

Raised Floor, or Non-Raised Floor

-- That Is the Data Center Question

Agenda

- Data Center Raised Floor History
- Raised Floor and Connectivity
- Access Flooring Industry
- Before Raised Floors
- Function and Purpose
- Historical Data Center Design Template
- Recent Factors
- Expert Opinions
- Pros and Cons
- Cost Factor
- Summary
- Reference Material

Data Center Raised Floor History

3

- 1952: First IBM Production Computer and "Computer Room"
 - -IBM Manufactured 19 of the 701 Electron Data Processing Machines
- 1955 1960: 123 of the IBM 700 Series were Sold
- 1956: First "Raised" Floor Room Appears

Raised Floor and Connectivity

- Growth in Commercial Computing Market
- IBM 700 Series System Connectivity
 - -Multi-Unit Systems with Large Interconnect Cables
 - Copper Interface Cables
 - 300 500 mm Diameter
 - Large Bend Radii

- Early Raised Floor Systems Appeared 1955 1956
 - -Innovative: Wood, Metals
 - -"One of a Kind" and Built Order
 - -Bel Aire Industries, Liskey, Washington Aluminum Company
- Collaboration Between IBM and the Washington Aluminum Company

Access Flooring Industry

In the 1950's IBM came to the Washington Aluminum Company with a problem. They had started manufacturing and selling a new piece of equipment called the mainframe computer. IBM needed someone to build a stand or platform to support the weight of this machine and create easy access for the wires and cooling of the equipment. Sitting in that room were a few people including Earnie Liskey and Jim (Bill) Irvine. This was the beginning of the access floor industry. A short time later these men created the Liskey Aluminum Company of Baltimore, Maryland and the first production access floor systems were manufactured."

Source: Irvine Access Floors

5

Before Raised Floors:— Circa Late 1950's-Early 1960's

6

Function and Purpose

- Physical Support for Electronic Equipment
- Enhance Load / Weight Distribution
- Access to Electrical Power, Control / Interface / Network Cabling
- Air Distribution and Management
- Liquid Cooling: Hoses/Pipes/Valves
- Signal Reference Ground: EMI / Electrical Noise
- Static Control: ESD
- Adaptability/Flexibility to Equipment Changes
- Personnel Comfort: Carpeted Floor Tiles
- Appearance

7

Historical Data Center Design Template

1955 1960 1970 1980 1990 2000 2010

Designed and Built Based on Early Design

- -Large Room
- -Electrical Power
- -Cooling
- -Raised Floor*

-Design Assumptions

- Hardware to be Supported
- Growth Projections
- S-M-L, "Cookie Cutter" Approach

Recent Factors

Higher Density Equipment

-Heavier Footprint Kg/sq m (Lbs / sq ft)

Connectivity/Network Complexity Trends

- -Copper
- -Fiber
- -Power

Air Management Strategies

- -Containment
- -In Row

High Density - Weight

Sys

10

High Density – Weight Floor Tiles

11

Panel	Understructure	System Weight (lbs/ft²)	Static Loads		Rolling Loads		
			Design Loads¹ (lbs)	Safety Factors ² (min 2.0)	10 Passes (lbs)	10,000 Passes (lbs)	Impact Loads (lbs)
ConCore® 1000	PosiLock*	8.0 (39kg/m²)	1000 (4.4kN)	PASS	800 (3.6kN)	600 (2.7kN)	150 (68kg)
ConCore® 1250	PosiLock*	8.5 (42kg/m²)	1250 (5.6kN)	PASS	1125 (5.0kN)	875 (3.9kN)	150 (68kg)
ConCore® 1500	PosiLock*	9.0 (44kg/m²)	1500 (6.7kN)	PASS	1250 (5.6kN)	1000 (4.4kN)	150 (68kg)
ConCore® 1000	Bolted Stringer	9.0 (44kg/m²)	1000 (4.4kN)	PASS	800 (3.6kN)	600 (2.7kN)	150 (68kg)
ConCore® 1250	Bolted Stringer	10.0 (49kg/m²)	1250 (5.6kN)	PASS	1000 (4.4kN)	800 (3.6kN)	150 (68kg)
ConCore* 1500	Bolted Stringer	10.5 (51kg/m²)	1500 (6.7kN)	PASS	1250 (5.6kN)	1000 (4.4kN)	150 (68kg)
ConCore® 2000	Bolted Stringer	11.5 (56kg/m²)	2000 (8.9kN)	PASS	1500 (6.7kN)	1250 (5.6kN)	150 (68kg)
ConCore® 2500	Bolted Stringer	12.0 (59kg/m²)	2500 (11.1kN)	PASS	2000 (8.9kN)	2000 (8.9kN)	150 (68kg)
ConCore* 3000	Bolted Stringer	13.0 (63kg/m²)	3000 (13.3kN)	PASS	2700 (12.0kN)	2400 (10.7kN)	200 (91kg)

http://www.tateinc.com/pdf/product_guide.pdf

Cabling Trends

Photos courtesy of Lee Henchman

Air Management

Cold Aisle – Hot Aisle

Chimneys

- -Alteration/Attachment
 - Warranty/Maintenance Impact?

Aisle Containment

- -Which Is Better
- -Personnel: Heat Stress

Free Standing Solutions

-Personnel: Safety

Expert Opinions

- "Anyone designing a new data center now with raised-floor cooling is being environmentally irresponsible because the method is entirely unable to accommodate changes which are already challenging operations today – not least of which dynamic power variation amongst IT equipment loads." -Neil Rasmussen - CTO of APC, Senior VP of Innovation for Schneider Electric
- "Whilst I agree with the end of an era of "open air management" cooling systems (which mostly use raised floor cooling) I think we will still continue to see raised-floor cooling designs and for valid reasons." – Dr. Robert Tozer – Director of Operational Intelligence, Ltd
- "However, though not efficient, the raised floor, in association with air handler units along the walls, can cool high-density loads by installing open grates rather than perforated tiles." Dr. Bob Sullivan Industry Consultant

Pros and Cons

RAISED

- Free Movement of Cabinets
- Flexible Placement of Vent Tiles
- Vent Tile Options, % Open
- Concealment of Cables
- Under or Over Cabling
- EMC Shielding/Signal Ref. Ground
- Concealment of Plumbing
- Appearance

NON-RAISED

- Cost Saving of Flooring System
- Overhead Cabling
- Increased Floor to Ceiling Height
- Limited Floor Loading Concern
- No Under Floor Fire Protection

- Additional Cost
- Reduced Floor-Ceiling Height
- Under Floor Fire Protection

- Added Cost Ducting
- Added Cost Concrete Finishing
- Difficulty in Changing Ducting
- Appearance

NOTE: Some IBM Machine Types REQUIRE Installation on Raised Floor

Cost Factor

- Access/Raised Floor Adds \$215-430 / m² (20-40 / ft²)

- -Engineering, Materials, Installation
- -Variables

16

- Floor Tile Type / Rating
- Floor Depth
- Perforated / Vent Types

Zinc Whiskers

17

- Reliability Factor Related to Some Raised Floors
- "Electroplated" Zinc Coating (Rust Prevention for Steel)
- Most New Production Wood Core Tiles State "Whisker Free"
 - -Old Tiles are Everywhere

IBM / R.R. Schmidt – education Series © 2012 IBM Corporation

How Can IBM Help

- IBM Experience, Knowledge and Resources
- GTS Offerings Database

https://w3-03.ibm.com/services/salesone/sosf/dyno.wss?oid=538

- IBM Installation Planning Representatives
 - -brawson@us.ibm.com

18

IBM Site and Facility Services

Summary

- Raised Floors Have Evolved with the IT Industry
- Time Proven Feature with Many Benefits
- Changes in Density, Connectivity, Air Management Raises ?'s
- Extreme Views
- Both are Viable Options
- Pros and Cons

19

- Many Factor to Consider in the Planning and Decision Process
- IBM is Here to Help: GTS, STG

IBM / R.R. Schmidt – education Series © 2012 IBM Corporation

References

20

- IBM Archives, http://www-03.ibm.com/ibm/history/exhibits/vintage/vintage_intro.html
- Irvine Access Floors, http://www.irvineaccessfloors.com/about-us/history/
- Data Center Dynamic, http://www.datacenterdynamics.com/focus/archive/2011/01/coolingwithout-raised-floor
- Tate Access Flooring, http://www.tateinc.com/pdf/product_guide.pdf

IBM / R.R. Schmidt – education Series © 2012 IBM Corporation