transistors, 218 
Dunwell, S. W., xi, 2n. 
Duplicate circuits for checking, 209 

operations, 104, 116-121 

Ease, of programming, 8, 151 

Editing, 9, 52, 256 
of use, 43 

example, 301-303 
natural data units, 35, 36, 75 
not done by exchange, 250 
for printing, 56-58, 75, 267 
separate computer, 3 

Effective address, 21, 151-153 
loading into index register, 167, 168 
monitoring, 31, 196 
in progressive indexing, 161, 162 
(See also Address modification; Oper- 

and address) 
Efficiency, arithmetic unit, 234 

Elapsed time (see Interval timer) 
Element address in array, 152, 153 
Ellis, T. O., 164n. 
Emitter follower circuit, 222, 223 
Enabling interrupts (see Interrupt) 
End of operation, input-output, 185, 186, 

E N D  code, 72, 301-303 
Endless loop, 148, 194, 200 
Equality (see Comparison; Matching) 
Equals (symbol), 70 

storage, 46-49 

252, 253 



Equipment check indicators, 287 
Equipment choice, 8, 9, 50 
Equipment count, 7, 216-225 
Error from malfunction, 194, 252 
Error analysis, 100 
Krror correction, nittomatic, 2, 3, 216 

on disks, 20 
for input-output, 66, 203 
in look-ahead, 207, 243 
in memory, 17 

Error detection (see Checking) 
Error recording, 216 
Escape character, 63 
Even parity, 66, 90 
Exception fixup, 8, 138-146, 183 
blureption monitoring, by interrupt qys- 

tem, 137, 195 
in set-up mode, 259, 264 

fixed-program computer, 15, 250 
input-output channels, 19, 20, 179 180, 

peak traffic, 185, 235-237, 251 

Kxchange, 3, 203-205, 248-253 

193 

1Sxchange memory, 249, 250 
Ezclusitw OT fiinction, 27, 88 
Ezectctr operations, 134, 146-149, 286 
Exzsterrce in memory, 262 
Exponent, FLP, 25, 94, 95, 104, 105 

arithmetic, 118, 208, 216 
(See also FLP data format) 

Exponent flag (tag), 25, 98, 107-109 
Exponent flag negative (see Infinitesimal) 
b:xponent flag positive, 289 

Exponent overflow, 98-113 
Exponent range indicators, 112, 11:I 
Kxponent underflow, 98-113 
Extended character set, 60, 78 
External storage (tapes or disks), 19, 29 

(See also Infinity) 

179, 248 
transmission rate, 48, 49 

Input-output units) 
External units (see External storage; 

Extraction, data field, 37 
(See also Logice! operations) 

Facility, mnltiprogrammable. 192, 193 
Factor register, 23, 86, 276 
Fast memory (sep Memory) 
Fault location, 2 

(See also Malfunctioni 
Fetching, 180 

(See also Data fetch; Instruction fetch) 
Field, 39, 40, 257 

packing and extracting, 37 
partial, 84, 112, 117-119, 289 

Field address, 76 
Field comparison, 86, 116, 278 
Field length, 39, 77, 78 

in connective operations, 89, 90 
fixed, 36, 37, 47 
indexing of, 127 
(See also Variable field length) 

File, 39, 40, 175, 260 
File maintenance, 175-177, 256, 265- 

File processing (see Data processing) 
Fingers, counting on, 42 
Fixed field length, 36, 37, 47 
Fixed-point arithmetic, data format, 34, 

267 

80-83 
problems with, 92-94 
hy unnormalized FLP, 103, 115-119 
bv VFL. 75 

Fixip, exception, 8, 138-146, 183 
Flag (see Chain flag; Data flag; Exponent 

flag; Index flag) 
Flag indicators, 290 
Flip-flop, 223 
Floating-point (FLP) arithmetic, 94-1 04 

division, special rules, 117, 118 
fractional, 114 
noisy mode, 25, 102, 113, 114 
normalized, 25, 97, 103 

modifier, 106, 280 
shifting, 95, 100, 105 
on singularities, 108-1 10 
unnormalized, 97, 103 

addition overflow, 115 
as fixed-point arithmetic, 103, 115- 

to indicate significance, 100-103 
for multiple precision, 119 

119 

(See also Multiple-precision arithmetic ; 
Precision; Range; Rounding; 
Scaling) 

Flow (see Data flow; Instruction fiow) 
FLP arithmetic unit, 208-218 
FLP data format, 25-34, 104-108 

conversion to and from, 85 
notation, 292, 293 

FLP indicators, 112, 113 
FLP instruction format, 106, 126-128, 

FLP number, 94-105 
275 

singularity, 96-99, 108-119 
(See also FLP data format) 

FLP operations, 24,25, 114-118, 277-280 
modifiers, 106, 280 

Forced input-output termination, 253 
Forced interrupt, 148 
Forced zero, 86 
Forgie, J. W., 201 



ISDEX 311 

IBM SSEC (Selective Sequence Elec- 
tronic Calculator), 192 

I S M  24, 26 keypunch, 63n., 68 
IBM 604, 37 
IBM 650, 1, 10, 274 

instruction in accumulator, 147 
two-address instructions, 123 

instruction format, 124 
IBM 701, 1, 192, 274 

IBM 702, 1, 189n., 274 
IBM 704, 1, 10, 274 

arithmetic, 81, 94, 119-121 
circuit speed, 7 
indexing, 154 
instruction format, 124, 181 
program print-out, 57 

IBM 705, 1, 274 
arithmetic, 81 
input-output system, 189n. 
program print-out, 57 
variable field length, 38, 77 

IBM 709, 10, 274 
control word, 164, 166 
indexing, 154 
indirect addressing, 167 
instruction sequencing, 134n., 117 
(See also IBM 704) 

IBM 727 tape unit, 20 
IBM 1401, 38, 63n. 
IBM 7030, 17, 274 

IBM 7070, 164, 274 
IBM 7080, 274 

IBM 7000, 274 

IBM 7950 system, 258 

Project Stretch computer, 4, 5 

(See also IBM 705) 

(See also IBM 704; IBM 709) 

IBM 7951, 257-271 
relation to Project Stretch, x 

Identifier field, record, 40, 163 
Identity function, 88 
Immediate address, 30, 153, 241 

example, 297-304 
in input-output instructions, 183, 184 
in VFL instructions, 77, 280 

Immediate index arithmetic, 129, 282, 
283 

(See also Index arithmetic) 
Implication function, 88 
Implied address, 79, 125, 156-159 
Increment, index, 153-159 

combined with count, 28, 159, 160 
and refill, 28, 166 

in 7951, 260, 261 

restricted, 128, 135 
truncated, 156 

Index address, 21, 124-130, 155-157 

Format (see Da.ts format; Instruction 
format) 

FORTRAN programming language, 95n. 
Forwarding in look-ahead, 240, 241 
Four-address instruction, 123 
Fraction, compared to integer, 47, 81, 82, 

111 

arithmetic on, 118, 208, 216 
(SPe also FLP data format) 

FLP, 25, 94, 95, 104-108 

Freeman, H., 200n. 
Freiman, C. V., 211n. 
Frequency count, 257 
From bit, 240 
Full-word address, 35, 129 
Full-word instruction (see Instruction 

length) 

GAMMA 60, Bull, l l n . ,  10, 201 
Gap, interblock, 182 
Gate (see zlnd circuit; Or circuit) 
General-purpose computer, 5, 6, 59 
Generality, applications, 4, 6, 59 

features, 9 
input-output, 179, 188-1 90 

Generated overflow, 112 
Generated underflow, 11 2 
Gill, S., 134n., 201 
Goldstine, H. H., 4312. 
Greenstadt, J. L., 274 
Group of rerords, 163, 164, 174-177 

Half-word address, 35, 129 
Half-word instruction (see Instruction 

length) 
Halt (see Stop) 
Hamilton, F. E., 274 
Herwitz, P. S., 254 
Hierarchy, data, 39, 40 

Housecleaning mode, look-ahead, 246, 

Housekeeping, built into 7951, 265 
and look-ahead design, 229, 230 
reduced, by indexing, 151, 160, 178 

by universal accumulator, 79 
Human intervention (see Operator inter- 

vention) 

memory, 229 

247 

Z address, 126-130, 157 
IBM CPC (Card Programmed Calcu- 

lator), 94 
- 

IBM NORC (Naval Ordnance Research 
Calculator) , 94 



312 INDEX 

Index arithmetic, 27, 153 
operations, 27, 28, 282, 283 

(See also Address modification) 
Index arithmetic unit, 21, 207 
Index branching, 136, 161, 275, 284 
Index comparison, 159 
Index counting (see Count) 
Index flag, 164, 290 

Index incrementing (see Increment) 
Index memory, 19, 206, 207 
Index registers, 27, 28, 126, 276 

number of, 14, 27, 28, 156 
stored in index memory, 19, 207 
(See also Address modification; Index 

instruction format, 156, 157, 275 

(See also Chain flag) 

address; Index arithmetic) 
Index result indicators, 290 
Index value, 27, 28, 151-165 

(See also Data word address) 
Index word, 19, 28, 155-166 

format, 127-129, 275 
(See also Control word) 

Indexing, of bit address, 30, 77, 162 
initialization, 154, 165 
by instruction counter, 135, 284 
multiple, 9, 155 
progressive (see Progressive indexing) 
termination, 153-160 
(See also Address modification) 

Indexing level in 7951, 260, 261 
Indexing pattern in 7951, 256-264 
Indicator, 10, 28, 287-291 

accumulator equal, 291 
accumulator high, 291 
accumulator low, 291 
address invalid, 288 
banary transit, 85, 290 
channel busy reject, 288 
channel signal, 185-191, 252, 288 
CPU signal, 287 
data fetch, 289 
d a t a f a g  T ,  U ,  or V, 290 
data store, 288 
decimal transit, 85, 290 
end of operation, 288 
end exception, 288 
exchange check reject, 287 
exchange control check, 287 
exchange program check, 288 
execute exception, 148, 288 
exponent f a g  positive, 289 
exponent overfow, 289 
exponent range high, 289 
exponent range low, 289 
exponent underflow, 289 
nmaginary root, 111-113, 289 

Indicator, index count zero, 290 
index equal, 290 
index jlag, 290 
index high, 290 
index low, 290 
index value greater than zero, 290 
index value less than zero, 290 
index value zero, 290 
instruction check, 287 
instruction fetch, 289 
instruction reject, 287 
lost carry, 84, 85, 112, 115, 289 
lost significance, 113, 289 
machine check, 287 
noisy mode, 113, 291 
operation code invalid, 288 
partial field, 84, 112, 117-119, 289 
preparatory shift greater than @, 113, 

program iizdicator zero to six, 290 
remainder under j lm ,  113, 290 
result greater than zero, 291 
result less than zero, 291 
result negatiea, 291 
result zero, 90, 291 
time signal, 200, 287 
to-memory operation, 85, 112, 290 
unended sequence of addresses, 288 
unit check, 288 
unit not ready reject, 288 
zero divisor, 85, 110-112, 289 
zero multiply, 111-113, 289 

Indicator register, 21, 28, 276 
Indicators, branching on, 28, 136, 284 

289 

data flag, 112, 290 
FLP, 112, 113 
held in look-ahead, 239 
for interrupt, 137-139, 195, 196 
testing of, 10, 28, 131 
VFL, 84, 85 

formation in 7951, 267 

and address modification, 167, 168 
in input-output instructions, 184 
by separate instruction, 9, 131, 167 
similar to execute, 146 
(See also Operation, LOAD VALUE 

EFFECTIVE) 

Indirect address, 30 

Indirect addressing, 27, 153, 204 

Indirect indexing, 167 
Inequality (see Comparison; Exclusive or 

function; Matching) 
Infinitesimal, 96-98, 108-113, 292-300 
Infinity, 96-98, 108-113 
Information, absence of, 66 

measure of, 8, 36, 45 
Information-channel capacity, 49 



Information content, instructions, 9, 
128-13 1 

numbers, 45-49 
Information retrieval, 254-256 
Initial program loading, 186n. 
Initialization, indexing, 154, 165 

Inner product, 101, 116 
Input by key-recording, 68, 69 
Input-output , 179-1 9 1 

7951 set-up, 265 

reject indicators, 185, 287, 288 
status indicators, 288 

Input-output channels, 19, 20, 179-193 
number of, 249 
(See also Channel address; Channel 

signal) 
Tnput-output data, 39, 40, 175, 260 
Input-output interrupts, 137 
Input-output operations, 29, 180, 181, 

285, 286 
control, 252 
control words, 29, 181-184, 250-253 
rnd, 185, 186, 252, 253 
example, 172-177 
forced termination, 253 
instruction format, 126, 127, 181, 

in multiprogramming, 199 
secondary addresses, 184, 190, 253 

Input-output units, 179, 180 
allocation, 194, 198 
buffering, 186-188, 248 
concurrent operation, 11-13 
control codes, 63, 72, 183 
on exchange, 20, 203-205, 248 
interface connection, 188-190 
\peed, 180, 235-237 

275 

Insertion, record, 163, 173-177, 266 
Institutr for Advanced Study (Princae- 

Initruction, a h  data, 150, 229, 230 
frequency, 130 
information content, 9, 128-131 
neighbors executed concurrently, 11 
notation, 8n., 292-294 

Instruction counter, 21, 134, 135, 207 
held in look-ahead, 239 
in relative branching, 135, 136, 284 
storing, 28, 134, 135, 275, 284 

after interrupt, 139-145 
by separate instruction, 9, 131 

ton), 43 

Inalructzon counter bit, 240 
Instruction decoding, 128-131 
Instruction exception indicators, 288, 

Instruction fetch, 17, 22, 207 
289 

indicator, 289 

INDEX 31 3 
Instruction flow, CPU, 206, 207 

concurrency, 1 I 
delayed by branch, 236 
interlocks (see Interlocks) 
smoothing of, 229 
(See also Instruction counter) 

Instruction format, 125-127, 275 
early computers, 122-124 

input-output, 126, 127, 181 
interpretation of, 56 
for 7951, 265 
VFL, 77, 126, 127 

Instruction length, 21, 126-131 
for branching, 135, 136 

Instruction memory, separate, 233-238 
Instruction modification, 150 

problem with look-ahead, 229, 230 
(See also Address modification; Modi- 

FLP, 106, 126-128 

fier) 
Instruction prefix, 131, 135, 167 
Instruction sequencing (see Branching; 

Execute operations; Instruction 
counter; Instruction flow; Interrupt) 

Instruction set, 24-29, 277-286 
complete, 131 
simplest possible, 131, 151 
symmetrical, 121 
systematic, 9, 10, 130 
(See also Operation) 

Instruction stream (see Instruction flow) 
Instruction unit, 17-21, 206, 207 

buffering action, 207, 229 
component count, 217 
speed, 234 

Instruction-unit counter, 240 
Integer, compared to fraction, 46-48, 81, 

82 
notation, 292 

Integer arithmetic (see VQL operations) 
Interblock (interrecord) gap, 182 
Interchange (see Swapping) 
Interface, 188-190 
Interference between programs, 194 
Interlaced (interleaved) addresses, 18, 

Interleaving of bits, 91, 303, 304 
Interlocks, instruction, 22, 204-207 

look-ahead counters, 240-243 
need for, 11, 12, 229, 230 

202, 238 

Internal operand bit, 240 
Internal registers, 30 

International Business Machines (IBM), 
(See also Machine registers) 

1 
(See also specific IBM machines) 

Interpretive console, 14, 190, 196 



314 INDEX 

Interpretive programming, 87, 147, 195 
Interrupt, 133, 134 

disabling and enabling, 139-145, 195, 

during multiprogramming, 199, 200 
196, 252 

forced, 148 
from input-output, 184-186, 252 
interlocks needed, 11, 12, 229, 230 
look-ahead recovery, 16, 230, 246, 247 
masking, 138-146, 195, 196 
multiple levels, 145, 146 
simultaneous, 139-145 
supervisory control, 198-200 
suppression, end-of-operation, 185, 286 

Interrupt address register, 21, 138-146, 

Interrupt system, 21, 30, 31, 136-146 
for multiprogramming, 13, 195-200 
(See also Indicators) 

276 

Interrupt table, 138, 139, 196 
Interval timer, 31, 135, 276 

Inversion, bit, 27, 89 

Italicized digits, 68, 70 

in multiprogramming, 194-197 

branch-test bit, 136, 285 

J address, 126, 157 
Jumping (see Branching) 

Key field (identifier field), 40, 163 
Keyboard, 68, 69 
Keypunch, 63n., 68 
Kilburn, T., 150n. 
Kogbetliantz, E. G., 296n. 
Kolsky, H. G., 228 
Kuhie, E. C., 274 

Language (see Instruction set; Program- 

Leading zeros (see Floating-point arith- 

Left-to-right data sequence, 76, 77 
Left-zeros count, 24, 90, 276 

use in division, 117-119 
Leftmost-one identifier, 138-140 
Leiner, A. L., 15n., 201 
LEJI-1 computer (U.S.S.R.), 134n., 147 
Length, in indexing, 153, 154 

Letter (ser Alphanumeric code; Char- 

Level, indexing, in 7951, 260, 261 

ming language) 

metic, unnormalized; Zero) 

( S r r  also Field length) 

acter) 

Indirect address, 167, 168 
Lnterrupt, 145, 146 
look-ahead, 229-246 

Level checked bit, 239 
Level jilled bit, 239 
Limit, 153, 154 
Lines, input-output, 190 

phone, 63, 179-190 
Loading of accumulator, 84-90, 115, 116 
Loading effective address (see Indirect 

Locating operation, 184 
Location (see Address) 
Logarithm, 96 
Logic unit, 209 
Logical connectives, 87-89 
Logical operations, 44, 257 

data for, 34, 35, 52, 55 
symbols for, 62 
(See also Connective operations) 

buffering action, 229 
recovery after interrupt, 16, 230, 246, 

address) 

Look-ahead, 11, 21, 22, 228-230 

247 
Look-ahead address register, 240, 241 
Look-ahead level, 229-246 
Look-ahead operation code bit, 240 
Look-ahead unit, 205-208, 228-247 

checking, 207, 240-246 
component count, 217 
simulation, 218, 230-238 

Look-up (see Table look-up) 
Loop (see Program loops) 
Los Alamos Scientific Laboratory, 2, 4, 

231 
joint planning group, s 

Lower boundary register, 31, 276 
Lower-case letter, 62-69 
Lowry, IC. S., 192 
Lozenge, 66, 73 

McDonough, E., 192 
Machine language (see Instruction set) 
Machine malfunction, 194, 252 
Machine time accounting, 194 
Machmudov, U. A., 134n. 
Macroinstructions, 119, 264, 265 
Magnetic cores, 1 

Magnetic disks (see Disks) 
Magnetic tape, 43, 179-187 

(See also Memory) 

automatic zero deletion, 37 
block length, 182 
code convention, 71 
control of, 183-189 
data flow rate, 48, 76 
high-speed, 258 
as storage, 19, 179 
tape control unit, 189, 249 



Magnetw tape, tape unit selection, 184 
Magnetic wire, 43 
Main memory (see Memory) 
Maintenance bits, 276 
Maintenance controls, 191, 227 
Malfunction, 194, 252 
Man-machine relation, 12, 13 

Manchester computer, 150n. 
MANIAC I1 (Los Alamos), 105 
Mantissa, 95n. 

Manual control (see Maintenance con- 
trols; Operator intervention) 

llapping, 256 
Alarimont, R. B., 201 
JIarker bits, 38 
1Iask register, 21, 138-146, 276 
Masking, of indicators, 138-146, 195, 196 

to select bits, 39, 89 
Master file, 175-177, 266 
Match function, 88 
Match unit, 263, 264 
Matching, bit, 27, 88, 264 

Mathematical symbols, 62 
Matrix, 53 

Matrix multiplication, 170, 171, 298 
Matrix operations, 260, 261 
Memory, 3, 17-19, 202 

(See also Operator intervention) 

(See also Fraction) 

record (see Record handling) 

bit, transposition of, 303, 304 

auxiliary fast units, 3n., 229 
as instruction memories, 233-238 
in 7951, 258 

buffering in, 187, 188, 248 
delay-line, 43 
effect on performance, 48, 49, 286-238 
rxchange, 249, 250 
mistence (oring) feature, 262, 267 
inultipIe units, 12, 15, 233-238 
nondestructive reading, 207 
virtual (see Look-ahead) 

Memory addressing (see Addl ess niiml~er- 

Memory area, 29, 163, 181-183 
Memory bus unit, 15, 17, 205, 206 
Memory conflicts, 232-235 
Mcmory cycle, 7, 202, 233 
Memory hierarchy, 229 
3lPmory protection, by address nionitor- 

boundaries defined, 21. 31 27tj 
multiprogramming requirements, I 3  

ing; Word length) 

ing, 8, 31. 196, 197 

199 
T a t  input-output, 183 

hleiiiory sharing, 193 
5fc.rnory speed, 7, 202, 233-238 

IiVDEX 315 

Memory \\ord, 7, 17, 39, 40 
Merging, 163, 256, 265-267 
Mersel, J., 134n. 
Meteorology, 254 
Metropolis, N . , 1 OOn . 
Microprogramming, 132 
Minus sign, 70 
Mnemonic abbreviations, 276-291 
Mode, immediate addressing, 280 

progressive indexing, 77, 280 
Modification (see Address modification, 

Instruction modification) 
Modifier, 10, 130 

absolute value, 106, 280 
advance, 284, 295-300 
backward, 285 
branch operations, 28, 136, 284, 285 
data transmission, 285 
FLP, 106, 280 
immediate count, 285 
input-output, 286 
invert, 285 
negative szgn, 84, 106, 280 
normalization, 106, 280 
on-off, 284, 285 
radix, 80, 280, 281 
suppress end of operation, 185, 286 
unsigned, 83, 280 

zero, 284, 285 
VFL, 80-84, 280, 281 

Modifier notation, 293, 294 
Monitoring (see Exception monitoring; 

Memory protection; Program 
monitoring) 

Llultiaperture core memory, 207 
1\Zultiple-address instruction, 122-1 25 
Iliiltiple-block operation, 183, 252 
\Iultiple computing units, 15, 195, 287 
Multiple flag, 183, 252 
3Iultiple indexing, 9, 155 
hlultiple-precision arithmetic, 93, 107, 

double-length numbers for, 25, 101 
rare in fixed point, 77, 82 
requires unnormalized FLP, 103 

Multiplexing in exchange, 249-251 
(See also Concurrent operation) 

Multiplication, 22-26, 44, 50 
cumulative (see Cumulative niulti- 

decimal, by subroutine, 26, 208 

high-speed unit, 208-21 1 
logical, 27, 35, 88, 89 
speed, 15, 218 
VFL, 26, 86, 208 
zero problem in FLP, 110-1 I3 

119-121 

plication) 

FLP, 95, 109-116 



316 ISDEX 

Multiprogramming, 192-201 
need for interrupt, 138, 146, 195, 

196 
operating techniques, 10-14, 193- 

196 
program protection (see Memory pro- 

tection) 
reasons for, 10-14 
supervisor, 8, 194-200 

Murphy, R. W., 86%. 

Naming of index register, 28, 156 
Nand (not and), 88 
Nanosecond (ns), 7, 220 
Natural data units, 33-39, 75 

influence on instruction format, 127, 
128 

Naur, P., 62n. 
Naval Ordnance Research Calculator 

(NORC). 94 
Negation (see Inversion; Not function) 
Negative numbers, 82, 210-212 

(See also Sign) 
Neighbors in array, 152 
Nesting store, 125 
Newell, A., 164n. 
No operation bit, 240 
Noise, electrical, 225, 226 

Noisy mode, FLP, 25, 102, 113, 114 
Nonarithmetical data processing (see 

Nondestructive-read memory, 207 
Nonnegative numbers, 25, 26, 83, 80 
Pu'onnumerical data (see Alphanumeric 

Konprint code, 67 
Nonrestoring division, 21 1-213 
Nonstop CPU operation, 135, 196 
Nor function, 88 
Normalization, FLP (see Floating-point 

arithmetic) 
Normalized vector, 299, 300 
Not function, 35, 88 

symbol, 73, 88, 219 
Not and function, 88 
Notz, W. A., 15n., 201 
N P N  transistor, 218 
Kull code, 67, 68 
Number base (see Radix) 
Sumber range, 92-94, 99 

(See also Scaling) 
Number systems, 43 
Sumbers, coding:, 43-61 

riegative, 82, 210-212 
positive, arithmetic* for. X;i, 40 

numerical, 102 

Data processing) 

data) 

Xumbers, unsigned, 25, 26, 83 
(See also Alphanumeric data; Charac- 

ter code; Decimal digits; FLP 
number) 

Numerical data (see Numbers) 
Numerical keyboard, 69 

Octal (base-8) code, 78 
Odd parity, 66, 90 
Off-line input-output operation, 13, 189 
Offset, 79, 90 

indexing of, 127, 303, 304 
Oh, distinction of letter, 70 
On-line input-output operation, 13, 189, 

One, distinction of, 70 
One-address instruction, 122-125, 156, 

Operand address, 21, 151, 155 
greater length, 124, 125 
in indircct addressing, 167 
in progressive indexing, 161 
(See also Data word address) 

193 

157 

Operand check counter, 240 
Operand registers (C, D), 22-24, 206-210 
Operand specification, 21 
Operating techniques, 10-14, 193-196 
Operation, 277-286 

ADD, 24, 85, 277, 295-300 
ADD DOUBLE, 120, 279 

TO MAGNITUDE, 279 
ADD TO EXPONENT, 118, 279 
ADD TO FRACTION, 118, 279, 297 
ADD IMMEDIATE TO COUNT, 283 
ADD IJIMEDIATE TO EXPONENT, 118, 

279, 297 
ADD IMMEDIATE TO VALUE, 283, 298 

AND COUNT, 283 
COUNT, AND REFILL, 283 

ADD MAGNITUDE TO MEMORY, 86, 277 
ADD TO MAGNITUDE, 25, 85, 86, 277 
ADD TO MEMORY, 84, 85, 277 
ADD ONE TO MEMORY, 85, 278 
ADD TO VALUE, 157-159, 283, 302 

AND COUNT, 159-161, 283, 303 
COUNT, AND REFILL, 166, 283 

ON BIT, 28, 136, 285 
ON INDICATOR, 28, 136, 284, 302-304 

BRANCH, 135, 283 

BRANCH DISABLED, 135-145, 199, 284 
BRANCH ENABLED, 135-145, 284 

AND WAIT, 135, 284, 295-304 
BRANCH RELATIVE, 135, 136, 384 
BYTE-BY-BYTE, 263-265 
CLEAR MEMORY, 265 
('OJII'ARE, 86, 277, 278 

IF EQVAL, 86, 278 



INDEX 317 

Operation, RELEASE, 253, 285 
RENAME, 28, 156, 283 
SEARCH, 266 
SELECT, 266 
SEQUENTIAL TABLE LOOK-UP, 26;-270 
SHIFT FRACTION, 118, 279 
STORE, 24, 85, 120, 277, 295-304 
STORE COUNT, 282 
STORE INDEX, 282 
STORE INSTRUCTION COUNTER IF. 

135-145, 284 
STORE LOW ORDER, 116, 120, 2 i 9  

STORE ROOT, 116, 279, 300 
STORE ROUNDED, 86, 115, 277, 29,. 2% 
STORE VALUE, 282 

IN ADDRESS, 8, 283 
STORE ZERO, 286, 304 

STORE REFILL,  282 

SUBTRACT IMMEDIATE FROM COCXT, 283 
SUBTRACT IMMEDIATE FROM VALUE. ‘783 

AND COUNT, 283, 304 
COUNT, AND REFILL, 283, 303 

SWAP, 28, 126, 145, 173, 285 
TAKE-INSERT-REPLACE, 266 
TRANSMIT, 28, 126, 285 
WRITE, 29, 175-177, 180-184, 250-?5’7. 

285 

notation, 294 
Operation code, 70, 126-130 

Operation modifier (see Modifier) 
Operator error, 193, 194 
Operator intervention, 13, 186 

facilities for, 190, 196 
Optimization of design, 7, 8 
Or circuit, 89, 224 
Or function, 27, 88, 89 
Order-of-magnitude zero, 97, 98, 109-1 11 
Ordering, 163-165, 256, 265-267 
Oring in memory, 262, 267 
Other-CPU bits, 276 
Output (see Input-output) 
Overdraw in division, 213 
Overflow, 92, 97 

exponent, 98-113 
in unnormalized FLP arithmetic, 112. 

in VFL arithmetic, 75, 81-85 
Overlap (see Conrarrent operation) 

115 

Operation, COMPARE, FOR RANCE, 86, 278 
COMPARE COUNT, 283 

IMMEDIATE, 283 
COMPARE FIELD, 86, 278 

IF EQUAL, 86, 278 
FOR RANGE, 86, 278 

COMPARE MAGNITUDE, 116, 278 
FOR RANGE, 116, 278 

COMPARE VALUE, 159, 283 
IMMEDIATE, 283 
NEGATIVE IMMEDIATE, 283 

CONNECT, 27, 89, 90, 281, 302-304 
TO MEMORY, 27, 89-91, 281, 302 
FOR TEST, 27, 90, 281, 302 

CONTROL, 181-190, 252, 285 
COAVERT, 87, 281 
CONVERT DOUBLE, 87, 281 
COPY COXTROL WORT), 253, 286 
COUKT AND BRANCH, 136, 161, 162, 

COT-NT, BRANCH, AND REFILL, 136, 169, 

DIVIDE, 10, 24-26, 86, 87, 115, 278, 279, 

IIIVIDE DOUBLE, 115-1 18, 279 

284, 295-300 

170, 284, 298, 300 

297, 300 

EXECUTE,  146-148, 286 
IKDIRECT AND COUNT, 148, 149, 286 

INDIRECT LOAD-STORE, 267 
LOAD, 24,84-90, 115,120,277, 295-300 

WITH FLAG, 85, 115, 277 
LOAD CONVERTED, 87, 280, 300 
LOAD COUNT, 282 

LOAD DOUBLE, 116, 120, 279, 298 

LOAD FACTOR, 86, 115, 120, 278, 298 
LOAD INDEX, 282, 295-304 
LOAD REFILL, 282 

IXMEDIATE, 282, 303 

W I T H  FLAG, 116, 279 

IMXEDIATE, 282 
LOAD TRANSIT COVVERTED, 87, 281 

LOAI) VALUE, 282 
LOAD TRANSIT A N D  SET, 87, 278, 279 

EFFECTIVE, 30, 167, 168, 283 
IYXEDIATE, 282 
NEGATIVE IMMEDIATE, 282 
W I T H  SUM, 155, 283 

LOCATE, 181-190, 252, 285 
MERUE, 266 
\IIJLTIPLY, 24-26, 86, 278, 279, 295-300 

AND ADD, 86, 115-120, 278, 279, 298 
MULTIPLY DOUBLE, 120, 279 
NO OPERATION, 136, 284 
READ, 29, 175-1 77, 180-1 85, 250-1.52, 

285 
RECIPROCAI, DIVIDE, 10, 116, 279, 297 
REFILL,  166, 175, 286 

ON COUNT ZERO, 286 

Packaging, circuit, 7, 523-225 
Packing, data field, 37 

Paper tape, delete code, 67, 68 
Parallel arithmetic, 22, 208-218 
Parallel computers, 273 
Parameters set up in 7951. 265-267 

decimal digits, 66, 68 



318 IKDEX 
Parity, 90 
Parity bit, 66-72 
Parity check (see Checking) 
Partial field, 84, 112, 117-119, 289 
Partition symbols, 38 
Performance, arithmetic, 217, 218 

balanced, 121, 234 
comparison with IBM 704, I, 2 
effect, of memory, 48, 49, 233-238 

of number base, 48-50 
objective, 2-6 
rough approximation, 32 
tape-limited, 48, 76 

Performance-to-cost ratio, 5, 6, 151 
Perlis. A. J., 62n. 
Phone line, 63, 179-190 
Pilot Computer (Xational Bureau of 

Pipeline effect, 188, 204 
Planning of Project Stretch, vii-xi, 4- 

Plugboard, 150 

Plus sign, 70 
P N P  transistor, 218 
Polynomial evaluation program, 295 
Pomerene, J. H., 254 
Positive-number arithmetic, 83, 86 
Positive numbers, 83, 86 

Postshift, 100 
Power preferred to simplicity, 8, 9 
Power supply, 225-227 
Precision, 92-105 

Standards), 15n. 

16 

electronic analogy, 257, 264 

(See also Sign) 

S’FL, 77,82 
(Srr also Multiple-precision arithmetic) 

Prefix instruction, 131, 135, 167 
I’reshift, 100 
E’rint editing, 56-58, 75, 267 
Printer, 67, 179, 189 

rhain, 63, 186 
Priority, input-output, 235 

interrupt, 31, 139, 140 
memory bus, 205, 206 
in queue, 185, 198 

Procrustes, 38 
Product (see hlultiplication) 
Program assembly, 14, 132, 267 

I’rogram dehugging, 8, 31, 56 

Program indicators, 290 
Program initialization, 169, 170 
Program interruption (see Interrupt) 
Program loops, 128, 160, 170 

(See also Programming language) 

during multiprogramming, 13, 193 

endless, 148, 194, 200 
mamples, 149, 109-1 71, 295-301 

Program loops, fast memory for, 233 

Program monitoring, 147-149 
Program relocation, 8, 135, 198 
Program restart, 169, 170 
Program scheduling, 14, 194, 195 

(See also Priority) 
Program start and stop, 135, 186n., 196 
Program switch, 136 
Program tracing, 147-149 
Programming, compatibility, 7, 125 

(See also Index arithmetic; Indexing) 

ease of, 8, 151 
error in, 193, 194, 252, 253 
examples, 119-121, 295-304 

notation in, 292-294 
interpretive, 87, 147, 195 

Programming language, affects instruc- 
tion set, 132 

ALGOL, 62 
compiler for, 8, 198, 256 
macroinstructions, 119, 264, 265 
print-out, 56 

effect on look-ahead, 246 
example, 300-304 
instruction format, 77, 280 
notation, 294 

Progressive indexing, 28, 127, 161, 162 

Project Stretch, viii-xi, 1-7 
Propagated overflow, 112 
Pseudo instruction counter for execute, 

Pseudo operations, 26 
Punched cards, bit transposition, 186 

148, 149 

card-to-tape conversion, 189 
8-bit code, 71, 72 
keypunch, 63n., 68 
output punch, 179, 186 
reader, 179-189 
I2-bit code, 55, 64, 78 
(See also Plugboard) 

Punctuation symbols, 40, 62, 69 
Push-down accumulator, 126 

Queuing, 163, 185, 198, 199 
Quotient (see Division) 

Radix, address, 14, 52-58 
choice of, 42-59 

in FLP, 104, 105 
mixed, 42n. 

affects formtit, 51, 87 
example, 299, 300 
operations, 27, 87, 280, 281 

affects information content, 45-49 

Radix conversion, 16, 44, 208 



Radix modifier, 26 
Radix-point alignment, 79-82, 92 
Range, number, 92-94, 99 

Range comparison, 86, 116, 278 
Read-only registers, 276 
Read-only storage, 147 
Reading, 29, 180-188 

in exchange, 251, 252 
Ready, 190 
Real-time response, 5, 193 
Recomplementing, 77n., 82n., 210 
Record, 39, 40 
Record handling. 162-165, 172-177, 

Redundancy, instruction format, 130 
Redundancy bit (parity bit), 66-72 
Redundancy check (see Checking, parity) 
Refill, 165-171 

(See also Chaining) 
Refill address, 28, 155, 165, 166 

as branch address, 166 
for input-output, 29, 181, 182 

(See also Scaling) 

266 

Register stages, 224 
Registers, 19-24, 204-210, 276 

storing on interrupt, 139 
(See also Accumulator sign byte 

register) 
Rejection of instructions, 185, 287, 288 
Relative address in array, 152, 153 
Relative branching, 135, 136, 284 
Relative error, 103 
Reliability, 2, 7 

(See also Checking) 
Remainder (see Division) 
Remainder register, 24, 86, 276 
Remington Rand (UNIVAC), 123, 134 
Renaming of index registers, 28, 156, 

Reset and add, 84 
Resetting bits, 89 
Resolution (see Bit address; Scaling) 
Response, to external signals, 136, 137 

Result, alignment, 81, 82 

283 

real-time, 5, 193 

indicators, 84, 112, 289-291 
(See also Indicator) 

Return address for operand fetch, 206 
Rewinding of tapes, 183, 186 
Ring of memory areas, 172-177 
Robertson, J. E., 216%. 
Rochester, N., 274 
Roman nunierals, 267-270 
Root (see Cube-root program; Square 

Round-off error, 92, 99-101 
effect of radix, 50, 105 

root) 

INDEX 319 

Rounding, 100-103 
example, 296, 297 
operations, 86, 115, 277 

Samelson, K., 62n. 
Scale factor, 93, 94 
Scaling, 50, 54, 93-95 

avoided in division, 117 
rare in VFL, 82 

ScaIzi, C. A., 192 
Scanning, file, 265-267 

Scattered control words, 173 
Scattered records, 164, 165 
Scheduling, 14, 194, 195 

(See also Priority) 
Schmitt, W7. F., 201 
Scientific computers, 273 
Scientific computing, 6, 59, 254-256 
SEAC computer (National Bureau of 

Standards), 123 
Searching (see Scanning) 
Selection address, 18 1-1 84 
Selectron memory tube, 43 
Sense, 184 
Sequence (see Comparing sequence; Data 

ordering; Data sequence; Serial 
arithmetic) 

Serial arithmetic, 22-24, 75-77, 208, 209 

Serial computers, 273 
Serial input-output, 187 
Service programs, 56 
Service request, input-output, 249-251 
Set-up mode, 257-267 
Setting bits, 27, 89 
Shannon, C. E., 45n. 
Shaw, J. C., 164n. 
Shift, case, 67-69 

Shifter, parallel, 210, 216, 224 
Shifting, 37 

as opposed to addressing, 37 

plan for separate unit, 3 

code, 63-69 

in exchange, 249-252 
in FLP, 95, 100, 105 
to multiply or divide, 50 
replaced by offset, 79 

Sign, 33, 34, 47, 210 
in accumulator, 22, 83, 107 
in address, 129 
in index value, 27, 129, 155, 282 
separate byte, 70, 82, 83 

Signal button, 191 
Significance loss, 92, 99-105 

checking for, 99-103 
indicator, 113 
(See nlso ~liiltiple-precisiori arithmetic) 



320 IXDEX 

Significant bits, lost, in urnnormalized 
FLP, 112, 115 

in VFL, 84, 85, 289 
Simon, H. A., 164n. 
Simulation, 218, 230-238 
Simultaneous operation (see Concurrent 

operation; Interrupt; Multiprogram- 
ming) 

Single-address instruction, 122-125. 156, 
157 

Single-block operation, 182, 183 
Single card, 217-225 
Single-length FLP number, 103-108 
Single-length operations, 104, 114-1 16 
Single precision (see Multiple-precision 

arithmetic) 
Singularities, FLP, 96-99, 108-110 
Sink unit, 259-267 
Skipping, of instructions, 133 

in multiplication, 50 
Smith, J. I,., 15n., 201 
Solid-state components, 1 
Sorting, 39, 163, 256 

7951 facilities for, 265-267 
Source unit, 259-267 
Space, allocation of, 194, 198 

Spacers for grouping data units, 36, 38 
Sparse matrix, 304 
Special addresses, 276 
Special characters, 62-69, 264 
Special FLP operations, 119 
Special-purpose computer, 6 ,  59 

Speed, circuit, 7, 220 

over zeros or ones, in division, 211-214 

character, 62-68, 72 

exchange as, 15, 250 

memory, 7, 202, 233-238 
(See also Performance) 

instruction, 116, 279 
Square root, 111-119 

Standard character code, ix 
Start, computer, 135, 186n. 

input-output, 184-191 
Starting address in 7951, 260 
Statistical accumulator (SACC), 263 
Statistical counter (SCTR), 263, 264 
Statistical operations, 255, 263 
Status bits, 184, 248-250 
Status indicatois. 288 
Stimuli, 263, 264 
stop, computer, 135, 196 

inpnt-output, 185-1 91 
Storagp, evternal (see ICxternal storage) 

internal (Aee Memory) 
number, 46-49 
saved by VFL, 70 

Storage allocation, 194, 198, 229 

Storage efficiency, 46-49 
Store check counter, 240 
Store operations, FLP, 115, 116 

Stored-program computers, IBM, 273, 

Storing in memory, 84-90, 112, 180 
by look-ahead, 207, 229, 230, 241-247 

Storing instruction counter (see Instruc- 
tion counter) 

Strachey, C., 201 
Stream (see Data flow) 
Stretch, viii-xi, 1-7 
String of bits, memory as, 76, 259 
Subroutine, single instruction, 146, 14T 
Subroutine linkage, 134 

by control word, 177 
by execute, 147 
by refill address, 166 
by transit interrupt, 24, 26, 85-87 

Subscript digits, 68, 70 
Subsets, character, 62-65 
Subtraction, by complement, 208-210 

VFL, 85-90 

274 

FLP, 95, 96 
of FLY singularities, 109, 110 
modified addition, 24, 84, 106, 130 
zero result, FLP, 96 

Sum (see Addition) 
Supervisory program, 8, 11, 194-200 
Suppression, of end-of-operation inter- 

rupt, 185, 286 
of instructions, 133 

Svigals, J., 274 
Swapping, 28, 126, 285 

Switch matrix, 208, 209, 259, 260 
Switching, within a program, 136 

among programs (see Multipro- 

examples, 145, 173-175 

gramming) 
Synchronization of coniputcr x ith input- 

Synchronizer, disk, 20, 193, 203-205 
System design of 7030, vii, 5, 17-32 
Systematic instruction set, 9, 10, 130 

output, 184 

Table address assembler (TAA), 261-267 
Table base address, 53-55, 196 
Table entry, 53-56, 261, 267 
Table extract unit (TEU), 261, 962 
Table look-up, 53-56, 153, 255-257 

in 7951, 359-271 
(See ulso Editing) 

Tag (see Index address; Index flag) 
Tag bits, look-ahead, 239, 240 
Tagging, exponent overflow and urider- 

flow, 98 



Tallying (see Counting, in memory) 
Tape, magnetic (see Magnetic tape) 

paper, delete code, 67, 68 
Tape-limited data processing, 48, 76 
Tape-operated printer, 189 
Technology, I ,  6, 7 
Telegraph or telephone line, 63, 179-190 
Termination, indexing, 153-160 

input-output operation, 252, 253 
(See also Stop) 

Ternary number system, 43, 46n. 
Test for termination, 153, 154 
Testing bits (see Bit test) 
Third-level circuit, 219-221 
Three-address instruction, 123 
Tilde, modified, 70 
Time, accounting of, 194 

allocation of, 198 
elapsed (see Interval timer) 

Time alarm if in endless loop, 200 
Time clock, 31, 27G 

in multiprogramming, 194-199 
Time-sharing, of CPU (sre Multipro- 

gramming) 
in exchange, 248 

Timing in CPU, 204, 209 
Timing simulation, 218, 230-238 
Tonik, A. H., 201 
Tracing (program monitoring), 147-140 
Transfer ( w e  Branching; Data trans- 

Transfer bus counter, 240 
Transformation (see Table look-up) 
Transistor circuits, 1, 7, 216-223 
Transistorized computers, 1, 273 
Transit operation indicators, 290 
Transit register, 24, 87, 276 
Translation, code, 26, 53-56, 67 
Transmission (see Data transmission) 
Transposition, bit, 186, 303, 304 
Triangular matrix, 261 
True-complement switch, 208, 209 
True zero, 98, 109 
Truncated index address, 156, 157 
Truth tables, 88 
Turing machine, 267 
Two-address instruction, 123 
TX-2 computer (PVIIT Lincoln 

Laboratory), 201 
Type font, 62, 70 
Typewriter, 179, 187, 301 

character set, 62, 63 
keyboard, 68, 69 

mission) 

Unconditional branching, 28, 135, 283, 
284 

Iinderfiow, 92 

UNIVAC I, 134 
UNIVAC Scientific (11031, 123, 134~1. 
Unnormalized FLP arithmetic ~ P P C  

Floating-point arithmetic 
Unsigned numbers, 25, 26. 83 
Unusual condition, interrupt ior. 252.  

Upper boundary register. 3 1 .  Xtj 
Upper-case letter, 62-69 

exponent, 98-113 

253 

Vacuum-tube computers. 2T.3 
Value (see Index value) 
Van der Poel, W. L., 131 
Variable byte size, 79 
Variable field length (VFL) T>r)I 

Variable FLP number length, 1u; 
Variable-length address, 129, 130. 16; 
Variable-length instructions, 125 
Vector, 299 
Vector multiplication, 159, 160. 1 6 9  
VFL arithmetic and logic unit. 3% 3r- 
VFL data format, 33-39, 7i-7!1 

logical fields, 34, 35, 89-91 
numbers, 34, 51, 80-83 
in radix conversion, 87 

need for, 15, 36-39, 75, 56 

VFL indicators, 84, 85 
VFL instruction format, 77, 126. 127. 

VFL operations, 24-27, 85-91, 277-2& 
275 

(See also Immediate address; Pro- 
sive indexing) 

Virtual memory (see Look-ahead I 
Von Neumann, J., 43, 44, 51, 192 

Wadey, W. G., 100n. 
Wait, for input-output, 187, 188 

Weather forecasting, 254 
Weaver, W., 45n. 
Weighting in statistical operations, 255. 

Weinberger, A., 15n. 
Wheeler, n. J., 134 
Whirlwind computer (MIT), 122 
Wilkes, M. V., 134n. 
Word, 7, 17, 39, 40 
Word address, 29, 35, 259, 260 

for program, 13, 135, 194 

263 

data, 181, 249-251 
(See aZso Address numbering) 

Word assembly and disassembly, 19, 

Word boundary, 34-36 
248-252 



322 INDEX 

Word boundary crossover, hyt,es, 79, 259 
fields, 25, 29, 76 
instructions, 21, 126 

Word-boundary crossover bit, 240 
Word length, power of two, 29,54,76, 

259 
related to instruction format, 123-125- 

in exchange, 250-252 
MTriting, 29, 180-183 

XFN (infinitesimal), 96-98, 108-113, 

XFP (infinity), 96-98, 108-113 
292-299 

Yes-no logic (see Logical operations) 

Zero, code, 68 
distinction of, 70 
division by, 26, 85 -87, 110 
forced, 86 
multiplication by, 110-113 
nonsignificant, bits on tape, 71 
not unique in FLP, 96 
resetting to, 89, 90, 265, 286 
true, 98, 109 
(See also Infinitesimal) 

Zero address, no data, 19, 276 
Zero deletion on tape, 37 
Zero fraction, 97, 98 
Zero index address, no indexing, 19 
Zero index count, 161, 166 
Zero tests after connective operation, 90 
Zone bits, 51, 68, 80, 83 


	mcjones.org
	Planning a Computer System : Project Stretch
	[Authorization]
	[Dust jacket]
	[Cover]
	Forward (Carlson)
	Preface (Buchholz)
	Acknowledgments

	Contents
	1: Project Stretch (Buchholz)
	2: Architectural Philosophy (Brooks)
	3: System Summary of IBM 7030 (Buchholz)
	4: Natural Data Units (Blaauw, Brooks, Buchholz)
	5: Choosing a Number Base (Buchholz)
	6: Character Set (Bemer and Buchholz)
	7: Variable-Field-Length Operation (Blaauw, Brooks, and Buchholz)
	8: Floating-Point Operation (Campbell)
	9: Instruction Formats (Buchholz)
	10: Instruction Sequencing (Brooks)
	11: Indexing (Blaauw)
	12: Input-Output Control (Buchholz)
	13: Multiprogramming (Codd, Lowry, McDonough, and Scalzi)
	14: The Central Processing Unit (Bloch)
	15: The Look-Ahead Unit (Ballance, Cocke, and Kolsky)
	16: The Exchange (Buchholz)
	17: A NonArithmetical System Extension (Campbell, Herwitz, and Pomerene)
	Appendix A: Summary Data
	Appendix B: Programming Examples
	Index





